Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Suppression of Bogoliubov momentum pairing and emergence of non-Gaussian correlations in ultracold interacting Bose gases

Abstract

Strongly correlated quantum matter, such as interacting electron systems or interacting quantum fluids, exhibits properties that defy explanation in terms of linear fluctuations and free quasiparticles. In these systems, quantum fluctuations are large and generically display non-Gaussian statistics—a property captured only by inspecting high-order correlations, whose quantitative reconstruction presents a challenge for both experiments and theory. A prime example of correlated quantum matter is the strongly interacting Bose fluid, realized first in superfluid helium and, more recently, in ultracold atoms. Here, we experimentally study interacting Bose gases from the weakly to the strongly interacting regime through single-atom-resolved correlations in momentum space. We find that the Bogoliubov pairing among modes of opposite momenta, characteristic of the weakly interacting regime, is suppressed as interactions grow. This departure from the predictions of Bogoliubov theory marks the onset of the strongly correlated regime, as confirmed by numerical simulations that highlight the role of nonlinear quantum fluctuations in our system. Furthermore, our measurements reveal a non-zero four-operator cumulant at even stronger interactions, which is a direct signature of non-Gaussian correlations. These results shed light on the emergence and physical origin of non-Gaussian correlations in ensembles of interacting bosons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-body scattering processes from a BEC and momentum correlations.
Fig. 2: Momentum density profiles and two-body connected correlations at opposite momenta.
Fig. 3: Numerical calculations of connected correlations \({\overline{\boldsymbol{G}}}_{{\bf{c}}}^{\boldsymbol{(n)}}({\bf{0}})\) with the quantum rotor model.

Similar content being viewed by others

Data availability

All data shown in this paper are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Sachdev, S. Quantum Phases of Matter (Cambridge Univ. Press, 2023).

  2. Paschen, S. & Si, Q. Quantum phases driven by strong correlations. Nat. Rev. Phys. 3, 9–26 (2021).

    MATH  Google Scholar 

  3. Polkovnikov, A., Sengupta, K., Silva, A. & Vengalattore, M. Colloquium: nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 83, 863–883 (2011).

    ADS  MATH  Google Scholar 

  4. Wang, X.-B., Hiroshima, T., Tomita, A. & Hayashi, M. Quantum information with Gaussian states. Phys. Rep. 448, 1–111 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  5. Morosan, E., Natelson, D., Nevidomskyy, A. H. & Si, Q. Strongly correlated materials. Adv. Mater. 24, 4896–4923 (2012).

    Google Scholar 

  6. Adams, A., Carr, L. D., Schäfer, T., Steinberg, P. & Thomas, J. E. Strongly correlated quantum fluids: ultracold quantum gases, quantum chromodynamic plasmas and holographic duality. New J. Phys. 14, 115009 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  7. Bloch, J., Cavalleri, A., Galitski, V., Hafezi, M. & Rubio, A. Strongly correlated electron–photon systems. Nature 606, 41–48 (2022).

    ADS  Google Scholar 

  8. Chevy, F. & Salomon, C. Strongly correlated Bose gases. J. Phys. B: Atom. Mol. Opt. Phys. 49, 192001 (2016).

    ADS  MATH  Google Scholar 

  9. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    ADS  MathSciNet  MATH  Google Scholar 

  10. Metzner, W., Salmhofer, M., Honerkamp, C., Meden, V. & Schönhammer, K. Functional renormalization group approach to correlated fermion systems. Rev. Mod. Phys. 84, 299–352 (2012).

    ADS  MATH  Google Scholar 

  11. Georges, A., Medici, L.D. & Mravlje, J. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013).

    ADS  Google Scholar 

  12. Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).

    ADS  MATH  Google Scholar 

  13. Armijo, J., Jacqmin, T., Kheruntsyan, K. V. & Bouchoule, I. Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations. Phys. Rev. Lett. 105, 230402 (2010).

    ADS  Google Scholar 

  14. Schweigler, T. et al. Experimental characterization of a quantum many-body system via higher-order correlations. Nature 545, 323–326 (2017).

    ADS  MATH  Google Scholar 

  15. Rispoli, M. et al. Quantum critical behaviour at the many-body localization transition. Nature 573, 385–389 (2019).

    ADS  MATH  Google Scholar 

  16. Bogoliubov, N. On the theory of superfluidity. J. Phys. (USSR) 11, 23 (1947).

    MathSciNet  MATH  Google Scholar 

  17. Lee, T. D., Huang, K. & Yang, C. N. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957).

    ADS  MathSciNet  MATH  Google Scholar 

  18. Navon, N. et al. Dynamics and thermodynamics of the low-temperature strongly interacting bose gas. Phys. Rev. Lett. 107, 135301 (2011).

    ADS  MATH  Google Scholar 

  19. Jørgensen, N. B., Bruun, G. M. & Arlt, J. J. Dilute fluid governed by quantum fluctuations. Phys. Rev. Lett. 121, 173403 (2018).

    ADS  Google Scholar 

  20. Pitaevskii, L. & Stringari, S. Uncertainty principle, quantum fluctuations and broken symmetries. J. Low Temp. Phys. 85, 377–388 (1991).

    ADS  MATH  Google Scholar 

  21. Lopes, R. et al. Quantum depletion of a homogeneous Bose–Einstein condensate. Phys. Rev. Lett. 119, 190404 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  22. Tenart, A., Hercé, G., Bureik, J.-P., Dareau, A. & Clément, D. Observation of pairs of atoms at opposite momenta in an equilibrium interacting Bose gas. Nat. Phys. 17, 1364–1368 (2021).

    Google Scholar 

  23. Ceperley, D. M. Path integrals in the theory of condensed helium. Rev. Mod. Phys. 67, 279–355 (1995).

    ADS  MATH  Google Scholar 

  24. Svistunov, B. V., Babaev, E. S. & Prokof’ev, N. V. Superfluid States of Matter (CRC Press, 2015).

  25. Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

    ADS  MATH  Google Scholar 

  26. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  MATH  Google Scholar 

  27. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86, 153–185 (2014).

    ADS  MATH  Google Scholar 

  28. Makotyn, P., Klauss, C. E., Goldberger, D. L., Cornell, E. A. & Jin, D. S. Universal dynamics of a degenerate unitary Bose gas. Nat. Phys. 10, 116–119 (2014).

    Google Scholar 

  29. Fletcher, R. J. et al. Two- and three-body contacts in the unitary Bose gas. Science 355, 377–380 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  30. Eismann, U. et al. Universal loss dynamics in a unitary Bose gas. Phys. Rev. X 6, 021025 (2016).

    MATH  Google Scholar 

  31. Klauss, C. E. et al. Observation of efimov molecules created from a resonantly interacting Bose gas. Phys. Rev. Lett. 119, 143401 (2017).

    ADS  Google Scholar 

  32. Eigen, C. et al. Universal prethermal dynamics of Bose gases quenched to unitarity. Nature 563, 221–224 (2018).

    ADS  MATH  Google Scholar 

  33. Yan, Z. Z., Ni, Y., Robens, C. & Zwierlein, M. W. Bose polarons near quantum criticality. Science 368, 190–194 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  34. Schellekens, M. et al. Hanbury Brown Twiss effect for ultracold quantum gases. Science 310, 648–651 (2005).

    ADS  MATH  Google Scholar 

  35. Vassen, W. et al. Cold and trapped metastable noble gases. Rev. Mod. Phys. 84, 175–210 (2012).

    ADS  MATH  Google Scholar 

  36. Cayla, H. et al. Single-atom-resolved probing of lattice gases in momentum space. Phys. Rev. A 97, 061609 (2018).

    ADS  Google Scholar 

  37. Dall, R. G. et al. Ideal n-body correlations with massive particles. Nat. Phys. 9, 341–344 (2013).

    MATH  Google Scholar 

  38. Hercé, G. et al. Full counting statistics of interacting lattice gases after an expansion: the role of condensate depletion in many-body coherence. Phys. Rev. Res. 5, L012037 (2023).

    MATH  Google Scholar 

  39. Fetter, A. L. & Walecka, J. D. Quantum Theory of Many-Particle Systems (Dover, 2012).

  40. Carlen, E. A., Holzmann, M., Jauslin, I. & Lieb, E. H. Simplified approach to the repulsive Bose gas from low to high densities and its numerical accuracy. Phys. Rev. A 103, 053309 (2021).

    ADS  MathSciNet  MATH  Google Scholar 

  41. Ursell, H. D. The evaluation of Gibbs’ phase-integral for imperfect gases. Math. Proc. Camb. Philos. Soc. 23, 685–697 (1927).

    ADS  MATH  Google Scholar 

  42. Bouton, Q. et al. Fast production of Bose–Einstein condensates of metastable helium. Phys. Rev. A 91, 061402 (2015).

    ADS  MATH  Google Scholar 

  43. Carcy, C., Hercé, G., Tenart, A., Roscilde, T. & Clément, D. Certifying the adiabatic preparation of ultracold lattice bosons in the vicinity of the Mott transition. Phys. Rev. Lett. 126, 045301 (2021).

    ADS  Google Scholar 

  44. Nogrette, F. et al. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux. Rev. Sci. Instrum. 86, 113105 (2015).

    ADS  MATH  Google Scholar 

  45. Tenart, A. et al. Two-body collisions in the time-of-flight dynamics of lattice Bose superfluids. Phys. Rev. Res. 2, 013017 (2020).

    MATH  Google Scholar 

  46. Hercé, G. et al. Studying the low-entropy mott transition of bosons in a three-dimensional optical lattice by measuring the full momentum-space density. Phys. Rev. A 104, L011301 (2021).

    ADS  MATH  Google Scholar 

  47. Toth, E., Rey, A. M. & Blakie, P. B. Theory of correlations between ultracold bosons released from an optical lattice. Phys. Rev. A 78, 013627 (2008).

    ADS  Google Scholar 

  48. Cayla, H. et al. Hanbury Brown and Twiss bunching of phonons and of the quantum depletion in an interacting Bose gas. Phys. Rev. Lett. 125, 165301 (2020).

    ADS  MATH  Google Scholar 

  49. Wallin, M., So/rensen, E. S., Girvin, S. M. & Young, A. P. Superconductor–insulator transition in two-dimensional dirty boson systems. Phys. Rev. B 49, 12115–12139 (1994).

    ADS  MATH  Google Scholar 

  50. Roscilde, T. Bosons in one-dimensional incommensurate superlattices. Phys. Rev. A 77, 063605 (2008).

    ADS  MATH  Google Scholar 

  51. Fang, B., Johnson, A., Roscilde, T. & Bouchoule, I. Momentum-space correlations of a one-dimensional Bose gas. Phys. Rev. Lett. 116, 050402 (2016).

    ADS  MATH  Google Scholar 

  52. Ferioli, G. et al. Non-Gaussian correlations in the steady state of driven-dissipative clouds of two-level atoms. Phys. Rev. Lett. 132, 133601 (2024).

    ADS  MATH  Google Scholar 

  53. Rom, T. et al. Free fermion antibunching in a degenerate atomic Fermi gas released from an optical lattice. Nature 444, 733–736 (2006).

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank E. Gradova for her contribution to the bootstrap analysis, T. Chalopin for a careful reading of the paper and D. Boiron and the members of the Quantum Gas group at Institut d’Optique for insightful discussions. We acknowledge financial support from the Région Ile-de-France in the framework of the DIM SIRTEQ, the ‘Fondation d’entreprise iXcore pour la Recherche’, the French National Research Agency (grant no. ANR-17-CE30-0020-01) and France 2030 programmes of the French National Research Agency (grant nos. ANR-22-PETQ-0004 and ANR-11-IDEX-0003). All numerical simulations were made on the PSMN cluster at the ENS of Lyon.

Author information

Authors and Affiliations

Authors

Contributions

J.-P.B., G.H. and A.T. carried out the experiments. T.R. conducted the theoretical simulations. All of the authors contributed to the data analysis, progression of the project and writing of the paper.

Corresponding author

Correspondence to David Clément.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8 and Discussion.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bureik, JP., Hercé, G., Allemand, M. et al. Suppression of Bogoliubov momentum pairing and emergence of non-Gaussian correlations in ultracold interacting Bose gases. Nat. Phys. 21, 57–62 (2025). https://doi.org/10.1038/s41567-024-02700-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02700-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing