Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of microscopic confinement dynamics by a tunable topological θ-angle

Abstract

The topological θ-angle is central to several gauge theories in condensed-matter and high-energy physics. For example, it is responsible for the strong CP problem in quantum chromodynamics and can emerge in effective theories of electrodynamics in topological insulators. Although analogue quantum simulators potentially offer a venue for realizing and controlling the θ-angle, doing so has hitherto remained an outstanding challenge. Here, we describe the experimental realization of a tunable topological θ-angle in a Bose–Hubbard gauge-theory quantum simulator, which was implemented through a tilted superlattice potential that induces an effective background electric field. We demonstrate the emerging physics through the direct observation of the confinement–deconfinement transition of (1 + 1)-dimensional quantum electrodynamics. Using an atomic-precision quantum gas microscope, we distinguish between the confined and deconfined phases by monitoring the real-time evolution of particle–antiparticle pairs. Our work provides a step forward in the realization of topological terms on modern quantum simulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental implementation of the U(1) QLM and sketch of its phase diagram.
Fig. 2: Evolution of densities and two-point correlations along a tunable topological θ-angle, specified by its deviation χ from 0.
Fig. 3: Microscopic dynamics of the particle–antiparticle pair.
Fig. 4: Microscopic dynamics of the hole pair.

Similar content being viewed by others

Data availability

Source data are provided within this paper. The data for the figures that support the findings of this study are also available from Zenodo at https://doi.org/10.5281/zenodo.13733573 (ref. 52).

References

  1. Weinberg, S. The Quantum Theory of Fields, Vol. 2 (Cambridge Univ. Press, 1995).

  2. Jackiw, R. & Rebbi, C. Vacuum periodicity in a Yang-Mills quantum theory. Phys. Rev. Lett. 37, 172–175 (1976).

    ADS  MATH  Google Scholar 

  3. Callan, C., Dashen, R. & Gross, D. The structure of the gauge theory vacuum. Phys. Lett. B 63, 334–340 (1976).

    ADS  MATH  Google Scholar 

  4. ’t Hooft, G. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 14, 3432–3450 (1976).

    ADS  MATH  Google Scholar 

  5. Mannel, T. Theory and phenomenology of CP violation. Nucl. Phys. B Proc. Suppl. 167, 115–119 (2007).

    MATH  Google Scholar 

  6. Buyens, B., Haegeman, J., Verschelde, H., Verstraete, F. & Van Acoleyen, K. Confinement and string breaking for QED2 in the Hamiltonian picture. Phys. Rev. X 6, 041040 (2016).

    MATH  Google Scholar 

  7. Surace, F. M. et al. Lattice gauge theories and string dynamics in Rydberg atom quantum simulators. Phys. Rev. X 10, 021041 (2020).

    MATH  Google Scholar 

  8. Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    MATH  Google Scholar 

  9. Haldane, F. D. M. Continuum dynamics of the 1-D Heisenberg antiferromagnet: identification with the O(3) nonlinear sigma model. Phys. Lett. A 93, 464–468 (1983).

    ADS  MathSciNet  MATH  Google Scholar 

  10. Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983).

    ADS  MathSciNet  MATH  Google Scholar 

  11. Dalmonte, M. & Montangero, S. Lattice gauge theory simulations in the quantum information era. Contemp. Phys. 57, 388–412 (2016).

    ADS  MATH  Google Scholar 

  12. Zohar, E., Cirac, J. I. & Reznik, B. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Rep. Prog. Phys. 79, 014401 (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  13. Bañuls, M. C. et al. Simulating lattice gauge theories within quantum technologies. Eur. Phys. J. D 74, 165 (2020).

    ADS  MATH  Google Scholar 

  14. Aidelsburger, M. et al. Cold atoms meet lattice gauge theory. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 380, 20210064 (2022).

    ADS  MATH  Google Scholar 

  15. Zohar, E. Quantum simulation of lattice gauge theories in more than one space dimension—requirements, challenges and methods. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 380, 20210069 (2022).

    ADS  MATH  Google Scholar 

  16. Halimeh, J. C. & Hauke, P. Reliability of lattice gauge theories. Phys. Rev. Lett. 125, 030503 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  17. Martinez, E. A. et al. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Nature 534, 516–519 (2016).

    ADS  MATH  Google Scholar 

  18. Schweizer, C. et al. Floquet approach to \({{\mathbb{Z}}}_{2}\) lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 15, 1168–1173 (2019).

  19. Görg, F. et al. Realization of density-dependent Peierls phases to engineer quantized gauge fields coupled to ultracold matter. Nat. Phys. 15, 1161–1167 (2019).

    MATH  Google Scholar 

  20. Mil, A. et al. A scalable realization of local U(1) gauge invariance in cold atomic mixtures. Science 367, 1128–1130 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  21. Yang, B. et al. Observation of gauge invariance in a 71-site Bose–Hubbard quantum simulator. Nature 587, 392–396 (2020).

    ADS  MATH  Google Scholar 

  22. Zhou, Z.-Y. et al. Thermalization dynamics of a gauge theory on a quantum simulator. Science 377, 311–314 (2022).

    ADS  MathSciNet  MATH  Google Scholar 

  23. Nguyen, N. H. et al. Digital quantum simulation of the Schwinger model and symmetry protection with trapped ions. PRX Quantum 3, 020324 (2022).

    ADS  Google Scholar 

  24. Wang, Z. et al. Observation of emergent \({{\mathbb{Z}}}_{2}\) gauge invariance in a superconducting circuit. Phys. Rev. Res. 4, L022060 (2022).

  25. Mildenberger, J., Mruczkiewicz, W., Halimeh, J. C., Jiang, Z. & Hauke, P. Probing confinement in a \({{\mathbb{Z}}}_{2}\) lattice gauge theory on a quantum computer. Preprint at arxiv.org/abs/2203.08905 (2022).

  26. Chandrasekharan, S. & Wiese, U.-J. Quantum link models: a discrete approach to gauge theories. Nucl. Phys. B 492, 455 – 471 (1997).

    MathSciNet  MATH  Google Scholar 

  27. Halimeh, J. C., McCulloch, I. P., Yang, B. & Hauke, P. Tuning the topological θ-angle in cold-atom quantum simulators of gauge theories. PRX Quantum 3, 040316 (2022).

    ADS  MATH  Google Scholar 

  28. Cheng, Y., Liu, S., Zheng, W., Zhang, P. & Zhai, H. Tunable confinement-deconfinement transition in an ultracold-atom quantum simulator. PRX Quantum 3, 040317 (2022).

    ADS  MATH  Google Scholar 

  29. Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108–3111 (1998).

    ADS  MATH  Google Scholar 

  30. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS  Google Scholar 

  31. Sachdev, S., Sengupta, K. & Girvin, S. Mott insulators in strong electric fields. Phys. Rev. B 66, 075128 (2002).

    ADS  MATH  Google Scholar 

  32. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    ADS  MATH  Google Scholar 

  33. Su, G.-X. et al. Observation of many-body scarring in a Bose–Hubbard quantum simulator. Phys. Rev. Res. 5, 023010 (2023).

    MATH  Google Scholar 

  34. Zhang, W.-Y. et al. Scalable multipartite entanglement created by spin exchange in an optical lattice. Phys. Rev. Lett. 131, 073401 (2023).

    ADS  MATH  Google Scholar 

  35. Zohar, E. & Cirac, J. I. Removing staggered fermionic matter in U(N) and SU(N) lattice gauge theories. Phys. Rev. D 99, 114511 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  36. Coleman, S. More about the massive Schwinger model. Ann. Phys. 101, 239–267 (1976).

    MATH  Google Scholar 

  37. Desaules, J.-Y. et al. Ergodicity breaking under confinement in cold-atom quantum simulators. Quantum 8, 1274 (2024).

  38. Wang, H.-Y. et al. Interrelated thermalization and quantum criticality in a lattice gauge simulator. Phys. Rev. Lett. 131, 050401 (2023).

    ADS  MATH  Google Scholar 

  39. Banerjee, D. et al. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. Phys. Rev. Lett. 109, 175302 (2012).

    ADS  MATH  Google Scholar 

  40. Lagnese, G., Surace, F. M., Kormos, M. & Calabrese, P. False vacuum decay in quantum spin chains. Phys. Rev. B 104, L201106 (2021).

    ADS  MATH  Google Scholar 

  41. Berges, J., Heller, M. P., Mazeliauskas, A. & Venugopalan, R. QCD thermalization: ab initio approaches and interdisciplinary connections. Rev. Mod. Phys. 93, 035003 (2021).

    ADS  MathSciNet  MATH  Google Scholar 

  42. Zache, T. V. et al. Dynamical topological transitions in the massive Schwinger model with a θ term. Phys. Rev. Lett. 122, 050403 (2019).

    ADS  MathSciNet  MATH  Google Scholar 

  43. Huang, Y.-P., Banerjee, D. & Heyl, M. Dynamical quantum phase transitions in U(1) quantum link models. Phys. Rev. Lett. 122, 250401 (2019).

    ADS  MATH  Google Scholar 

  44. Smith, A., Knolle, J., Kovrizhin, D. L. & Moessner, R. Disorder-free localization. Phys. Rev. Lett. 118, 266601 (2017).

    ADS  Google Scholar 

  45. Brenes, M., Dalmonte, M., Heyl, M. & Scardicchio, A. Many-body localization dynamics from gauge invariance. Phys. Rev. Lett. 120, 030601 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  46. Osborne, J., Yang, B., McCulloch, I. P., Hauke, P. & Halimeh, J. C. Spin-S U(1) quantum link models with dynamical matter on a quantum simulator. Preprint at arxiv.org/abs/2305.06368 (2023).

  47. Osborne, J., McCulloch, I. P., Yang, B., Hauke, P. & Halimeh, J. C. Large-scale 2 + 1D U(1) gauge theory with dynamical matter in a cold-atom quantum simulator. Preprint at arxiv.org/abs/2211.01380 (2022).

  48. Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    ADS  MathSciNet  MATH  Google Scholar 

  49. Kogut, J. B. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51, 659–713 (1979).

    ADS  MathSciNet  MATH  Google Scholar 

  50. Hauke, P., Marcos, D., Dalmonte, M. & Zoller, P. Quantum simulation of a lattice Schwinger model in a chain of trapped ions. Phys. Rev. X 3, 041018 (2013).

    MATH  Google Scholar 

  51. Sidje, R. B. Expokit: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24, 130–156 (1998).

    MATH  Google Scholar 

  52. Zhang, W.-Y. et al. Data for ‘Observation of microscopic confinement dynamics by a tunable topological θ-angle’. Zenodo. https://doi.org/10.5281/zenodo.13733573 (2024).

Download references

Acknowledgements

We thank H. Zhai for discussions. This work was supported by the NNSFC (Grant No. 12125409), the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0302000) and an Anhui Provincial Major Science and Technology Project (Grant No. 202103a13010005). W.-Y.Z. acknowledges support from the Postdoctoral Fellowship Programme of CPSF (Grant No. GZC20241659). Y.C. acknowledges support from the NSFC (Grant Nos. 12204034 and 12374251) and Fundamental Research Funds for the Central Universities (Grant No. FRFTP-22-101A1). J.C.H. acknowledges funding by the Max Planck Society, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2111 – 390814868, and the European Research Council (ERC) under the European Union’s Horizon Europe research and innovation program (Grant Agreement No. 101165667)—ERC Starting Grant QuSiGauge. B.Y. acknowledges the National Key R&D Programme of China (Grant No. 2022YFA1405800), the NNSFC (Grant No. 12274199) and a Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2023B0303000011). W.Z. acknowledges support from the NSFC (Grant Nos. GG2030007011 and GG2030040453) and the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0302004). P.H. acknowledges funding from the European Union through the HE research and innovation programme (Grant No. GA 101080086 NeQST) and the Next Generation EU, Mission 4 Component 2 (Grant No. CUP E53D23002240006), from the Italian Ministry of University and Research through Project FARE DAVNE (G R20PEX7Y3A) and Project DYNAMITE QUANTERA2_00056 ERANET, which were co-funded by the European Union H2020 (GA 101017733) and from the ICSC – Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing, the Provincia Autonoma di Trento and Q@TN. The views and opinions expressed are those of the authors only and do not necessarily reflect those of the granting authorities.

Author information

Authors and Affiliations

Authors

Contributions

Y.C., P.H., J.C.H., Z.-S.Y. and J.-W.P. conceived the research. Y.C., B.Y., P.H., W.Z. and J.C.H. developed the theory. W.-Y.Z., Z.-S.Y. and J.-W.P. designed the experiment. W.-Y.Z., Y.L., M.-G.H., H.-Y.W., T.-Y.W., Z.-H.Z., G.-X.S., Z.-Y.Z., Y.-G.Z. and H.S. conducted the experiments and collected the data. W.-Y.Z., Y.L. and Y.C. contributed to the data analysis. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Jad C. Halimeh, Zhen-Sheng Yuan or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Overlaps between the target states and the deterministic configurations.

The numerical overlaps between the low-energy excited state \(\left\vert {\psi }_{t}\right\rangle\) and two deterministic states, namely \(\left\vert {\psi }_{d}\right\rangle =\left\vert 2020112020\right\rangle\) and \(\left\vert 1111201111\right\rangle\), are shown as solid blue and orange lines, respectively, for different values of \(\frac{m}{\kappa }\).

Source data

Extended Data Fig. 2 Procedures of initial state preparation in the positive mass region.

a. An illustration of the atom distribution of the prepared unity-filled Mott insulator state after staggered immersion cooling. Atoms in orange-shaded chains are then addressed by DMD light. b. An illustration of the atomic spin distribution after the site-dependent addressing. c. An illustration of the state after we merge every two atoms in \(\left\vert \downarrow \right\rangle\) state onto a single site along the y direction. d. The prepared copies of \(\left\vert 2020112020\right\rangle\) state along the y direction.

Extended Data Fig. 3 Procedures of initial state preparation in the negative mass region.

a. An illustration of the atom distribution of the prepared unity-filled Mott insulator state after staggered immersion cooling. Atoms in orange-shaded chains are then addressed by DMD light. b. An illustration of the atomic spin distribution after the site-dependent addressing. c. An illustration of the state after we adiabatically transfer every two atoms in the \(\left\vert \downarrow \right\rangle\) state onto a single site along the y direction. d. The prepared copies of \(\left\vert 1111201111\right\rangle\) state along the y direction.

Extended Data Fig. 4 Adiabatic passage.

a. Schematic total optical lattice potentials for the \(\left\vert \downarrow \right\rangle\) (solid blue line) atoms together with the relevant state-independent staggered potential δ and state-dependent tilt gradient Δ before and after the adiabatic passage process. Solid blue circles indicate an exemplary initial state of \(\left\vert \downarrow \right\rangle\) atoms in the optical lattice. The initial atom distribution \(\left\vert \downarrow ,\downarrow ,\downarrow ,\downarrow ,\downarrow ,\downarrow \right\rangle\) is transferred into \(\left\vert \downarrow \downarrow ,0,\downarrow \downarrow ,0,\downarrow \downarrow ,0\right\rangle\). b. The corresponding ramping protocols are employed in the adiabatic passage process. c. Schematic total optical lattice potentials for the \(\left\vert \downarrow \right\rangle\) (solid blue line) and \(\left\vert \uparrow \right\rangle\) atoms (solid orange line) together with the relevant state-independent staggered potential δ and state-dependent tilt gradient (Δ for \(\left\vert \downarrow \right\rangle\) atoms, and − 2Δ for \(\left\vert \uparrow \right\rangle\) atoms) before and after the adiabatic passage process. Solid circles indicate an exemplary initial state of \(\left\vert \downarrow \right\rangle\) (blue circles) and \(\left\vert \uparrow \right\rangle\) atoms (orange circles) in the optical lattice. The initial atom distribution \(\left\vert \downarrow ,\uparrow ,\downarrow ,\uparrow ,\downarrow ,\uparrow \right\rangle\) is kept unchanged. d. Numerical results of the time-resolved density profiles for \(\left\vert \uparrow \right\rangle\) state (left) and \(\left\vert \downarrow \right\rangle\) state (right), respectively. e. Probabilities of the atom distributions of \(\left\vert \downarrow ,\downarrow ,\downarrow ,\downarrow ,\downarrow ,\downarrow \right\rangle\) and \(\left\vert \downarrow \downarrow ,0,\downarrow \downarrow ,0,\downarrow \downarrow ,0\right\rangle\) during the adiabatic passage process. f. Numerical results of the time-resolved density profiles for \(\left\vert \uparrow \right\rangle\) state (left) and \(\left\vert \downarrow \right\rangle\) state (right), respectively. g. Probabilities of the atom distribution of \(\left\vert \downarrow ,\uparrow ,\downarrow ,\uparrow ,\downarrow ,\uparrow \right\rangle\) during the adiabatic passage process.

Source data

Extended Data Fig. 5 Numerical results in the positive mass region.

a. The time-resolved density profiles and two-point correlations at various χ/κ. The extracted time-resolved results of the observables b \({\mathcal{E}}(t)\), c \({\mathcal{M}}(t)\), and d \({\mathcal{E}}(t)/{\mathcal{M}}(t)\), at various χ/κ.

Source data

Extended Data Fig. 6 Numerical results in the negative mass region.

a. The time-resolved density profiles. b. The time-resolved two-point correlations. The extracted time-resolved results of the observables c \({\mathcal{E}}(t)\), d \({\mathcal{M}}(t)\), and e \({\mathcal{E}}(t)/{\mathcal{M}}(t)\).

Source data

Extended Data Fig. 7 Influence of disorder.

a. Numerical simulation results in the presence of disorders of different amplitudes d. b. The dark blue solid dots are the experimental results under χ = 0. The light blue solid dots are the experimental results under \(\frac{\chi }{\kappa }=0.1\). The dark-shaded region represents the numerical sampling result under χ = 0 with uniformly distributed random disorders in the interval (0, d = 0.24κ). The light-shaded region represents the numerical sampling result under \(\frac{\chi }{\kappa }=0.1\) with uniformly distributed random disorders in the interval (0, d = 0.24κ).

Source data

Source data

Source Data Fig. 1

Figure 1 is a schematic illustration of the principle without a corresponding raw data counterpart.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WY., Liu, Y., Cheng, Y. et al. Observation of microscopic confinement dynamics by a tunable topological θ-angle. Nat. Phys. 21, 155–160 (2025). https://doi.org/10.1038/s41567-024-02702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02702-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing