Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Counterflow superfluidity in a two-component Mott insulator

Abstract

Counterflow superfluidity is an anomalous quantum phase that was predicted two decades ago in the context of a two-component Bose–Hubbard model. In this phase, although both components exhibit fluidity, their correlated counterflow currents cancel each other out, resulting in the system behaving as an incompressible Mott insulator. However, realizing and identifying this phase experimentally has proven challenging due to the stringent requirements for a single set-up, including defect-free state preparation, minimal heating during coherent manipulations, and spin- and site-resolved detection of the phases. Here, we report on the observation of counterflow superfluidity in a binary Bose mixture in optical lattices. After preparing a low-entropy spin-Mott state by conveying two spin-1/2 bosonic atoms at every single lattice site to form a doublon, we adiabatically drove the system to the counterflow superfluid phase at approximately 1 nK. We observed features of antipair correlations through site- and spin-resolved quantum-gas microscopy in both real and momentum spaces. Finally, we measured long-range off-diagonal spin correlations in the rotated basis, revealing a correlation length approaching the system size. These techniques and observations demonstrated here provide accessibility to Borromean counterfluids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Probing the CSF in optical lattices.
Fig. 2: Number-squeezing of the total atoms in the CSF.
Fig. 3: Antipair correlations of the CSF.
Fig. 4: Long-range off-diagonal spin correlations.

Similar content being viewed by others

Data availability

All the data are available from the corresponding authors upon reasonable request. Source data are provided with this paper. The data are also available via figshare at https://doi.org/10.6084/m9.figshare.27084313 (ref. 64).

References

  1. Feynman, R. P. Superfluidity and superconductivity. Rev. Mod. Phys. 29, 205–212 (1957).

    ADS  MATH  Google Scholar 

  2. Yang, C.-N. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys. 34, 694–704 (1962).

    ADS  MathSciNet  MATH  Google Scholar 

  3. Leggett, A. Superfluidity. Rev. Mod. Phys. 71, S318–S323 (1999).

    MATH  Google Scholar 

  4. Kapitza, P. Viscosity of liquid helium below the λ-point. Nature 141, 74 (1938).

    ADS  MATH  Google Scholar 

  5. Allen, J. & Misener, A. Flow phenomena in liquid helium ii. Nature 142, 643–644 (1938).

    ADS  MATH  Google Scholar 

  6. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957).

    ADS  MathSciNet  MATH  Google Scholar 

  7. Osheroff, D. D., Richardson, R. C. & Lee, D. M. Evidence for a new phase of solid He3. Phys. Rev. Lett. 28, 885–888 (1972).

    ADS  MATH  Google Scholar 

  8. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    ADS  Google Scholar 

  9. Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

    ADS  MATH  Google Scholar 

  10. Regal, C. A., Greiner, M. & Jin, D. S. Observation of resonance condensation of fermionic atom pairs. Phys. Rev. Lett. 92, 040403 (2004).

    ADS  MATH  Google Scholar 

  11. Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39–44 (2002).

    ADS  Google Scholar 

  12. Kuklov, A. & Svistunov, B. Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. Phys. Rev. Lett. 90, 100401 (2003).

    ADS  MATH  Google Scholar 

  13. Altman, E., Hofstetter, W., Demler, E. & Lukin, M. D. Phase diagram of two-component bosons on an optical lattice. New J. Phys. https://doi.org/10.1088/1367-2630/5/1/113 (2003).

    Article  MATH  Google Scholar 

  14. Kuklov, A., Prokof’ev, N. & Svistunov, B. Superfluid-superfluid phase transitions in a two-component Bose-Einstein condensate. Phys. Rev. Lett. 92, 030403 (2004).

    ADS  MATH  Google Scholar 

  15. Duan, L. M., Demler, E. & Lukin, M. D. Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003).

    ADS  MATH  Google Scholar 

  16. Hubener, A., Snoek, M. & Hofstetter, W. Magnetic phases of two-component ultracold bosons in an optical lattice. Phys. Rev. B 80, 245109 (2009).

    ADS  Google Scholar 

  17. Powell, S. Magnetic phases and transitions of the two-species Bose-Hubbard model. Phys. Rev. A 79, 053614 (2009).

    ADS  MATH  Google Scholar 

  18. Schachenmayer, J. et al. Adiabatic cooling of bosons in lattices to magnetically ordered quantum states. Phys. Rev. A 92, 041602 (2015).

    ADS  MATH  Google Scholar 

  19. de Forges de Parny, L. & Rousseau, V. Magnetic phase transition in the ground-state phase diagram of binary Bose gases in optical lattices. Europhys. Lett. 134, 16001 (2021).

    ADS  Google Scholar 

  20. Basak, S. & Pu, H. Strongly interacting two-component coupled Bose gas in optical lattices. Phys. Rev. A 104, 053326 (2021).

    ADS  MATH  Google Scholar 

  21. Hu, A. et al. Counterflow and paired superfluidity in one-dimensional Bose mixtures in optical lattices. Phys. Rev. A 80, 023619 (2009).

    ADS  Google Scholar 

  22. Menotti, C. & Stringari, S. Detection of pair-superfluidity for bosonic mixtures in optical lattices. Phys. Rev. A 81, 045604 (2010).

    ADS  MATH  Google Scholar 

  23. Hu, A. et al. Detecting paired and counterflow superfluidity via dipole oscillations. Phys. Rev. A 84, 041609 (2011).

    ADS  Google Scholar 

  24. Venegas-Gomez, A. et al. Adiabatic preparation of entangled, magnetically ordered states with cold bosons in optical lattices. Quantum Sci. Technol. 5, 045013 (2020).

    ADS  MATH  Google Scholar 

  25. Venegas-Gomez, A., Buyskikh, A. S., Schachenmayer, J., Ketterle, W. & Daley, A. J. Dynamics of rotated spin states and magnetic ordering with two-component bosonic atoms in optical lattices. Phys. Rev. A 102, 023321 (2020).

    ADS  Google Scholar 

  26. Colussi, V. E., Caleffi, F., Menotti, C. & Recati, A. Quantum Gutzwiller approach for the two-component Bose-Hubbard model. SciPost Phys. https://doi.org/10.21468/SciPostPhys.12.3.111 (2022).

  27. Chung, W. et al. Tunable single-ion anisotropy in spin-1 models realized with ultracold atoms. Phys. Rev. Lett. 126, 163203 (2021).

    ADS  Google Scholar 

  28. De Hond, J. et al. Preparation of the spin-Mott state: a spinful Mott insulator of repulsively bound pairs. Phys. Rev. Lett. 128, 93401 (2022).

    Google Scholar 

  29. Dimitrova, I. et al. Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains of ultracold atoms. Quantum Sci. Technol. 8, 035018 (2023).

    ADS  MATH  Google Scholar 

  30. Yang, B. et al. Cooling and entangling ultracold atoms in optical lattices. Science 369, 550–553 (2020).

    ADS  MATH  Google Scholar 

  31. Zheng, Y.-G. et al. Robust site-resolved addressing via dynamically tracking the phase of optical lattices. Opt. Lett. 47, 4239 (2022).

    ADS  MATH  Google Scholar 

  32. Prüfer, M. et al. Condensation and thermalization of an easy-plane ferromagnet in a spinor Bose gas. Nat. Phys. 18, 1459–1463 (2022).

    MATH  Google Scholar 

  33. Chen, C. et al. Continuous symmetry breaking in a two-dimensional Rydberg array. Nature 616, 691–695 (2023).

    ADS  MATH  Google Scholar 

  34. Feng, L. et al. Continuous symmetry breaking in a trapped-ion spin chain. Nature 623, 713–717 (2023).

    ADS  MATH  Google Scholar 

  35. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  MATH  Google Scholar 

  36. Fölling, S. et al. Spatial quantum noise interferometry in expanding ultracold atom clouds. Nature 434, 481–484 (2005).

    ADS  Google Scholar 

  37. Simon, J. et al. Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature 472, 307–312 (2011).

    ADS  MATH  Google Scholar 

  38. Yang, B. et al. Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator. Nature 587, 392–396 (2020).

    ADS  MATH  Google Scholar 

  39. Rosenberg, J. S., Christakis, L., Guardado-Sanchez, E., Yan, Z. Z. & Bakr, W. S. Observation of the Hanbury Brown and Twiss effect with ultracold molecules. Nat. Phys. 18, 1062–1066 (2022).

    Google Scholar 

  40. Zheng, Y.-G. et al. Efficiently extracting multi-point correlations of a Floquet thermalized system. Preprint at https://arxiv.org/abs/2210.08556 (2022).

  41. Hanbury Brown, B. & Twiss, R. Q. Correlation between photons in two coherent beams of light. Nature 177, 27–29 (1956).

    ADS  MATH  Google Scholar 

  42. Mandel, O. et al. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature 425, 937–940 (2003).

    ADS  MATH  Google Scholar 

  43. Dai, H. N. et al. Generation and detection of atomic spin entanglement in optical lattices. Nat. Phys. 12, 783–787 (2016).

    MATH  Google Scholar 

  44. Zhang, W.-Y. et al. Scalable multipartite entanglement created by spin exchange in an optical lattice. Phys. Rev. Lett. 131, 073401 (2023).

    ADS  MATH  Google Scholar 

  45. Boothroyd, A. T. Principles of Neutron Scattering from Condensed Matter (Oxford Academic, 2020).

  46. Zheng, Z., Pu, H., Zou, X. & Guo, G. Artificial topological models based on a one-dimensional spin-dependent optical lattice. Phys. Rev. A 95, 013616 (2017).

    ADS  Google Scholar 

  47. Chen, X., Gu, Z.-C., Liu, Z.-X. & Wen, X.-G. Symmetry-protected topological orders in interacting bosonic systems. Science 338, 1604–1606 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  48. Sun, H. et al. Realization of a bosonic antiferromagnet. Nat. Phys. 17, 990–994 (2021).

    MATH  Google Scholar 

  49. Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983).

    ADS  MathSciNet  MATH  Google Scholar 

  50. Yang, H., Li, L., Okunishi, K. & Katsura, H. Duality, criticality, anomaly, and topology in quantum spin-1 chains. Phys. Rev. B 107, 125158 (2023).

    ADS  MATH  Google Scholar 

  51. Radzihovsky, L. Pseudospin canting transition and stripes in bilayer quantum Hall ferromagnets: a self-charging capacitor. Phys. Rev. Lett. 87, 236802 (2001).

    ADS  MATH  Google Scholar 

  52. Blomquist, E., Syrwid, A. & Babaev, E. Borromean supercounterfluidity. Phys. Rev. Lett. 127, 255303 (2021).

    ADS  Google Scholar 

  53. Babaev, E. & Svistunov, B. Hydrodynamics of Borromean counterfluids. Phys. Rev. Lett. 133, 026001 (2024).

  54. Grinenko, V. et al. State with spontaneously broken time-reversal symmetry above the superconducting phase transition. Nat. Phys. 17, 1254–1259 (2021).

    MATH  Google Scholar 

  55. Shipulin, I. et al. Calorimetric evidence for two phase transitions in Ba1−xKxFe2As2 with fermion pairing and quadrupling states. Nat. Commun. 1, 6734 (2023).

    ADS  MATH  Google Scholar 

  56. Ferraretto, M., Richaud, A., Del Re, L., Fallani, L. & Capone, M. Enhancement of chiral edge currents in (d + 1)-dimensional atomic Mott-band hybrid insulators. SciPost Phys. 14, 048 (2023).

  57. Medley, P., Weld, D. M., Miyake, H., Pritchard, D. E. & Ketterle, W. Spin gradient demagnetization cooling of ultracold atoms. Phys. Rev. Lett. 106, 195301 (2011).

    ADS  Google Scholar 

  58. Bakr, W. S., Gillen, J. I., Peng, A., Fölling, S. & Greiner, M. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Nature 462, 74–77 (2009).

    ADS  Google Scholar 

  59. Boll, M. et al. Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains. Science 353, 1257–1260 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  60. Stamper-Kurn, D. M. & Ueda, M. Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191–1244 (2013).

    ADS  MATH  Google Scholar 

  61. Dutta, O. et al. Non-standard Hubbard models in optical lattices: a review. Rep. Prog. Phys. 78, 066001 (2015).

    ADS  MATH  Google Scholar 

  62. Luo, A. et al. Microscopic study on superexchange dynamics of composite spin-1 Bosons. Phys. Rev. Lett. 133, 043401 (2024).

    MATH  Google Scholar 

  63. Hauschild, J. & Pollmann, F. Efficient numerical simulations with tensor networks: tensor network Python (TeNPy). SciPost Phys. Lect. Notes https://doi.org/10.21468/SciPostPhysLectNotes.5 (2018).

  64. Zheng, Y.-G. et al. Counterflow superfluidity in a two-component Mott insulator. figshare https://doi.org/10.6084/m9.figshare.27084313 (2024).

Download references

Acknowledgements

We acknowledge fruitful discussions with L.-X. Liu and N. Prokof’ev. This work was supported by the National Natural Science Foundation of China (Grant No. 12125409), the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0302004) and the Anhui Initiative in Quantum Information Technologies. Y.D. acknowledged funds from the National Natural Science Foundation of China (Grant No. 12275263), the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0301900) and Natural Science Foundation of Fujian Province of China (Grant No. 2023J02032). Y.-G.Z. acknowledged the support of the Fundamental Research Funds for the Central Universities, the CPS-Huawei MindSpore Fellowship and the China Postdoctoral Science Foundation (Grant No. 2023TQ0102).

Author information

Authors and Affiliations

Authors

Contributions

Y.-G.Z., Z.-S.Y. and J.-W.P. conceived the research and designed the experiments. Y.-G.Z., A.L., Y.-C.S., M.-G.H., Z.-H.Z., Y.L., W.-Y.Z. and H.S. performed the experiments and collected the data. Y.-G.Z. and A.L. analysed the data. Y.D., Z.-S.Y. and J.-W.P. supervised the research. All authors participated in writing the manuscript.

Corresponding authors

Correspondence to Zhen-Sheng Yuan or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Four-particle dynamics in double wells.

We prepared the atoms into \(\left\vert {S}_{z}=0\right\rangle\) state in an array of double wells by imposing the y long lattice. Then the y short lattice is quenched to 10Er to start the dynamics in double wells. The dashed line is a sinusoidal curve fitting from which we inferred the anisotropy u.

Source data

Extended Data Fig. 2 TOF measurement of the noise correlations.

a and b show the noise correlations in the spin-Mott and CSF phases, respectively. Purple circles indicate the noise correlation of the both atoms while blue circles are that of the \(\left\vert \downarrow \right\rangle\) atoms. The inter-component noise correlations (orange circles) are obtained from the relation g(δy) = [g(δy) − 2g(δy)]/2 + 1/4.

Source data

Extended Data Fig. 3 Full-count statistics of the local magnetization in the spin-Mott (left panel) and xy-ferromagnet phases.

The distributions of the magnetization are broadened due to the superexchange process in the xy-ferromagnet phase.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–5, Discussion and Refs. 1–7.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, YG., Luo, A., Shen, YC. et al. Counterflow superfluidity in a two-component Mott insulator. Nat. Phys. 21, 208–213 (2025). https://doi.org/10.1038/s41567-024-02732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02732-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing