Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In-beam spectroscopy reveals competing nuclear shapes in the rare isotope 62Cr

Abstract

In recent decades, rare-isotope facilities have enabled the study of short-lived, neutron-rich nuclei. Their measured properties indicate that shell structure changes in the regime of unbalanced neutron-to-proton ratios compared with that of stable nuclei. In the so-called islands of inversion in the nuclear chart—around the neutron-rich nuclei 32Mg, 42Si and 64Cr, for example—the textbook shell model predicts spherical shapes due to the respective magic neutron numbers of 20, 28 and 40 of these nuclei. However, nuclei in these regions turn out to be deformed in their ground states. Another hallmark of these islands is shape coexistence, where a nucleus assumes different shapes with excitation energy. Here we present evidence for this phenomenon from the observation of an excited 0+ state in 62Cr, two neutrons away from the heart of the island of inversion around neutron number N = 40. We use large-scale shell-model calculations to interpret the results, and we report extrapolations for the doubly magic nucleus 60Ca.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: γ-ray and particle-identification spectra for 62Cr.
Fig. 2: Spectra illustrating the γγ coincidence relationships for 62Cr.
Fig. 3: Measured and calculated longitudinal momentum distributions for 62Cr.
Fig. 4: Experimental data underlying the level scheme of 62Cr.
Fig. 5: Level schemes predicted by the DNO-SM and LSSM calculations.
Fig. 6: Potential energy surfaces in the βγ deformation plane.

Similar content being viewed by others

Data availability

This submission includes as additional supplemental files the relevant data supporting the findings of these studies. Other data are available from the corresponding author upon reasonable request.

Code availability

The techniques developed and exploited in the unpublished computer codes used to generate the results reported in this paper are presented in detail in published works. These works and reasonable requests for clarifications of the techniques or computational methods used are available from the corresponding author.

References

  1. Brown, B. A. The nuclear shell model towards the drip lines. Physics 4, 525–547 (2022).

    ADS  MATH  Google Scholar 

  2. Nowacki, F., Obertelli, A. & Poves, A. The neutron-rich edge of the nuclear landscape: experiment and theory. Prog. Part. Nucl. Phys. 120, 103866 (2021).

    Google Scholar 

  3. Otsuka, T., Gade, A., Sorlin, O., Suzuki, T. & Utsuno, Y. Evolution of shell structure in exotic nuclei. Rev. Mod. Phys. 92, 015002 (2020).

    ADS  MATH  Google Scholar 

  4. Sorlin, O. & Porquet, M.-G. Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys. 61, 602–673 (2008).

    ADS  MATH  Google Scholar 

  5. Rotaru, F. et al. Unveiling the intruder deformed \({0}_{2}^{+}\) state in 34Si. Phys. Rev. Lett. 109, 092503 (2012).

    ADS  Google Scholar 

  6. Suchyta, S. et al. Shape coexistence in 68Ni. Phys. Rev. C 89, 021301 (2014).

    ADS  MATH  Google Scholar 

  7. Mărginean, N. et al. Shape coexistence at zero spin in 64Ni driven by the monopole tensor interaction. Phys. Rev. Lett. 125, 102502 (2020).

    ADS  MATH  Google Scholar 

  8. Gade, A. & Liddick, S. N. Shape coexistence in neutron-rich nuclei. J. Phys. G: Nucl. Part. Phys. 43, 024001 (2016).

    ADS  MATH  Google Scholar 

  9. Shimoura, S. et al. Lifetime of the isomeric \({0}_{2}^{+}\) state in 12Be. Phys. Lett. B 654, 87–91 (2007).

    ADS  Google Scholar 

  10. Schwerdtfeger, W. et al. Shape coexistence near neutron number N = 20: first identification of the E0 decay from the deformed first excited Jπ = 0+ state in 30Mg. Phys. Rev. Lett. 103, 012501 (2009).

    ADS  MATH  Google Scholar 

  11. Wimmer, K. et al. Discovery of the shape coexisting 0+ state in 32Mg by a two neutron transfer reaction. Phys. Rev. Lett. 105, 252501 (2010).

    ADS  MATH  Google Scholar 

  12. Force, C. et al. Prolate-spherical shape coexistence at N = 28 in 44S. Phys. Rev. Lett. 105, 102501 (2010).

    ADS  MATH  Google Scholar 

  13. Simpson, E. C., Tostevin, J. A., Bazin, D., Brown, B. A. & Gade, A. Two-nucleon knockout spectroscopy at the limits of nuclear stability. Phys. Rev. Lett. 102, 132502 (2009).

    ADS  Google Scholar 

  14. Simpson, E. C., Tostevin, J. A., Bazin, D. & Gade, A. Longitudinal momentum distributions of the reaction residues following fast two-nucleon knockout reactions. Phys. Rev. C 79, 064621 (2009).

    ADS  Google Scholar 

  15. Simpson, E. C. & Tostevin, J. A. Correlations probed in direct two-nucleon removal reactions. Phys. Rev. C 82, 044616 (2010).

    ADS  Google Scholar 

  16. Longfellow, B. et al. Two-neutron knockout as a probe of the composition of states in 22Mg, 23Al, and 24Si. Phys. Rev. C 101, 031303 (2020).

    ADS  MATH  Google Scholar 

  17. Paschalis, S. et al. The performance of the gamma-ray energy tracking in-beam nuclear array GRETINA. Nucl. Instrum. Methods Phys. Res. Sect. A 709, 44–55 (2013).

    ADS  MATH  Google Scholar 

  18. Weisshaar, D. et al. The performance of the γ-ray tracking array GRETINA for γ-ray spectroscopy with fast beams of rare isotopes. Nucl. Instrum. Methods Phys. Res. Sect. A 847, 187–198 (2017).

  19. Dao, D. D. & Nowacki, F. Nuclear structure within a discrete nonorthogonal shell model approach: new frontiers. Phys. Rev. C 105, 054314 (2022).

    ADS  MATH  Google Scholar 

  20. Tarasov, O. B. et al. Discovery of 60Ca and implications for the stability of 70Ca. Phys. Rev. Lett. 121, 022501 (2018).

    ADS  MATH  Google Scholar 

  21. Lenzi, S. M., Nowacki, F., Poves, A. & Sieja, K. Island of inversion around 64Cr. Phys. Rev. C 82, 054301 (2010).

    ADS  Google Scholar 

  22. Magilligan, A., Brown, B. A. & Stroberg, S. R. Data-driven configuration-interaction Hamiltonian extrapolation to 60Ca. Phys. Rev. C 104, L051302 (2021).

    ADS  Google Scholar 

  23. Gade, A. et al. Nuclear structure towards N = 40 60Ca: in-beam γ-ray spectroscopy of 58,60Ti. Phys. Rev. Lett. 112, 112503 (2014).

    ADS  MATH  Google Scholar 

  24. Chen, S. et al. Level structures of 56,58Ca cast doubt on a doubly magic 60Ca. Phys. Lett. B 843, 138025 (2023).

    Google Scholar 

  25. Li, J. Merging of the island of inversion at N = 40 and N = 50. Phys. Lett. B 840, 137893 (2023).

    Google Scholar 

  26. Morrissey, D. J. & Sherrill, B. M. Radioactive nuclear beam facilities based on projectile fragmentation. Philos. Trans. R. Soc. A 356, 1985–2006 (1998).

    ADS  MATH  Google Scholar 

  27. Portillo, M. et al. Commissioning of the advanced rare isotope separator ARIS at FRIB. Nucl. Instrum. Methods Phys. Res. Sect. B 540, 151–157 (2023).

    ADS  MATH  Google Scholar 

  28. Bazin, D., Caggiano, J., Sherrill, B., Yurkon, J. & Zeller, A. The S800 spectrograph. Nucl. Instrum. Methods Phys. Res. Sect. B 204, 629–633 (2003).

    ADS  Google Scholar 

  29. Gade, A. et al. In-beam γ-ray spectroscopy of 62,64Cr. Phys. Rev. C 103, 014314 (2021).

    ADS  MATH  Google Scholar 

  30. Bazin, D. et al. New direct reaction: two-proton knockout from neutron-rich nuclei. Phys. Rev. Lett. 91, 012501 (2003).

    ADS  MATH  Google Scholar 

  31. Tostevin, J. A., Podolyák, G., Brown, B. A. & Hansen, P. G. Correlated two-nucleon stripping reactions. Phys. Rev. C 70, 064602 (2004).

    ADS  Google Scholar 

  32. Tostevin, J. A. & Brown, B. A. Diffraction dissociation contributions to two-nucleon knockout reactions and the suppression of shell-model strength. Phys. Rev. C 74, 064604 (2006).

    ADS  Google Scholar 

  33. Hansen, P. & Tostevin, J. Direct reactions with exotic nuclei. Annu. Rev. Nucl. Part. Sci. 53, 219–261 (2003).

    ADS  MATH  Google Scholar 

  34. Rocchini, M. et al. First evidence of axial shape asymmetry and configuration coexistence in 74Zn: suggestion for a northern extension of the N = 40 island of inversion. Phys. Rev. Lett. 130, 122502 (2023).

    ADS  MATH  Google Scholar 

  35. Zuker, A. P., Poves, A., Nowacki, F. & Lenzi, S. M. Nilsson-SU3 self-consistency in heavy N = Z nuclei. Phys. Rev. C 92, 024320 (2015).

    ADS  Google Scholar 

  36. Cortés, M. et al. Shell evolution of N = 40 isotones towards 60Ca: first spectroscopy of 62Ti. Phys. Lett. B 800, 135071 (2020).

    Google Scholar 

  37. Brink, D. & Broglia, R. Nuclear Superfluidity (Cambridge Univ. Press, 2005).

  38. Hagen, G., Hjorth-Jensen, M., Jansen, G. R., Machleidt, R. & Papenbrock, T. Evolution of shell structure in neutron-rich calcium isotopes. Phys. Rev. Lett. 109, 032502 (2012).

    ADS  Google Scholar 

  39. Stroberg, S. R. et al. Single-particle structure of silicon isotopes approaching 42Si. Phys. Rev. C 90, 034301 (2014).

    ADS  MATH  Google Scholar 

  40. Poves, A., Nowacki, F. & Alhassid, Y. Limits on assigning a shape to a nucleus. Phys. Rev. C 101, 054307 (2020).

    ADS  MATH  Google Scholar 

  41. Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. & Zuker, A. P. The shell model as a unified view of nuclear structure. Rev. Mod. Phys. 77, 427–488 (2005).

    ADS  MATH  Google Scholar 

  42. Caurier, E. & Nowacki, F. Present status of shell model techniques. Acta Phys. Pol. B 30, 705–714 (1999).

    ADS  MATH  Google Scholar 

  43. Arima, A. & Ichimura, M. Quasi-spin formalism and matrix elements in the shell model. Prog. Theor. Phys. 36, 296–312 (1966).

    ADS  MATH  Google Scholar 

  44. Elliott, J. P. Collective motion in the nuclear shell model. I. Classification schemes for states of mixed configurations. Proc. R. Soc. Lond. A 245, 128–145 (1958).

    ADS  MathSciNet  MATH  Google Scholar 

  45. Arima, A., Harvey, M. & Shimizu, K. Pseudo LS coupling and pseudo SU(3) coupling schemes. Phys. Lett. B 30, 517–522 (1969).

    ADS  MATH  Google Scholar 

  46. Zuker, A. P., Retamosa, J., Poves, A. & Caurier, E. Spherical shell model description of rotational motion. Phys. Rev. C 52, R1741–R1745 (1995).

    ADS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy (DOE), Office of Science, Office of Nuclear Physics and used resources of FRIB Operations, which is a DOE Office of Science User Facility (Award No. DE-SC0023633). Further support by the DOE, Office of Science, Office of Nuclear Physics was provided under Grant Nos. DE-FG02-97ER410541 and DE-SC0023010 (University of North Carolina), DE-FG02-94ER40848 (Triangle Universities Nuclear Laboratory) and DE-AC02-05CH11231 (Lawrence Berkeley National Laboratory) and under Contract DE-AC02-06CH11357 (Argonne National Laboratory) as well as by the Office of High Energy Physics (Grant No. DE-SC0022299, TRAIN-MI). Support was provided by the DOE National Nuclear Security Administration through the Nuclear Science and Security Consortium (Award No. DE-NA0003180). Work at Lawrence Livermore National Laboratory was performed under DOE Contract No. DE-AC52-07NA27344 and was supported by the Lab Directed Research and Development programme (Project No. 23-LW-047). B.P.C. acknowledges support from the National Science Foundation (Grant No. PHY-1848177, CAREER). J.A.T. acknowledges support from the Science and Technology Facilities Council, UK (Grant No. ST/V001108/1). A.P. is supported by Grant No. CEX2020-001007-S funded by MCIN/AEI/10.13039/501100011033 and PID2021-127890NB-I00 (Spain).

Author information

Authors and Affiliations

Authors

Contributions

A.G., R.V.F.J. and J.A.T. conceived and led the proposal for the experiment based on discussions with and calculations from F.N., S.M.L. and A.P. C.M.C., S.G., S.N., J.P. and D.W. led the operations of the experimental instruments used. A.G., B.L., R.V.F.J., A.D.A., M.J.B., C.M.C., M.P.C., J.C.-J., H.L.C., B.P.C., P.F., A.M.H., C.P. and E.R. staffed the shifts and monitored the online data quality. A.G. and B.L. led the data analysis. A.G., B.L., R.V.F.J., D.D.D., F.N. and J.A.T. led the interpretation of the data and wrote the first draft. J.A.T., D.D.D., F.N. and A.P. performed the reaction theory and nuclear structure theory calculations.

Corresponding author

Correspondence to Alexandra Gade.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Anna Corsi, Calvin Johnson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Quasi- and Pseudo-SU3 plots for the 4p4h configuration in 62Cr.

Left: neutron valence space and single-particle quadrupole moments characterized by the projection of the total angular momentum on the symmetry axis, K. Right: same illustration for protons. The 4p4h configuration corresponds to an axial solution with unique filling of the Nilsson-SU3 levels. The red dots indicate the occupation of the single-particle orbitals with neutrons and protons, respectively.

Extended Data Fig. 2 Quasi- and Pseudo-SU3 plot for the 2p2h configuration in 62Cr.

Left: neutron valence space and single-particle quadrupole moments characterized by the projection of the total angular momentum on the symmetry axis, K. Right: same plot for protons. The 2p2h configuration corresponds to a non-unique Nilsson-SU3 levels filling for the neutron holes and, hence, K mixing and a triaxial shape. The red dots indicate the occupation of the single-particle orbitals with neutrons and protons, respectively.

Extended Data Table 1 States populated in 62Cr in the two-proton removal from 64Fe projectiles
Extended Data Table 2 Computed electric quadrupole transition strength, \({\boldsymbol{B}}({\boldsymbol{E2}};{\boldsymbol{2}}_{\boldsymbol{1}}^{\boldsymbol{+}}\to {\boldsymbol{0}}_{\boldsymbol{1}}^{\boldsymbol{+}})\), using different models

Supplementary information

Supplementary Data 1

Calibrated, unbinned (1 keV per channel) γ-ray spectrum of Fig. 1 in SpecTcl ASCII format. SpecTcl is publicly available (https://github.com/FRIBDAQ/SpecTcl) and documented.

Supplementary Data 2

γγ coincidence matrix (8 keV per channel) displayed in Fig. 4 and used to generate the coincidence spectra of Fig. 2 and to construct the level scheme. The matrix is in SpecTcl ASCII format.

Supplementary Data 3

Two-dimensional spectrum that correlates the Doppler-reconstructed γ-ray spectrum of 62Cr (4 keV per channel) with the parallel momentum of the 62Cr reaction residues. The first and last channel of the momentum data are −818.946 MeV/c and 797.850 MeV/c, respectively. This matrix was the basis for the measured γ-gated momentum distributions shown in Fig. 3. The matrix is in SpecTcl ASCII format.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gade, A., Longfellow, B., Janssens, R.V.F. et al. In-beam spectroscopy reveals competing nuclear shapes in the rare isotope 62Cr. Nat. Phys. 21, 37–42 (2025). https://doi.org/10.1038/s41567-024-02680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02680-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing