Abstract
Helices and spirals, prevalent across various physical systems, play a crucial role in characterizing symmetry, describing dynamics and enabling unique functionalities, all stemming from their inherent simplicity and chiral nature. Helical excitations on quantized vortices, referred to as Kelvin waves, are one example of such a physical system. Kelvin waves play a vital role in energy dissipation within inviscid quantum fluids. However, deliberately exciting Kelvin waves has proven to be challenging. Here we introduce a controlled method for exciting Kelvin waves on a quantized vortex in superfluid helium-4. We used a charged nanoparticle that oscillates when driven by a time-varying electric field to stimulate Kelvin waves on the vortex. Confirmation of the helical nature of Kelvin waves was achieved through three-dimensional image reconstruction, which provided visual evidence of their complex dynamics. Additionally, we determined the dispersion relation and the phase velocity of the Kelvin wave and identified the vorticity direction, thus enhancing our understanding of quantum fluid behaviour. This work elucidates the dynamics of Kelvin waves and initiates an approach for manipulating and observing quantized vortices in three dimensions, thereby opening avenues for exploring quantum fluidic systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
The data presented in this paper are available from Zenodo at https://doi.org/10.5281/zenodo.13959678 (ref. 41). Other data are available from the corresponding author upon reasonable request.
References
Saffman, P. G. Vortex Dynamics. Cambridge Monographs on Mechanics (Cambridge Univ. Press, 1993).
Maxworthy, T., Hopfinger, E. J. & Redekopp, L. G. Wave motions on vortex cores. J. Fluid Mech. 151, 141–165 (1985).
Dahl, J. M. L. Centrifugal waves in tornado-like vortices: Kelvin’s solutions and their applications to multiple-vortex development and vortex breakdown. Mon. Weather Rev. 149, 3173–3216 (2021).
Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).
Toyoda, K. et al. Transfer of light helicity to nanostructures. Phys. Rev. Lett. 110, 143603 (2013).
Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Barenghi, C. F., Skrbek, L. & Sreenivasan, K. R. Quantum Turbulence (Cambridge Univ. Press, 2023).
Kivotides, D., Vassilicos, J. C., Samuels, D. C. & Barenghi, C. F. Kelvin waves cascade in superfluid turbulence. Phys. Rev. Lett. 86, 3080–3083 (2001).
Kozik, E. & Svistunov, B. Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett. 92, 035301 (2004).
Vinen, W. F., Tsubota, M. & Mitani, A. Kelvin-wave cascade on a vortex in superfluid 4He at a very low temperature. Phys. Rev. Lett. 91, 135301 (2003).
Baggaley, A. W. & Laurie, J. Kelvin-wave cascade in the vortex filament model. Phys. Rev. B 89, 014504 (2014).
Bretin, V., Rosenbusch, P., Chevy, F., Shlyapnikov, G. V. & Dalibard, J. Quadrupole oscillation of a single-vortex Bose–Einstein condensate: evidence for Kelvin modes. Phys. Rev. Lett. 90, 100403 (2003).
Telles, G. D., Tavares, P. E. S., Fritsch, A. R., Cidrim, A. & Bagnato, V. S. Dynamical evolution and decay of multi-charged quantum vortex in a Bose-Einstein condensate. Laser Phys. Lett. 19, 015501 (2021).
Fonda, E., Meichle, D. P., Ouellette, N. T., Hormoz, S. & Lathrop, D. P. Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Natl Acad. Sci. USA 111, 4707–4710 (2014).
Minowa, Y. et al. Visualization of quantized vortex reconnection enabled by laser ablation. Sci. Adv. 8, eabn1143 (2022).
Minowa, Y., Oguni, Y. & Ashida, M. Inner structure of ZnO microspheres fabricated via laser ablation in superfluid helium. Opt. Express 25, 10449–10455 (2017).
Bewley, G. P., Lathrop, D. P. & Sreenivasan, K. R. Visualization of quantized vortices. Nature 441, 588 (2006).
Taccogna, F. Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid. J. Plasma Phys. 81, 495810509 (2015).
Brugarino, T., Mongiovi, M. S. & Sciacca, M. Waves on a vortex filament: exact solutions of dynamical equations. Z. Angew. Math. Phys. 66, 1081–1094 (2015).
Donnelly, R. J. Quantized Vortices in Helium II 1st edn (Cambridge Univ. Press, 1991).
Schwarz, K. W. Three-dimensional vortex dynamics in superfluid 4He: line-line and line-boundary interactions. Phys. Rev. B 31, 5782–5804 (1985).
Tsubota, M., Fujimoto, K. & Yui, S. Numerical studies of quantum turbulence. J. Low Temp. Phys. 188, 119–189 (2017).
Dell’Aglio, M., Motto-Ros, V., Pelascini, F., Gornushkin, I. B. & Giacomo, A. D. Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during pulsed laser ablation in liquid (PLAL) for NPs production and consequent considerations on NPs formation. Plasma Sources Sci. Technol. 28, 085017 (2019).
Mäkinen, J. T. et al. Rotating quantum wave turbulence. Nat. Phys. 19, 898–903 (2023).
Nakamura, S., Katsumi, K., Terai, H. & Shimano, R. Nonreciprocal terahertz second-harmonic generation in superconducting NbN under supercurrent injection. Phys. Rev. Lett. 125, 097004 (2020).
Link, B. & Levin, Y. Vortex pinning in neutron stars, slipstick dynamics, and the origin of spin glitches. Astrophys. J. 941, 148 (2022).
Nakariakov, V. M. et al. Kink oscillations of coronal loops. Space Sci. Rev. 217, 73 (2021).
de Gennes, P. G. & Matricon, J. Collective modes of vortex lines in superconductors of the second kind. Rev. Mod. Phys. 36, 45–49 (1964).
Kinjo, K. et al. Superconducting spin smecticity evidencing the Fulde-Ferrell-Larkin-Ovchinnikov state in Sr2RuO4. Science 376, 397–400 (2022).
Minowa, Y. et al. Optical trapping of nanoparticles in superfluid helium. Optica 9, 139–144 (2022).
Richaud, A., Penna, V. & Fetter, A. L. Dynamics of massive point vortices in a binary mixture of Bose-Einstein condensates. Phys. Rev. A 103, 023311 (2021).
Richaud, A., Lamporesi, G., Capone, M. & Recati, A. Mass-driven vortex collisions in flat superfluids. Phys. Rev. A 107, 053317 (2023).
Tang, Y., Bao, S. & Guo, W. Superdiffusion of quantized vortices uncovering scaling laws in quantum turbulence. Proc. Natl Acad. Sci. USA 118, e2021957118 (2021).
Skrbek, L., Schmoranzer, D., Midlik, S. & Sreenivasan, K. R. Phenomenology of quantum turbulence in superfluid helium. Proc. Natl Acad. Sci. USA 118, e2018406118 (2021).
Mantia, M. L. & Skrbek, L. Quantum, or classical turbulence? Europhys. Lett. 105, 46002 (2014).
Tisza, L. Transport phenomena in helium ii. Nature 141, 913 (1938).
Landau, L. D. The theory of superfluidity of helium ii. J. Phys. USSR 5, 71–100 (1941).
Mineda, Y., Tsubota, M., Sergeev, Y. A., Barenghi, C. F. & Vinen, W. F. Velocity distributions of tracer particles in thermal counterflow in superfluid 4He. Phys. Rev. B 87, 174508 (2013).
Tang, Y. et al. Imaging quantized vortex rings in superfluid helium to evaluate quantum dissipation. Nat. Commun. 14, 2941 (2023).
Minowa, Y. et al. Data for ‘Direct excitation of Kelvin waves on quantized vortices’. Zenodo https://doi.org/10.5281/zenodo.13959678 (2024).
Acknowledgements
This work was supported by the MEXT/JSPS (KAKENHI Grant Nos. JP22H05139, JP23K03282, JP23KJ1832 and JP23K03305) and by JST PRESTO, Japan (Grant No. JPMJPR1909).
Author information
Authors and Affiliations
Contributions
Y.M. conceived, designed and guided the whole project. Y.M. and Y.Y. performed the experiments and analysed the data. T.N., S.I. and M.T. conducted the vortex filament simulation and the analysis. M.A. provided technical support. Y.M. wrote the paper with inputs from all co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks Daniel Lathrop, Sergey Nazarenko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Discussions on the dispersion relation of Kelvin waves.
Supplementary Video 1
Experimental three-dimensional visualization of the dynamics of Kelvin waves along a quantized vortex, observed from the top.
Supplementary Video 2
Experimental three-dimensional visualization of the dynamics of Kelvin waves along a quantized vortex, observed from the side.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Minowa, Y., Yasui, Y., Nakagawa, T. et al. Direct excitation of Kelvin waves on quantized vortices. Nat. Phys. 21, 233–238 (2025). https://doi.org/10.1038/s41567-024-02720-9
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41567-024-02720-9