Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Braiding reflectionless states in non-Hermitian magnonics

Abstract

A thorough understanding of the topological classifications of non-Hermitian energy bands is essential for advancing non-Hermitian band theory and its applications. As evidenced in various disciplines of physics, including optics, electronics and acoustics, the process of braiding plays a crucial role in the classification of non-Hermitian bands that manifest topological characteristics. Here we demonstrate topological braiding of both reflectionless states and resonant states in non-Hermitian magnons, unveiling a reversal in their braiding handedness. Furthermore, we constitute parity–time symmetric reflectionless scattering modes, along with their degenerate exceptional points. Our results not only underscore the importance of braided scattering states, but also establish magnonics as a versatile platform for exploring non-Hermitian band theory and developing magnon-based applications, including topological energy transfer, tunable absorbers and logic circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The experimental demonstration of HRZ by realizing the PT of RSMs.
Fig. 2: EPs detected experimentally in the 3D synthetic parameter space.
Fig. 3: Opposite handedness braids of the complex eigenvalues of HRZ and Hres.
Fig. 4: Arbitrary numbers of braids are determined by the choice of paths punctured by ERs in 3D synthetic space.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available via Zenodo at https://doi.org/10.5281/zenodo.13582346 (ref. 51). Source data are provided with this paper.

Code availability

The MATLAB codes for drawing the figures are available from the corresponding author upon reasonable request.

References

  1. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. 9, 041015 (2019).

    Google Scholar 

  2. Wojcik, C. C., Sun, X.-Q., Bzdušek, T. & Fan, S. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B 101, 205417 (2020).

    ADS  Google Scholar 

  3. Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).

    ADS  MathSciNet  Google Scholar 

  4. Ding, K., Fang, C. & Ma, G. Non-Hermitian topology and exceptional-point geometries. Nat. Rev. Phys. 4, 745–760 (2022).

    Google Scholar 

  5. Okuma, N., Kawabata, K., Shiozaki, K. & Sato, M. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett. 124, 086801 (2020).

    ADS  MathSciNet  Google Scholar 

  6. Wang, C., Sweeney, W. R., Stone, A. D. & Yang, L. Coherent perfect absorption at an exceptional point. Science 373, 1261–1265 (2021).

    ADS  Google Scholar 

  7. Cao, W. et al. Fully integrated parity–time-symmetric electronics. Nat. Nanotechnol. 17, 262–268 (2022).

    ADS  Google Scholar 

  8. Miri, M.-A. & Alù, A. Exceptional points in optics and photonics. Science 363, eaar7709 (2019).

    MathSciNet  Google Scholar 

  9. Bai, K. et al. Observation of nonlinear exceptional points with a complete basis in dynamics. Phys. Rev. Lett. 132, 073802 (2024).

    ADS  Google Scholar 

  10. Hu, H. & Zhao, E. Knots and non-Hermitian Bloch bands. Phys. Rev. Lett. 126, 010401 (2021).

    ADS  MathSciNet  Google Scholar 

  11. Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    ADS  Google Scholar 

  12. Wang, K., Dutt, A., Wojcik, C. C. & Fan, S. Topological complex-energy braiding of non-Hermitian bands. Nature 598, 59–64 (2021).

    ADS  Google Scholar 

  13. Patil, Y. S. S. et al. Measuring the knot of non-Hermitian degeneracies and non-commuting braids. Nature 607, 271–275 (2022).

    ADS  Google Scholar 

  14. Yang, M. et al. Realization of exceptional points along a synthetic orbital angular momentum dimension. Sci. Adv. 9, eabp8943 (2023).

    Google Scholar 

  15. Lee, C. H. et al. Imaging nodal knots in momentum space through topolectrical circuits. Nat. Commun. 11, 4385 (2020).

    ADS  Google Scholar 

  16. Tang, W., Ding, K. & Ma, G. Direct measurement of topological properties of an exceptional parabola. Phys. Rev. Lett. 127, 034301 (2021).

    ADS  Google Scholar 

  17. Wang, W., Wang, X. & Ma, G. Non-Hermitian morphing of topological modes. Nature 608, 50–55 (2022).

    ADS  Google Scholar 

  18. Zhang, Q. et al. Observation of acoustic non-Hermitian Bloch braids and associated topological phase transitions. Phys. Rev. Lett. 130, 017201 (2023).

    ADS  Google Scholar 

  19. Chen, Z.-G., Zhang, R.-Y., Chan, C. T. & Ma, G. Classical non-abelian braiding of acoustic modes. Nat. Phys. 18, 179–184 (2022).

    Google Scholar 

  20. Cui, X. et al. Experimental realization of stable exceptional chains protected by non-Hermitian latent symmetries unique to mechanical systems. Phys. Rev. Lett. 131, 237201 (2023).

    ADS  Google Scholar 

  21. Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).

    ADS  Google Scholar 

  22. Chen, H. et al. Creating synthetic spaces for higher-order topological sound transport. Nat. Commun. 12, 5028 (2021).

    ADS  Google Scholar 

  23. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    ADS  Google Scholar 

  24. Krasnok, A. et al. Anomalies in light scattering. Adv. Opt. Photonics 11, 892–951 (2019).

    ADS  Google Scholar 

  25. F. Imani, M., Smith, D. R. & del Hougne, P. Perfect absorption in a disordered medium with programmable meta-atom inclusions. Adv. Funct. Mater. 30, 2005310 (2020).

    Google Scholar 

  26. del Hougne, P., Yeo, K. B., Besnier, P. & Davy, M. On-demand coherent perfect absorption in complex scattering systems: time delay divergence and enhanced sensitivity to perturbations. Laser Photonics Rev. 15, 2000471 (2021).

    Google Scholar 

  27. Kang, Y. & Genack, A. Z. Transmission zeros with topological symmetry in complex systems. Phys. Rev. B 103, L100201 (2021).

    ADS  Google Scholar 

  28. Yang, Y. et al. Unconventional singularity in anti-parity-time symmetric cavity magnonics. Phys. Rev. Lett. 125, 147202 (2020).

    ADS  Google Scholar 

  29. Sweeney, W. R., Hsu, C. W. & Stone, A. D. Theory of reflectionless scattering modes. Phys. Rev. A 102, 063511 (2020).

    ADS  MathSciNet  Google Scholar 

  30. Sol, J., Alhulaymi, A., Stone, A. D. & del Hougne, P. Reflectionless programmable signal routers. Sci. Adv. 9, eadf0323 (2023).

    Google Scholar 

  31. Jiang, X. et al. Coherent control of chaotic optical microcavity with reflectionless scattering modes. Nat. Phys. 20, 109–115 (2024).

    Google Scholar 

  32. Ferise, C., del Hougne, P., Félix, S., Pagneux, V. & Davy, M. Exceptional points of PT-symmetric reflectionless states in complex scattering systems. Phys. Rev. Lett. 128, 203904 (2022).

    ADS  Google Scholar 

  33. Sol, J., Röntgen, M. & del Hougne, P. Covert scattering control in metamaterials with non-locally encoded hidden symmetry. Adv. Mater. 36, 2303891 (2023).

    Google Scholar 

  34. Zare Rameshti, B. et al. Cavity magnonics. Phys. Rep. 979, 1–61 (2022).

    ADS  MathSciNet  Google Scholar 

  35. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Google Scholar 

  36. Lee, S. et al. Ferromagnetic resonance of a YIG film in the low frequency regime. J. Appl. Phys. 120, 133905 (2016).

    Google Scholar 

  37. Qian, J. et al. Non-Hermitian control between absorption and transparency in perfect zero-reflection magnonics. Nat. Commun. 14, 3437 (2023).

    ADS  Google Scholar 

  38. Wang, Z.-Q. et al. Giant spin ensembles in waveguide magnonics. Nat. Commun. 13, 7580 (2022).

    ADS  Google Scholar 

  39. Zhang, X., Ding, K., Zhou, X., Xu, J. & Jin, D. Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons. Phys. Rev. Lett. 123, 237202 (2019).

    ADS  Google Scholar 

  40. Zhang, D., Luo, X.-Q., Wang, Y.-P., Li, T.-F. & You, J. Q. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun. 8, 1368 (2017).

    ADS  Google Scholar 

  41. Wang, C. et al. Enhancement of magnonic frequency combs by exceptional points. Nat. Phys. 20, 1139–1144 (2024).

    Google Scholar 

  42. Wang, Y.-P. et al. Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett. 123, 127202 (2019).

    ADS  Google Scholar 

  43. Han, Y. et al. Bound chiral magnonic polariton states for ideal microwave isolation. Sci. Adv. 9, eadg4730 (2023).

    Google Scholar 

  44. Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    ADS  Google Scholar 

  45. Zhang, X., Galda, A., Han, X., Jin, D. & Vinokur, V. M. Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl. 13, 044039 (2020).

    ADS  Google Scholar 

  46. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2020).

    ADS  Google Scholar 

  47. Sweeney, W. R., Hsu, C. W., Rotter, S. & Stone, A. D. Perfectly absorbing exceptional points and chiral absorbers. Phys. Rev. Lett. 122, 093901 (2019).

    ADS  Google Scholar 

  48. Sol, J., Smith, D. R. & del Hougne, P. Meta-programmable analog differentiator. Nat. Commun. 13, 1713 (2022).

    ADS  Google Scholar 

  49. Rao, J. W. et al. Analogue of dynamic Hall effect in cavity magnon polariton system and coherently controlled logic device. Nat. Commun. 10, 2934 (2019).

    ADS  Google Scholar 

  50. Trainiti, G., Ra’di, Y., Ruzzene, M. & Alù, A. Coherent virtual absorption of elastodynamic waves. Sci. Adv. 5, eaaw3255 (2019).

    ADS  Google Scholar 

  51. Rao, Z. Data of ‘Braiding reflectionless states in non-Hermitian magnonics’. Zenodo https://doi.org/10.5281/zenodo.13582346 (2024).

Download references

Acknowledgements

Z.A. acknowledges financial support from the National Natural Science Foundation of China (Grant Nos. 11991060, 12027805, 12474042, 12174072 and 2021hwyq05), the Innovation Program for Quantum Science and Technology (Grant No. 2024ZD0300103), the Shanghai Science and Technology Committee (Grant No. 23DZ2260100) and the Sino-German Center for Research Promotion (Grant No. M-0174). Some of the experimental work was conducted in Fudan Nanofabrication Lab.

Author information

Authors and Affiliations

Authors

Contributions

C.M., Z.R. and Y.H. conceived the idea. Z.R. and C.M. co-designed the experiments. Z.R. performed all the experiments with support from C.M. The theoretical framework with the effective Hamiltonians was established by C.M. together with Z.A. Z.R. and C.M. performed the data analysis and discussed the work with Z.A. and K.D. Z.A. wrote the paper with Z.R. and C.M. All authors commented on the paper. Z.A. supervised the whole project.

Corresponding author

Correspondence to Zhenghua An.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Giuseppe Maruccio and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Parts 1–11, including notes on the theoretical details, a discussion and Figs. 1–14.

Source data

Source Data Fig. 1

Measured reflection spectrum and extracted eigenvalue point data produced by fitting.

Source Data Fig. 2

Eigenvalue point data and theoretical ELs.

Source Data Fig. 3

Complex eigenvalue bands corresponding to two cases of braiding and no braiding.

Source Data Fig. 4

Complex eigenvalue bands corresponding to three selected path loops used to represent the braid group.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, Z., Meng, C., Han, Y. et al. Braiding reflectionless states in non-Hermitian magnonics. Nat. Phys. 20, 1904–1911 (2024). https://doi.org/10.1038/s41567-024-02667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02667-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing