Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An electronic microemulsion phase emerging from a quantum crystal-to-liquid transition

Abstract

Strongly interacting electronic systems often exhibit a complicated phase diagram that results from the competition between different quantum ground states. One feature of these phase diagrams is the emergence of microemulsion phases, where regions of different phases self-organize across multiple length scales. The experimental characterization of these microemulsions can pose considerable challenges, as the long-range Coulomb interaction microscopically mingles with the competing states. Here we observe the signatures of the microemulsion between an electronic Wigner crystal and an electron liquid in a MoSe2 monolayer using cryogenic reflectance and magneto-optical spectroscopy. We find that the transition into this microemulsion state is marked by anomalies in exciton reflectance, spin susceptibility and umklapp scattering, establishing it as a distinct phase of electronic matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two-dimensional electron phases and exciton spectroscopy.
Fig. 2: Fermi-liquid and Wigner-crystal magnetism.
Fig. 3: Quantum melting of a Wigner crystal.
Fig. 4: Phase diagram as a function of electron density and temperature.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data are available from the corresponding authors upon reasonable request.

References

  1. Spivak, B. Phase separation in the two-dimensional electron liquid in MOSFET’s. Phys. Rev. B 67, 125205 (2003).

    ADS  Google Scholar 

  2. Spivak, B. & Kivelson, S. A. Phases intermediate between a two-dimensional electron liquid and Wigner crystal. Phys. Rev. B 70, 155114 (2004).

    ADS  Google Scholar 

  3. Jamei, R., Kivelson, S. & Spivak, B. Universal aspects of Coulomb-frustrated phase separation. Phys. Rev. Lett. 94, 056805 (2005).

    ADS  Google Scholar 

  4. Lorenzana, J., Castellani, C. & Castro, C. D. Phase separation frustrated by the long-range Coulomb interaction. I. Theory. Phys. Rev. B 64, 235127 (2001).

    ADS  Google Scholar 

  5. Lorenzana, J., Castellani, C. & Di Castro, C. Phase separation frustrated by the long-range Coulomb interaction. II. Phys. Rev. B 64, 235128 (2001).

    ADS  Google Scholar 

  6. Ortix, C., Lorenzana, J. & Di Castro, C. Frustrated phase separation in two-dimensional charged systems. Phys. Rev. B 73, 245117 (2006).

    ADS  Google Scholar 

  7. Spivak, B. & Kivelson, S. A. Transport in two dimensional electronic micro-emulsions. Ann. Phys. 321, 2071–2115 (2006).

    ADS  Google Scholar 

  8. Emery, V. J. & Kivelson, S. A. Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597–621 (1993).

    ADS  Google Scholar 

  9. Fäth, M. et al. Spatially inhomogeneous metal-insulator transition in doped manganites. Science 285, 1540–1542 (1999).

    Google Scholar 

  10. Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1–153 (2001).

    ADS  Google Scholar 

  11. Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    ADS  Google Scholar 

  12. Skinner, B. Chemical potential and compressibility of quantum Hall bilayer excitons. Phys. Rev. B 93, 085436 (2016).

    ADS  Google Scholar 

  13. Wigner, E. On the interaction of electrons in metals. Phys. Rev. 46, 1002–1011 (1934).

    ADS  Google Scholar 

  14. Drummond, N. D. & Needs, R. J. Phase diagram of the low-density two-dimensional homogeneous electron gas. Phys. Rev. Lett. 102, 126402 (2009).

    ADS  Google Scholar 

  15. Kravchenko, S. V., Kravchenko, G. V., Furneaux, J. E., Pudalov, V. M. & D’Iorio, M. Possible metal-insulator transition at B = 0 in two dimensions. Phys. Rev. B 50, 8039–8042 (1994).

    ADS  Google Scholar 

  16. Yoon, J., Li, C. C., Shahar, D., Tsui, D. C. & Shayegan, M. Wigner crystallization and metal-insulator transition of two-dimensional holes in GaAs at B = 0. Phys. Rev. Lett. 82, 1744–1747 (1999).

    ADS  Google Scholar 

  17. Kravchenko, S. V. & Sarachik, M. P. Metal–insulator transition in two-dimensional electron systems. Rep. Prog. Phys. 67, 1–44 (2004).

    ADS  Google Scholar 

  18. Shashkin, A. A. & Kravchenko, S. V. Recent developments in the field of the metal-insulator transition in two dimensions. Appl. Sci. 9, 1169 (2019).

    Google Scholar 

  19. Hossain, M. S. et al. Anisotropic two-dimensional disordered Wigner solid. Phys. Rev. Lett. 129, 036601 (2022).

    ADS  Google Scholar 

  20. Falson, J. et al. Competing correlated states around the zero-field Wigner crystallization transition of electrons in two dimensions. Nat. Mater. 21, 311–316 (2022).

    ADS  Google Scholar 

  21. Ahn, S. & Das Sarma, S. Density-tuned effective metal-insulator transitions in two-dimensional semiconductor layers: Anderson localization or Wigner crystallization. Physical Review B 107, 195435 (2023).

    ADS  Google Scholar 

  22. Smoleński, T. et al. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    ADS  Google Scholar 

  23. Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

    ADS  Google Scholar 

  24. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    ADS  Google Scholar 

  25. Back, P. et al. Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer MoSe2. Phys. Rev. Lett. 118, 237404 (2017).

    ADS  Google Scholar 

  26. Efimkin, D. K., Laird, E. K., Levinsen, J., Parish, M. M. & MacDonald, A. H. Electron-exciton interactions in the exciton-polaron problem. Phys. Rev. B 103, 075417 (2021).

    ADS  Google Scholar 

  27. Attaccalite, C., Moroni, S., Gori-Giorgi, P. & Bachelet, G. B. Correlation energy and spin polarization in the 2D electron gas. Phys. Rev. Lett. 88, 256601 (2002).

    ADS  Google Scholar 

  28. Knörzer, J. et al. Wigner crystals in two-dimensional transition-metal dichalcogenides: spin physics and readout. Phys. Rev. B 101, 125101 (2020).

    ADS  Google Scholar 

  29. Yarlagadda, S. & Giuliani, G. F. Spin susceptibility in a two-dimensional electron gas. Phys. Rev. B 40, 5432–5440 (1989).

    ADS  Google Scholar 

  30. Lifshitz, E. M. & Pitaevskii, L. P. Statistical Physics: Theory of the Condensed State (Elsevier Science, 2013).

  31. Chakravarty, S., Kivelson, S., Nayak, C. & Voelker, K. Wigner glass, spin liquids and the metal-insulator transition. Philos. Mag. B 79, 859–868 (1999).

    ADS  Google Scholar 

  32. Kim, K.-S., Murthy, C., Pandey, A. & Kivelson, S. A. Interstitial-induced ferromagnetism in a two-dimensional Wigner crystal. Phys. Rev. Lett. 129, 227202 (2022).

    ADS  MathSciNet  Google Scholar 

  33. Pomeranchuk, I. On the theory of liquid 3-He. Zh. Eksp. Teor. Fiz. 20, 919–926 (1950).

    Google Scholar 

  34. Saito, Y. et al. Isospin Pomeranchuk effect in twisted bilayer graphene. Nature 592, 220–224 (2021).

    ADS  Google Scholar 

  35. Rozen, A. et al. Entropic evidence for a Pomeranchuk effect in magic-angle graphene. Nature 592, 214–219 (2021).

    ADS  Google Scholar 

  36. Clark, B. K., Casula, M. & Ceperley, D. M. Hexatic and mesoscopic phases in a 2D quantum Coulomb system. Phys. Rev. Lett. 103, 055701 (2009).

    ADS  Google Scholar 

  37. Chui, S. T. & Tanatar, B. Impurity effect on the two-dimensional-electron fluid-solid transition in zero field. Phys. Rev. Lett. 74, 458–461 (1995).

    ADS  Google Scholar 

  38. Joy, S. & Skinner, B. Upper bound on the window of density occupied by microemulsion phases in two-dimensional electron systems. Phys. Rev. B 108, L241110 (2023).

    ADS  Google Scholar 

  39. Pudalov, V. M., Kuntsevich, A. Y., Gershenson, M. E., Burmistrov, I. S. & Reznikov, M. Probing spin susceptibility of a correlated two-dimensional electron system by transport and magnetization measurements. Phys. Rev. B 98, 155109 (2018).

    ADS  Google Scholar 

  40. Oganesyan, V., Kivelson, S. A. & Fradkin, E. Quantum theory of a nematic Fermi fluid. Phys. Rev. B 64, 195109 (2001).

    ADS  Google Scholar 

  41. Chowdhury, D., Orenstein, J., Sachdev, S. & Senthil, T. Phase transition beneath the superconducting dome in BaFe2(As1−xPx)2. Phys. Rev. B 92, 081113 (2015).

    ADS  Google Scholar 

  42. Kagan, M. Y., Kugel, K. I. & Rakhmanov, A. L. Electronic phase separation: recent progress in the old problem. Phys. Rep. 916, 1–105 (2021).

    ADS  Google Scholar 

  43. McGarrigle, E. C., Delaney, K. T., Balents, L. & Fredrickson, G. H. Emergence of a spin microemulsion in spin-orbit coupled Bose–Einstein condensates. Phys. Rev. Lett. 131, 173403 (2023).

    ADS  Google Scholar 

  44. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    ADS  Google Scholar 

  45. Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    ADS  Google Scholar 

  46. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    ADS  Google Scholar 

  47. Skinner, B. & Shklovskii, B. I. Anomalously large capacitance of a plane capacitor with a two-dimensional electron gas. Phys. Rev. B 82, 155111 (2010).

    ADS  Google Scholar 

  48. Li, T. et al. Charge-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 16, 1068–1072 (2021).

    ADS  Google Scholar 

  49. Xiang, Z. et al. Quantum melting of a disordered Wigner solid. Preprint at https://arxiv.org/abs/2402.05456 (2024).

  50. Zondiner, U. et al. Cascade of phase transitions and Dirac revivals in magic-angle graphene. Nature 582, 203–208 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with S. Kivelson, S. Das Sarma, A. Imamoglu, T. Smolenski, N. Leisgang and A. A. Zibrov. We thank T. Smolenski for sharing some of his unpublished data with us. We acknowledge support from AFOSR (FA9550-21-1-0216), the DoD Vannevar Bush Faculty Fellowship (N00014-16-1-2825 for H.P. and N00014-18-1-2877 for P.K.), NSF CUA (PHY-1125846 for H.P., E.D. and M.D.L.), Samsung Electronics (for H.P. and P.K.), NSF (PHY-1506284 for H.P. and M.D.L. and DGE-1745303 for E.B.), AFOSR MURI (FA9550-17-1-0002), ARL (W911NF1520067 for H.P. and M.D.L.) and DOE (DE-SC0020115 for H.P. and M.D.L. and DE-SC0022885 for Y.Z.). E.D. acknowledges support by the SNSF project no. 200021_212899. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant nos 19H05790, 20H00354 and 21H05233). The Flatiron Institute is a division of the Simons Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.P. and E.D. conceived the project. J.S., J.W., G.S., Y.Z. and E.B. fabricated the samples and designed and performed the experiments. I.E. and P.A.V. performed calculations. I.E., P.A.V., Y.Y., M.A.M., S.Z., A.J.M. and E.D. contributed to theoretical descriptions. J.S., J.W., I.E. and P.A.V analysed the data. T.T. and K.W. provided hBN samples. J.S., J.W., I.E., P.A.V., E.D. and H.P. wrote the paper with extensive input from the other authors. H.P., E.D., P.K. and M.D.L. supervised the project.

Corresponding authors

Correspondence to Eugene Demler or Hongkun Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Optical image of device 1 and device 2.

a-b, Optical microscope image of (a) device D1 and (b) device D2. The MoSe2 monolayer regions are indicated by white dashed lines, and the solid red lines show the outline of the bottom gate electrode: (a) Pd/Au metal and (b) a few-layer graphite.

Extended Data Fig. 2 Umklapp features in another spot in the original device, D1, and in another device, D2.

Color map of the derivative of reflectance contrast spectra with respect to electron density at a base lattice temperature of 16 mK. A Lorentzian fitted exciton/RP peak was subtracted to emphasize the Umklapp features. The green line represents the fitted exciton/RP resonance energy, and the black dashed line indicates the expected resonance energy from umklapp scattering of excitons. Umklapp features in D1 (another spot from that shown in main Fig. 1) and in another device, D2, are shown in (a) and (b), respectively. Color map of the derivative of reflectance contrast spectra with respect to electron density, without subtracting the fitted exciton/RP Lorentzian in another spot in D1 (c) and in another device D2 (d).

Extended Data Fig. 3 Electron temperature estimation at low density under different incident light powers.

a-d, We plot the signal \(\widetilde{M}\) at the electron density of 0.30×1012 cm-2 under varying light powers: (a) 60 fW, (b) 320 fW, (c) 3.3 pW, and (d) 32 pW. From a fit using the Brillouin function, we estimate the electron temperature. The estimated electron temperatures are: (a) 80 mK, (b) 130 mK, (c) 180 mK, and (d) 350 mK.

Extended Data Fig. 4 Anomalies in the main excitonic properties.

a, Near the density of \({n}_{* }\) = 0.9×1012 cm-2, a noticeable discontinuity in the derivative of the exciton/RP resonance energy with respect to electron density, \(d{E}_{X}/{dn}\) is observed, signifying a change in the slope of the exciton/RP resonance energy. b, A pronounced slope change of the oscillator strength is observed near the density of \({n}_{* }\) = 0.9×1012 cm-2. Reflectance contrast spectra measurements were performed under a light power of 0.7 nW at a base lattice temperature of 16 mK. The black arrows on the top x-axis and black dashed lines indicate the characteristic densities, \({n}_{{\rm{WC}}}\) and \({n}_{* }\). Linear decrease of the oscillator strength upon doping is represented by the grey dashed line. The measured excitonic properties are a convolution of the intrinsic properties of its electronic environment and the details of how the exciton couples to the electrons. In particular, the exciton is sensitive to the electronic compressibility. Non-analytic behavior of the compressibility at the microemulsion-liquid transition should therefore be expected to lead to rapid changes in the excitonic properties.

Extended Data Fig. 5 Reduced spin susceptibility as a function of electron density at different temperatures.

a-f, The Curie susceptibilities in the Wigner crystal regime are indicated by grey dashed lines. The spin susceptibility between \({n}_{{\rm{WC}}}\) and \({n}_{* }\) aligns well with the colored dashed lines, representing intermediate density ranges that follow the lever rule. However, notable deviations from this linear behavior are observed in the vicinity of \({n}_{{\rm{WC}}}\) and \({n}_{* }\), signifying interface effects between the crystal and liquid regions. The boundaries of these density ranges are delineated by black vertical dashed lines, with these regions further emphasized by black arrows. The density ranges are quantified by the error bars in Fig. 4 of the main text. The determination of the transition near \({n}_{* }\) and the density ranges are described in Fig. S19.

Extended Data Fig. 6 Magnetic field dependence of n*.

a, Derivative of fitted exciton/RP resonance energy with respect to electron density for left circularly polarized reflectance contrast at various magnetic fields. The black dotted line marks the electron density (\({n}_{* }\)) that corresponds to the center of the jump in \(d{E}_{X}/{dn}\) at 9 T. b, Color maps showing left circularly polarized differential reflectance contrast are plotted as a function of electron density at various magnetic fields. The white dotted line marks the electron density at which the discontinuity (\({n}_{* }\)) occurs at 9 T.

Supplementary information

Supplementary Information

Supplementary Sections 1–10 and Figs. 1–19.

Source data

Source Data Fig. 1

Fig. 1e–i.

Source Data Fig. 2

Fig. 2a–d.

Source Data Fig. 3

Fig. 3a–e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, J., Wang, J., Esterlis, I. et al. An electronic microemulsion phase emerging from a quantum crystal-to-liquid transition. Nat. Phys. 21, 437–443 (2025). https://doi.org/10.1038/s41567-024-02759-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02759-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing