Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vanishing bulk heat flow in the ν = 0 quantum Hall ferromagnet in monolayer graphene

Abstract

Undoped graphene is a gapless semiconductor; however, when placed under a high perpendicular magnetic field and cooled to low temperature, it develops an insulating state. This state, dubbed ν = 0, is due to the interplay between electronic interactions and the four-fold spin and valley degeneracies in the flat band formed by the n = 0 Landau level. The nature of the ground state of ν = 0, including its spin and valley polarization, is still under debate. Here we observe vanishing bulk thermal transport in monolayer at ν = 0, in contradiction with the expected ground state, which is predicted to have finite thermal conductance even at very low temperature. Our results highlight the need for further investigations on the nature of ν = 0.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ν = 0 ground states and graphene heat transport devices.
Fig. 2: Two-terminal heat transport at νc = 0.
Fig. 3: νc = 0 heat transport in the Corbino device.
Fig. 4: Large bias heat transport in the Corbino device.
Fig. 5: Two-terminal quantized edge heat transport in device 1.

Similar content being viewed by others

Data availability

The data shown here are available on Zenodo at https://doi.org/10.5281/zenodo.10528559 (ref. 45). Source data are provided with this paper.

Code availability

The analysis codes are available on Zenodo at https://doi.org/10.5281/zenodo.10528559 (ref. 45).

References

  1. Kharitonov, M. Phase diagram for the ν = 0 quantum Hall state in monolayer graphene. Phys. Rev. B 85, 155439 (2012).

    ADS  Google Scholar 

  2. Nomura, K. & MacDonald, A. H. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 96, 256602 (2006).

    ADS  Google Scholar 

  3. Alicea, J. & Fisher, M. P. A. Graphene integer quantum Hall effect in the ferromagnetic and paramagnetic regimes. Phys. Rev. B 74, 075422 (2006).

    ADS  Google Scholar 

  4. Fertig, H. A. & Brey, L. Luttinger liquid at the edge of undoped graphene in a strong magnetic field. Phys. Rev. Lett. 97, 116805 (2006).

    ADS  Google Scholar 

  5. Jung, J. & MacDonald, A. H. Theory of the magnetic-field-induced insulator in neutral graphene sheets. Phys. Rev. B 80, 235417 (2009).

    ADS  Google Scholar 

  6. Goerbig, M. O. Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–1243 (2011).

    ADS  Google Scholar 

  7. Wu, F., Sodemann, I., Araki, Y., MacDonald, A. H. & Jolicoeur, T. SO(5) symmetry in the quantum Hall effect in graphene. Phys. Rev. B 90, 235432 (2014).

    ADS  Google Scholar 

  8. de Nova, J. R. M. & Zapata, I. Symmetry characterization of the collective modes of the phase diagram of the ν = 0 quantum Hall state in graphene: mean-field phase diagram and spontaneously broken symmetries. Phys. Rev. B 95, 165427 (2017).

    ADS  Google Scholar 

  9. Knothe, A. & Jolicoeur, T. Edge structure of graphene monolayers in the 𝜈 = 0 quantum Hall state. Phys. Rev. B 92, 165110 (2015).

  10. Atteia, J. & Goerbig, M. O. SU(4) spin waves in the ν = ±1 quantum Hall ferromagnet in graphene. Phys. Rev. B 103, 195413 (2021).

    ADS  Google Scholar 

  11. Das, A., Kaul, R. K. & Murthy, G. Coexistence of canted antiferromagnetism and bond order in ν = 0 graphene. Phys. Rev. Lett. 128, 106803 (2022).

    ADS  Google Scholar 

  12. Hegde, S. S. & Villadiego, I. S. Theory of competing charge density wave, Kekulé, and antiferromagnetically ordered fractional quantum Hall states in graphene aligned with boron nitride. Phys. Rev. B 105, 195417 (2022).

    ADS  Google Scholar 

  13. De, S. J., Das, A., Rao, S., Kaul, R. K. & Murthy, G. Global phase diagram of charge-neutral graphene in the quantum Hall regime for generic interactions. Phys. Rev. B 107, 125422 (2023).

    ADS  Google Scholar 

  14. Abanin, D. A. et al. Dissipative quantum Hall effect in graphene near the Dirac point. Phys. Rev. Lett. 98, 196806 (2007).

    ADS  Google Scholar 

  15. Checkelsky, J. G., Li, L. & Ong, N. P. Zero-energy state in graphene in a high magnetic field. Phys. Rev. Lett. 100, 206801 (2008).

    ADS  Google Scholar 

  16. Amet, F., Williams, J. R., Watanabe, K., Taniguchi, T. & Goldhaber-Gordon, D. Insulating behavior at the neutrality point in single-layer graphene. Phys. Rev. Lett. 110, 216601 (2013).

    ADS  Google Scholar 

  17. Young, A. F. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature 505, 528–532 (2014).

    ADS  Google Scholar 

  18. Zibrov, A. A. et al. Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene. Nat. Phys. 14, 930–935 (2018).

    Google Scholar 

  19. Stepanov, P. et al. Long-distance spin transport through a graphene quantum Hall antiferromagnet. Nat. Phys. 14, 907–911 (2018).

    Google Scholar 

  20. Veyrat, L. et al. Helical quantum Hall phase in graphene on SrTiO3. Science 367, 781–786 (2020).

    ADS  Google Scholar 

  21. Fu, H., Huang, K., Watanabe, K., Taniguchi, T. & Zhu, J. Gapless spin wave transport through a quantum canted antiferromagnet. Phys. Rev. X 11, 021012 (2021).

    Google Scholar 

  22. Liu, X. et al. Visualizing broken symmetry and topological defects in a quantum Hall ferromagnet. Science 375, 321–326 (2022).

    ADS  Google Scholar 

  23. Coissard, A. et al. Imaging tunable quantum Hall broken-symmetry orders in graphene. Nature 605, 51–56 (2022).

    ADS  Google Scholar 

  24. Takei, S., Yacoby, A., Halperin, B. I. & Tserkovnyak, Y. Spin superfluidity in the ν = 0 quantum Hall state of graphene. Phys. Rev. Lett. 116, 216801 (2016).

    ADS  Google Scholar 

  25. Pientka, F., Waissman, J., Kim, P. & Halperin, B. I. Thermal transport signatures of broken-symmetry phases in graphene. Phys. Rev. Lett. 119, 027601 (2017).

    ADS  Google Scholar 

  26. Wei, N., Huang, C. & MacDonald, A. H. Scattering of magnons at graphene quantum-Hall-magnet junctions. Phys. Rev. Lett. 126, 117203 (2021).

    ADS  Google Scholar 

  27. Jezouin, S. et al. Quantum limit of heat flow across a single electronic channel. Science 342, 601–4 (2013).

    ADS  MathSciNet  Google Scholar 

  28. Srivastav, S. K. et al. Universal quantized thermal conductance in graphene. Sci. Adv. 5, eaaw5798 (2019).

    ADS  Google Scholar 

  29. Srivastav, S. K. et al. Vanishing thermal equilibration for hole-conjugate fractional quantum Hall states in graphene. Phys. Rev. Lett. 126, 216803 (2021).

    ADS  Google Scholar 

  30. Srivastav, S. K. et al. Determination of topological edge quantum numbers of fractional quantum Hall phases by thermal conductance measurements. Nat. Commun. 13, 5185 (2022).

    ADS  Google Scholar 

  31. Le Breton, G. et al. Heat equilibration of integer and fractional quantum Hall edge modes in graphene. Phys. Rev. Lett. 129, 116803 (2022).

    ADS  Google Scholar 

  32. Melcer, R. A., Konyzheva, S., Heiblum, M. & Umansky, V. Direct determination of the topological thermal conductance via local power measurement. Nat. Phys. 19, 327–332 (2023).

    Google Scholar 

  33. Pendry, J. B. Quantum limits to the flow of information and entropy. J. Phys. A 16, 2161–2171 (1983).

    ADS  MathSciNet  Google Scholar 

  34. Rego, L. G. C. & Kirczenow, G. Fractional exclusion statistics and the universal quantum of thermal conductance: a unifying approach. Phys. Rev. B 59, 13080–13086 (1999).

    ADS  Google Scholar 

  35. Schwab, K., Henriksen, E. A., Worlock, J. M. & Roukes, M. L. Measurement of the quantum of thermal conductance. Nature 404, 974–977 (2000).

    ADS  Google Scholar 

  36. Meschke, M., Guichard, W. & Pekola, J. P. Single-mode heat conduction by photons. Nature 444, 187–190 (2006).

    ADS  Google Scholar 

  37. Banerjee, M. et al. Observed quantization of anyonic heat flow. Nature 545, 75–79 (2017).

    ADS  Google Scholar 

  38. Melcer, R. A. et al. Heat conductance of the quantum Hall bulk. Nature 625, 489–493 (2024).

    ADS  Google Scholar 

  39. Wei, D. S. et al. Electrical generation and detection of spin waves in a quantum Hall ferromagnet. Science 362, 229–233 (2018).

    ADS  Google Scholar 

  40. Kharitonov, M. Canted antiferromagnetic phase of the ν = 0 quantum Hall state in bilayer graphene. Phys. Rev. Lett. 109, 046803 (2012).

    ADS  Google Scholar 

  41. Peterson, M. R. & Nayak, C. Effects of Landau level mixing on the fractional quantum Hall effect in monolayer graphene. Phys. Rev. Lett. 113, 086401 (2014).

    ADS  Google Scholar 

  42. Khanna, U. et al. Phase diagram of the ν = 2 quantum Hall state in bilayer graphene. Phys. Rev. B 108, L041107 (2023).

    ADS  Google Scholar 

  43. Kumar, R. et al. Absence of heat flow in ν = 0 quantum Hall ferromagnet in bilayer graphene. Nat. Phys. https://doi.org/10.1038/s41567-024-02673-z (2024).

  44. Assouline, A. et al. Excitonic nature of magnons in a quantum Hall ferromagnet. Nat. Phys. 17, 1369–1374 (2021).

    Google Scholar 

  45. Parmentier, F. Data and analysis files for “Vanishing bulk heat flow in the ν=0 quantum Hall ferromagnet in monolayer graphene”. Zenodo https://doi.org/10.5281/zenodo.10528559 (2024).

Download references

Acknowledgements

This work was funded by the ERC (ERC-2018-STG QUAHQ), by the Investissements d’Avenir LabEx PALM (ANR-10-LABX-0039-PALM) and by the Region Ile de France through the DIM QUANTIP. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant numbers 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan. O.M. acknowledges funding from the ANR (ANR-23-CE47-0002 CRAQUANT). We thank A. Das, R. Kumar, S. K. Srivastav, M. Goerbig, T. Jolicoeur, C. Altimiras, R. Ribeiro-Palau, Y. Hong and P. Jacques for enlightening discussions as well as technical advice and support.

Author information

Authors and Affiliations

Authors

Contributions

F.D.P. conceived and designed the experiments. R.D., M.G. and F.D.P. fabricated the devices, with inputs from G.L.B. and A.Z. R.D., M.G., G.L.B., A.Z., O.M. and F.D.P. performed the experiments, analysed the data and discussed the results, with inputs from P. Roche. T.T. and K.W. synthesized the bulk hBN crystals. Q.D. and Y.J. provided the low-noise cryogenic preamplifiers used in the noise measurements. R.D., M.G., P. Roulleau, O.M., P. Roche and F.D.P. wrote the paper, with inputs from all co-authors.

Corresponding author

Correspondence to F. D. Parmentier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Ganpathy Murthy, Haoxin Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25 and Discussion.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delagrange, R., Garg, M., Le Breton, G. et al. Vanishing bulk heat flow in the ν = 0 quantum Hall ferromagnet in monolayer graphene. Nat. Phys. 20, 1927–1932 (2024). https://doi.org/10.1038/s41567-024-02672-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02672-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing