Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-hidden magnetic order in a multi-orbital Mott insulator

Abstract

Photo-excited quantum materials can be driven into thermally inaccessible metastable states that exhibit structural, charge, spin, topological and superconducting orders. Metastable states typically emerge on timescales set by the intrinsic electronic and phononic energy scales, ranging from femtoseconds to picoseconds, and can persist for weeks. Therefore, studies have primarily focused on ultrafast or quasi-static limits, leaving the intermediate time window less explored. Here we reveal a metastable state with broken glide-plane symmetry in photo-doped Ca2RuO4 using time-resolved optical second-harmonic generation and birefringence measurements. We find that the metastable state appears long after intralayer antiferromagnetic order has melted and photo-carriers have recombined. Its properties are distinct from all known states in the equilibrium phase diagram and are consistent with intralayer ferromagnetic order. Furthermore, model Hamiltonian calculations reveal that a non-thermal trajectory to this state can be accessed via photo-doping. Our results expand the search space for out-of-equilibrium electronic matter to metastable states emerging at intermediate timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Accessing the metastable magnetic state via photo-doping in Ca2RuO4.
Fig. 2: Evidence for a metastable intralayer ferromagnetic state from SHG.
Fig. 3: Broken glide-plane symmetry in the metastable state probed by birefringence polarimetry.
Fig. 4: Mechanism of the light-induced metastable state at the microscopic scale.

Similar content being viewed by others

Data availability

Data supporting findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Braden, M., André, G., Nakatsuji, S. & Maeno, Y. Crystal and magnetic structure of Ca2RuO4: magnetoelastic coupling and the metal-insulator transition. Phys. Rev. B 58, 847–861 (1998).

    ADS  Google Scholar 

  2. Zegkinoglou, I. et al. Orbital ordering transition in Ca2RuO4 observed with resonant X-ray diffraction. Phys. Rev. Lett. 95, 136401 (2005).

    ADS  Google Scholar 

  3. Khaliullin, G. Excitonic magnetism in Van Vleck–type d4 Mott insulators. Phys. Rev. Lett. 111, 197201 (2013).

    ADS  MATH  Google Scholar 

  4. Souliou, S.-M. et al. Raman scattering from Higgs mode oscillations in the two-dimensional antiferromagnet Ca2RuO4. Phys. Rev. Lett. 119, 067201 (2017).

    ADS  Google Scholar 

  5. Jain, A. et al. Higgs mode and its decay in a two-dimensional antiferromagnet. Nat. Phys. 13, 633–637 (2017).

    MATH  Google Scholar 

  6. Nomura, T. & Yamada, K. Magnetic properties of quasi-two-dimensional ruthenates studied by mean field theoretical approach. J. Phys. Soc. Jpn 69, 1856–1864 (2000).

    ADS  MATH  Google Scholar 

  7. Fang, Z. & Terakura, K. Magnetic phase diagram of Ca2−xSrxRuO4 governed by structural distortions. Phys. Rev. B 64, 020509 (2001).

    ADS  Google Scholar 

  8. Meetei, O. N., Cole, W. S., Randeria, M. & Trivedi, N. Novel magnetic state in d4 Mott insulators. Phys. Rev. B 91, 054412 (2015).

    ADS  Google Scholar 

  9. Mohapatra, S. & Singh, A. Magnetic reorientation transition in a three orbital model for Ca2RuO4—interplay of spin–orbit coupling, tetragonal distortion, and coulomb interactions. J. Phys. Condens. Matter 32, 485805 (2020).

    MATH  Google Scholar 

  10. de la Torre, A. et al. Decoupling of static and dynamic criticality in a driven Mott insulator. Commun. Phys. 5, 35 (2022).

    MATH  Google Scholar 

  11. Dean, M. P. M. et al. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4. Nat. Mater. 15, 601–605 (2016).

    ADS  MATH  Google Scholar 

  12. Harter, J. W., Niu, L., Woss, A. J. & Hsieh, D. High-speed measurement of rotational anisotropy nonlinear optical harmonic generation using position-sensitive detection. Optics Lett. 40, 4671 (2015).

    ADS  Google Scholar 

  13. Torre, Adl et al. Mirror symmetry breaking in a model insulating cuprate. Nat. Phys. 17, 777–781 (2021).

    MATH  Google Scholar 

  14. Pincini, D. et al. Persistence of antiferromagnetic order upon La substitution in the 4d4 Mott insulator Ca2RuO4. Phys. Rev. B 98, 014429 (2018).

    ADS  Google Scholar 

  15. Cao, G., McCall, S., Shepard, M., Crow, J. E. & Guertin, R. P. Magnetic and transport properties of single-crystal Ca2RuO4: relationship to superconducting Sr2RuO4. Phys. Rev. B 56, R2916–R2919 (1997).

    ADS  Google Scholar 

  16. Li, X. et al. Keldysh space control of charge dynamics in a strongly driven Mott insulator. Phys. Rev. Lett. 128, 187402 (2022).

    ADS  Google Scholar 

  17. Ning, H. et al. A coherent phonon-induced hidden quadrupolar ordered state in Ca2RuO4. Nat. Commun. 14, 8258 (2023).

    ADS  MATH  Google Scholar 

  18. Ravnik, J. et al. A time-domain phase diagram of metastable states in a charge ordered quantum material. Nat. Commun. 12, 2323 (2021).

    ADS  MATH  Google Scholar 

  19. Georges, A., Medici, L. D. & Mravlje, J. Strong correlations from Hund’s coupling. Annu. Rev. Condens. Matter Phys. 4, 137–178 (2013).

    ADS  Google Scholar 

  20. Khomskii, D. I. Review-orbital physics: glorious past, bright future. ECS J. Solid State Sci. Technol. 11, 054004 (2022).

    ADS  MATH  Google Scholar 

  21. Sun, Z. & Millis, A. J. Transient trapping into metastable states in systems with competing orders. Phys. Rev. X 10, 021028 (2020).

    Google Scholar 

  22. Cao, G. et al. Ground-state instability of the Mott insulator Ca2RuO4: impact of slight La doping on the metal-insulator transition and magnetic ordering. Phys. Rev. B 61, R5053–R5057 (2000).

    ADS  Google Scholar 

  23. Nakatsuji, S. & Maeno, Y. Quasi-two-dimensional Mott transition system Ca2−xSrxRuO4. Phys. Rev. Lett. 84, 2666–2669 (2000).

    ADS  MATH  Google Scholar 

  24. Nakamura, F. et al. From Mott insulator to ferromagnetic metal: a pressure study of Ca2RuO4. Phys. Rev. B 65, 220402 (2002).

    ADS  MATH  Google Scholar 

  25. Steffens, P. et al. High-pressure diffraction studies on Ca2RuO4. Phys. Rev. B 72, 094104 (2005).

    ADS  MATH  Google Scholar 

  26. Riccò, S. et al. In situ strain tuning of the metal-insulator-transition of Ca2RuO4 in angle-resolved photoemission experiments. Nat. Commun. 9, 4535 (2018).

    ADS  MATH  Google Scholar 

  27. Nakamura, F. et al. Electric-field-induced metal maintained by current of the Mott insulator Ca2RuO4. Sci. Rep. 3, 2536 (2013).

    MATH  Google Scholar 

  28. Zhao, H. et al. Nonequilibrium orbital transitions via applied electrical current in calcium ruthenates. Phys. Rev. B 100, 241104 (2019).

    ADS  Google Scholar 

  29. Miao, L. et al. Itinerant ferromagnetism and geometrically suppressed metal-insulator transition in epitaxial thin films of Ca2RuO4. Appl. Phys. Lett. 100, 052401 (2012).

    ADS  Google Scholar 

  30. Verma, A. et al. Picosecond volume expansion drives a later-time insulator–metal transition in a nano-textured Mott insulator. Nat. Phys. https://doi.org/10.1038/s41567-024-02396-1 (2024).

  31. Vogelgesang, S. et al. Phase ordering of charge density waves traced by ultrafast low-energy electron diffraction. Nat. Phys. 14, 184–190 (2018).

    MATH  Google Scholar 

  32. Liu, Q. M. et al. Photoinduced multistage phase transitions in Ta2NiSe5. Nat. Commun. 12, 2050 (2021).

    ADS  MATH  Google Scholar 

  33. Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014).

    ADS  MATH  Google Scholar 

  34. Ichikawa, H. et al. Transient photoinduced ‘hidden’ phase in a manganite. Nat. Mater. 10, 101–105 (2011).

    ADS  MATH  Google Scholar 

  35. Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    ADS  MATH  Google Scholar 

  36. Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159–163 (2019).

    Google Scholar 

  37. Yoshikawa, N. et al. Ultrafast switching to an insulating-like metastable state by amplitudon excitation of a charge density wave. Nat. Phys. 17, 909–914 (2021).

    MATH  Google Scholar 

  38. Duan, S. et al. Optical manipulation of electronic dimensionality in a quantum material. Nature 595, 239–244 (2021).

    ADS  MATH  Google Scholar 

  39. Han, T.-R. T. et al. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography. Sci. Adv. 1, e1400173 (2023).

    ADS  Google Scholar 

  40. Li, X. et al. Terahertz field–induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

    ADS  MATH  Google Scholar 

  41. Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    ADS  MATH  Google Scholar 

  42. Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature 496, 69–73 (2013).

    ADS  MATH  Google Scholar 

  43. Zhang, J. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nat. Mater. 15, 956–960 (2016).

    ADS  MATH  Google Scholar 

  44. Disa, A. S. et al. Photo-induced high-temperature ferromagnetism in YTiO3. Nature 617, 73–78 (2023).

    ADS  Google Scholar 

  45. Afanasiev, D. et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20, 607–611 (2021).

    ADS  MATH  Google Scholar 

  46. Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727–731 (2009).

    MATH  Google Scholar 

  47. Sie, E. J. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    ADS  MATH  Google Scholar 

  48. Zhang, M. Y. et al. Light-induced subpicosecond lattice symmetry switch in MoTe2. Phys. Rev. X 9, 021036 (2019).

    Google Scholar 

  49. Ning, H. et al. Light-induced Weyl semiconductor-to-metal transition mediated by Peierls instability. Phys. Rev. B 106, 205118 (2022).

    ADS  Google Scholar 

  50. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    ADS  MATH  Google Scholar 

  51. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    ADS  MATH  Google Scholar 

  52. Shan, J.-Y. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

    ADS  MATH  Google Scholar 

  53. Zhou, S. et al. Pseudospin-selective Floquet band engineering in black phosphorus. Nature 614, 75–80 (2023).

    ADS  MATH  Google Scholar 

  54. Afanasiev, D. et al. Controlling the anisotropy of a van der Waals antiferromagnet with light. Sci. Adv. 7, eabf3096 (2021).

    ADS  MATH  Google Scholar 

  55. Qi, T. F., Korneta, O. B., Parkin, S., Hu, J. & Cao, G. Magnetic and orbital orders coupled to negative thermal expansion in Mott insulators Ca2Ru1−xMxO4 (M = Mn and Fe). Phys. Rev. B 85, 165143 (2012).

    ADS  Google Scholar 

  56. Seyler, K. L. et al. Spin-orbit-enhanced magnetic surface second-harmonic generation in Sr2IrO4. Phys. Rev. B 102, 201113 (2020).

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

We thank E. Demler, A. Millis, G. Khaliullin and W. Liu for useful discussions. D.H. acknowledges support for instrumentation and theory from the Institute for Quantum Information and Matter (IQIM), an NSF Physics Frontiers Center (grant number PHY-2317110). Optical spectroscopy measurements were funded in part by the Gordon and Betty Moore Foundation through grant number GBMF11564 to Caltech to support the work of D.H. G.R. acknowledges the support of the Simons Foundation, ARO MURI grant number W911NF-16-1- 0361 and the Institute of Quantum Information and Matter (grant number PHY-2317110). X.L. acknowledges support from the Caltech Postdoctoral Prize Fellowship and the Singapore National Research Foundation under award number NRF-NRFF16-2024-0008. G.C. acknowledges support from the National Science Foundation via grant number DMR 2204811. I.E. acknowledges support from the Simons Foundation and the IQIM.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and D.H. conceived the experiment. X.L., Y.H. and C.B. performed the RA-SHG and B-field-induced SHG experiments. X.L. and Y.L. performed birefringence polarimetry experiments. H.N. contributed to interpreting the lattice SHG data. J.-Y.S. and K.S. developed the RA-SHG set-up and adapted it for magnetic SHG measurements. K.S. made the magnetic rotator. I.E., G.R. and X.L. developed the theoretical interpretation. H.Z. and G.C. synthesized and characterized the samples. D.H. supervised the project. X.L. and D.H. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to David Hsieh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Andrej Singer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Table 1, Sections 1–12 and References.

Source data

Source Data Fig. 1

Source data for Fig. 1c–e.

Source Data Fig. 2

Source data for Fig. 2b–f.

Source Data Fig. 3

Source data for Fig. 3b–d.

Source Data Fig. 4

Source data for Fig. 4c–e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Esin, I., Han, Y. et al. Time-hidden magnetic order in a multi-orbital Mott insulator. Nat. Phys. 21, 451–457 (2025). https://doi.org/10.1038/s41567-024-02752-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02752-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing