Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct excitation of Kelvin waves on quantized vortices

Abstract

Helices and spirals, prevalent across various physical systems, play a crucial role in characterizing symmetry, describing dynamics and enabling unique functionalities, all stemming from their inherent simplicity and chiral nature. Helical excitations on quantized vortices, referred to as Kelvin waves, are one example of such a physical system. Kelvin waves play a vital role in energy dissipation within inviscid quantum fluids. However, deliberately exciting Kelvin waves has proven to be challenging. Here we introduce a controlled method for exciting Kelvin waves on a quantized vortex in superfluid helium-4. We used a charged nanoparticle that oscillates when driven by a time-varying electric field to stimulate Kelvin waves on the vortex. Confirmation of the helical nature of Kelvin waves was achieved through three-dimensional image reconstruction, which provided visual evidence of their complex dynamics. Additionally, we determined the dispersion relation and the phase velocity of the Kelvin wave and identified the vorticity direction, thus enhancing our understanding of quantum fluid behaviour. This work elucidates the dynamics of Kelvin waves and initiates an approach for manipulating and observing quantized vortices in three dimensions, thereby opening avenues for exploring quantum fluidic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kelvin wave excitation and its dispersion relation.
Fig. 2: Experimental three-dimensional visualization of Kelvin wave dynamics along a quantized vortex.
Fig. 3: Numerical simulation of Kelvin wave excitation on a quantized vortex.
Fig. 4: Propagation of Kelvin waves.

Similar content being viewed by others

Data availability

The data presented in this paper are available from Zenodo at https://doi.org/10.5281/zenodo.13959678 (ref. 41). Other data are available from the corresponding author upon reasonable request.

References

  1. Saffman, P. G. Vortex Dynamics. Cambridge Monographs on Mechanics (Cambridge Univ. Press, 1993).

  2. Maxworthy, T., Hopfinger, E. J. & Redekopp, L. G. Wave motions on vortex cores. J. Fluid Mech. 151, 141–165 (1985).

    Article  ADS  MATH  Google Scholar 

  3. Dahl, J. M. L. Centrifugal waves in tornado-like vortices: Kelvin’s solutions and their applications to multiple-vortex development and vortex breakdown. Mon. Weather Rev. 149, 3173–3216 (2021).

    Article  ADS  MATH  Google Scholar 

  4. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K. & Yanagida, T. Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374, 555–559 (1995).

    Article  ADS  Google Scholar 

  5. Toyoda, K. et al. Transfer of light helicity to nanostructures. Phys. Rev. Lett. 110, 143603 (2013).

    Article  ADS  MATH  Google Scholar 

  6. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Article  ADS  Google Scholar 

  7. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  MATH  Google Scholar 

  8. Barenghi, C. F., Skrbek, L. & Sreenivasan, K. R. Quantum Turbulence (Cambridge Univ. Press, 2023).

  9. Kivotides, D., Vassilicos, J. C., Samuels, D. C. & Barenghi, C. F. Kelvin waves cascade in superfluid turbulence. Phys. Rev. Lett. 86, 3080–3083 (2001).

    Article  ADS  MATH  Google Scholar 

  10. Kozik, E. & Svistunov, B. Kelvin-wave cascade and decay of superfluid turbulence. Phys. Rev. Lett. 92, 035301 (2004).

    Article  ADS  MATH  Google Scholar 

  11. Vinen, W. F., Tsubota, M. & Mitani, A. Kelvin-wave cascade on a vortex in superfluid 4He at a very low temperature. Phys. Rev. Lett. 91, 135301 (2003).

    Article  ADS  Google Scholar 

  12. Baggaley, A. W. & Laurie, J. Kelvin-wave cascade in the vortex filament model. Phys. Rev. B 89, 014504 (2014).

    Article  ADS  MATH  Google Scholar 

  13. Bretin, V., Rosenbusch, P., Chevy, F., Shlyapnikov, G. V. & Dalibard, J. Quadrupole oscillation of a single-vortex Bose–Einstein condensate: evidence for Kelvin modes. Phys. Rev. Lett. 90, 100403 (2003).

    Article  ADS  Google Scholar 

  14. Telles, G. D., Tavares, P. E. S., Fritsch, A. R., Cidrim, A. & Bagnato, V. S. Dynamical evolution and decay of multi-charged quantum vortex in a Bose-Einstein condensate. Laser Phys. Lett. 19, 015501 (2021).

    Article  ADS  MATH  Google Scholar 

  15. Fonda, E., Meichle, D. P., Ouellette, N. T., Hormoz, S. & Lathrop, D. P. Direct observation of Kelvin waves excited by quantized vortex reconnection. Proc. Natl Acad. Sci. USA 111, 4707–4710 (2014).

    Article  ADS  Google Scholar 

  16. Minowa, Y. et al. Visualization of quantized vortex reconnection enabled by laser ablation. Sci. Adv. 8, eabn1143 (2022).

    Article  ADS  MATH  Google Scholar 

  17. Minowa, Y., Oguni, Y. & Ashida, M. Inner structure of ZnO microspheres fabricated via laser ablation in superfluid helium. Opt. Express 25, 10449–10455 (2017).

    Article  ADS  MATH  Google Scholar 

  18. Bewley, G. P., Lathrop, D. P. & Sreenivasan, K. R. Visualization of quantized vortices. Nature 441, 588 (2006).

    Article  ADS  MATH  Google Scholar 

  19. Taccogna, F. Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid. J. Plasma Phys. 81, 495810509 (2015).

    Article  MATH  Google Scholar 

  20. Brugarino, T., Mongiovi, M. S. & Sciacca, M. Waves on a vortex filament: exact solutions of dynamical equations. Z. Angew. Math. Phys. 66, 1081–1094 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. Donnelly, R. J. Quantized Vortices in Helium II 1st edn (Cambridge Univ. Press, 1991).

  22. Schwarz, K. W. Three-dimensional vortex dynamics in superfluid 4He: line-line and line-boundary interactions. Phys. Rev. B 31, 5782–5804 (1985).

    Article  ADS  MATH  Google Scholar 

  23. Tsubota, M., Fujimoto, K. & Yui, S. Numerical studies of quantum turbulence. J. Low Temp. Phys. 188, 119–189 (2017).

    Article  ADS  MATH  Google Scholar 

  24. Dell’Aglio, M., Motto-Ros, V., Pelascini, F., Gornushkin, I. B. & Giacomo, A. D. Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during pulsed laser ablation in liquid (PLAL) for NPs production and consequent considerations on NPs formation. Plasma Sources Sci. Technol. 28, 085017 (2019).

    Article  ADS  Google Scholar 

  25. Mäkinen, J. T. et al. Rotating quantum wave turbulence. Nat. Phys. 19, 898–903 (2023).

    Article  MATH  Google Scholar 

  26. Nakamura, S., Katsumi, K., Terai, H. & Shimano, R. Nonreciprocal terahertz second-harmonic generation in superconducting NbN under supercurrent injection. Phys. Rev. Lett. 125, 097004 (2020).

    Article  ADS  Google Scholar 

  27. Link, B. & Levin, Y. Vortex pinning in neutron stars, slipstick dynamics, and the origin of spin glitches. Astrophys. J. 941, 148 (2022).

    Article  ADS  MATH  Google Scholar 

  28. Nakariakov, V. M. et al. Kink oscillations of coronal loops. Space Sci. Rev. 217, 73 (2021).

    Article  ADS  MATH  Google Scholar 

  29. de Gennes, P. G. & Matricon, J. Collective modes of vortex lines in superconductors of the second kind. Rev. Mod. Phys. 36, 45–49 (1964).

    Article  ADS  MATH  Google Scholar 

  30. Kinjo, K. et al. Superconducting spin smecticity evidencing the Fulde-Ferrell-Larkin-Ovchinnikov state in Sr2RuO4. Science 376, 397–400 (2022).

    Article  ADS  MATH  Google Scholar 

  31. Minowa, Y. et al. Optical trapping of nanoparticles in superfluid helium. Optica 9, 139–144 (2022).

    Article  ADS  MATH  Google Scholar 

  32. Richaud, A., Penna, V. & Fetter, A. L. Dynamics of massive point vortices in a binary mixture of Bose-Einstein condensates. Phys. Rev. A 103, 023311 (2021).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Richaud, A., Lamporesi, G., Capone, M. & Recati, A. Mass-driven vortex collisions in flat superfluids. Phys. Rev. A 107, 053317 (2023).

    Article  ADS  MATH  Google Scholar 

  34. Tang, Y., Bao, S. & Guo, W. Superdiffusion of quantized vortices uncovering scaling laws in quantum turbulence. Proc. Natl Acad. Sci. USA 118, e2021957118 (2021).

    Article  MATH  Google Scholar 

  35. Skrbek, L., Schmoranzer, D., Midlik, S. & Sreenivasan, K. R. Phenomenology of quantum turbulence in superfluid helium. Proc. Natl Acad. Sci. USA 118, e2018406118 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  36. Mantia, M. L. & Skrbek, L. Quantum, or classical turbulence? Europhys. Lett. 105, 46002 (2014).

    Article  ADS  MATH  Google Scholar 

  37. Tisza, L. Transport phenomena in helium ii. Nature 141, 913 (1938).

    Article  ADS  MATH  Google Scholar 

  38. Landau, L. D. The theory of superfluidity of helium ii. J. Phys. USSR 5, 71–100 (1941).

    MATH  Google Scholar 

  39. Mineda, Y., Tsubota, M., Sergeev, Y. A., Barenghi, C. F. & Vinen, W. F. Velocity distributions of tracer particles in thermal counterflow in superfluid 4He. Phys. Rev. B 87, 174508 (2013).

    Article  ADS  Google Scholar 

  40. Tang, Y. et al. Imaging quantized vortex rings in superfluid helium to evaluate quantum dissipation. Nat. Commun. 14, 2941 (2023).

    Article  ADS  MATH  Google Scholar 

  41. Minowa, Y. et al. Data for ‘Direct excitation of Kelvin waves on quantized vortices’. Zenodo https://doi.org/10.5281/zenodo.13959678 (2024).

Download references

Acknowledgements

This work was supported by the MEXT/JSPS (KAKENHI Grant Nos. JP22H05139, JP23K03282, JP23KJ1832 and JP23K03305) and by JST PRESTO, Japan (Grant No. JPMJPR1909).

Author information

Authors and Affiliations

Authors

Contributions

Y.M. conceived, designed and guided the whole project. Y.M. and Y.Y. performed the experiments and analysed the data. T.N., S.I. and M.T. conducted the vortex filament simulation and the analysis. M.A. provided technical support. Y.M. wrote the paper with inputs from all co-authors.

Corresponding author

Correspondence to Yosuke Minowa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Daniel Lathrop, Sergey Nazarenko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Discussions on the dispersion relation of Kelvin waves.

Supplementary Video 1

Experimental three-dimensional visualization of the dynamics of Kelvin waves along a quantized vortex, observed from the top.

Supplementary Video 2

Experimental three-dimensional visualization of the dynamics of Kelvin waves along a quantized vortex, observed from the side.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minowa, Y., Yasui, Y., Nakagawa, T. et al. Direct excitation of Kelvin waves on quantized vortices. Nat. Phys. 21, 233–238 (2025). https://doi.org/10.1038/s41567-024-02720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02720-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing