Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unconventional gapping behaviour in a kagome superconductor

Abstract

Determining the types of superconducting order in quantum materials is a challenge. This is especially true when several degrees of freedom contribute to the fermiology and when superconductivity competes with other symmetry-breaking orders. One example is the kagome-lattice superconductor CsV3Sb5, in which multiband superconductivity coexists with a charge order that substantially reduces the space group symmetries of the compound. Here we demonstrate the presence of two superconducting regimes in CsV3Sb5 that are characterized by distinct transport and thermodynamic properties. Our results reveal a substantial quasiparticle weight in a high-temperature regime. At lower temperatures, this weight is removed through the formation of a second gap. We argue that the band with a gap opening at lower temperatures continues to host low-energy quasiparticles, possibly due to the nodal structure of the gap. Taken together, our results present evidence for band-selective superconductivity with uncoupled superconducting gaps.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observation of two-dimensional and twofold-symmetric superconductivity in CsV3Sb5 visualized through its upper critical field.
Fig. 2: Evidence for two distinct superconducting regimes.
Fig. 3: Thermodynamic and thermal transport evidence for two superconducting regimes.
Fig. 4: Angular dependence of the in-plane thermal conductivity within regimes I and II.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper. Additional data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Hunte, F. et al. Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields. Nature 453, 903–905 (2008).

    Article  ADS  Google Scholar 

  2. Yuan, H. Q. et al. Nearly isotropic superconductivity in (Ba,K)Fe2As2. Nature 457, 565–568 (2009).

    Article  ADS  Google Scholar 

  3. Prozorov, R. & Kogan, V. G. London penetration depth in iron-based superconductors. Rep. Prog. Phys. 74, 124505 (2011).

    Article  ADS  Google Scholar 

  4. Mu, G. et al. Low temperature specific heat of the hole-doped Ba0.6K0.4Fe2As2 single crystals. Phys. Rev. B 79, 174501 (2009).

    Article  ADS  Google Scholar 

  5. Fisher, R. A. et al. Specific heat of Mg11B2. Phys. C: Supercond. 385, 180–191 (2003).

    Article  ADS  Google Scholar 

  6. Ortiz, B. R. et al. New kagome prototype materials: discovery of KV3Sb5, RbV3Sb5, and CsV3Sb5. Phys. Rev. Mater. 3, 094407 (2019).

    Article  Google Scholar 

  7. Ortiz, B. R. et al. CsV3Sb5: a Z2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  8. Khasanov, R. et al. Time-reversal symmetry broken by charge order in CsV3Sb5. Phys. Rev. Res. 4, 023244 (2022).

    Article  Google Scholar 

  9. Shan, Z. et al. Muon spin relaxation study of the layered kagome superconductor CsV3Sb5. Phys. Rev. Res. 4, 033145 (2022).

    Article  Google Scholar 

  10. Mu, C. et al. S-wave superconductivity in kagome metal CsV3Sb5 revealed by 121/123Sb NQR and 51V NMR measurements. Chin. Phys. Lett. 38, 077402 (2021).

    Article  ADS  Google Scholar 

  11. Duan, W. et al. Nodeless superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astron. 64, 107462 (2021).

    Article  ADS  Google Scholar 

  12. Gupta, R. et al. Microscopic evidence for anisotropic multigap superconductivity in the CsV3Sb5 kagome superconductor. npj Quantum Mater. 7, 49 (2022).

    Article  ADS  Google Scholar 

  13. Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    Article  ADS  Google Scholar 

  14. Xu, H.-S. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor CsV3Sb5. Phys. Rev. Lett. 127, 187004 (2021).

    Article  ADS  Google Scholar 

  15. Deng, H. et al. Chiral kagome superconductivity modulations with residual Fermi arcs. Nature 632, 775–781 (2024).

    Article  Google Scholar 

  16. Xiang, Y. et al. Twofold symmetry of c-axis resistivity in topological kagome superconductor CsV3Sb5 with in-plane rotating magnetic field. Nat. Commun. 12, 6727 (2021).

    Article  ADS  Google Scholar 

  17. Nie, L. et al. Charge-density-wave-driven electronic nematicity in a kagome superconductor. Nature 604, 59–64 (2022).

    Article  ADS  Google Scholar 

  18. Zhong, Y. et al. Nodeless electron pairing in CsV3Sb5-derived kagome superconductors. Nature 617, 488–492 (2023).

    Article  ADS  Google Scholar 

  19. Guguchia, Z. et al. Tunable unconventional kagome superconductivity in charge ordered RbV3Sb5 and KV3Sb5. Nat. Commun. 14, 153 (2023).

    Article  ADS  Google Scholar 

  20. Wu, X. et al. Nature of unconventional pairing in the kagome superconductors AV3Sb5 (A = K, Rb, Cs). Phys. Rev. Lett. 127, 177001 (2021).

    Article  ADS  Google Scholar 

  21. Tazai, R., Yamakawa, Y., Onari, S. & Kontani, H. Mechanism of exotic density-wave and beyond-Migdal unconventional superconductivity in kagome metal AV3Sb5 (A = K, Rb, Cs). Sci. Adv. 8, eabl4108 (2022).

    Article  ADS  Google Scholar 

  22. Lou, R. et al. Charge-density-wave-induced peak-dip-hump structure and the multiband superconductivity in a kagome superconductor CsV3Sb5. Phys. Rev. Lett. 128, 036402 (2022).

    Article  ADS  Google Scholar 

  23. Ritz et al. Superconductivity from orbital-selective electron-phonon coupling in AV3Sb5. Phys. Rev. B 108, L100510 (2023).

    Article  ADS  Google Scholar 

  24. Sprau, P. O. et al. Discovery of orbital-selective Cooper pairing in FeSe. Science 357, 75 (2017).

    Article  ADS  Google Scholar 

  25. Tinkham, M. Introduction to Superconductivity 2nd edn (McGraw-Hill, 1996).

  26. Hess, H. F. et al. Scanning-tunneling-microscope observation of the Abrikosov flux lattice and the density of states near and inside a fluxoid. Phys. Rev. Lett. 62, 214–216 (1989).

    Article  ADS  Google Scholar 

  27. Chandrasekhar, B. S. A note on the maximum critical field of high-field superconductors. Appl. Phys. Lett. 1, 7–8 (1962).

    Article  ADS  Google Scholar 

  28. Clogston, A. M. Upper limit for critical field in hard superconductors. Phys. Rev. Lett. 9, 266–267 (1962).

    Article  ADS  Google Scholar 

  29. Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  30. Saito, Y. et al. Superconductivity protected by spin–valley locking in ion-gated MoS2. Nat. Phys. 12, 144–149 (2016).

    Article  Google Scholar 

  31. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  Google Scholar 

  32. Zhang, Q. et al. Ultrahigh supercurrent density in a two-dimensional topological material. Phys. Rev. Mater. 7, L071801 (2023).

    Article  ADS  Google Scholar 

  33. Cao, Y. et al. Pauli-limit violation and re-entrant superconductivity in moiré graphene. Nature 595, 526–531 (2021).

    Article  ADS  Google Scholar 

  34. Ni, S. et al. Anisotropic superconducting properties of kagome metal CsV3Sb5. Chin. Phys. Lett. 38, 057403 (2021).

    Article  ADS  Google Scholar 

  35. Khim, S. et al. Field-induced transition within the superconducting state of CeRh2As2. Science 373, 1012 (2021).

    Article  ADS  Google Scholar 

  36. Wan, P. et al. Orbital Fulde–Ferrell–Larkin–Ovchinnikov state in an Ising superconductor. Nature 619, 46 (2023).

    Article  ADS  Google Scholar 

  37. Klemm, R. A., Luther, A. & Beasley, M. R. Theory of the upper critical field in layered superconductors. Phys. Rev. B 12, 877 (1975).

    Article  ADS  Google Scholar 

  38. Bouquet, F. et al. Phenomenological two-gap model for the specific heat of MgB2. Europhys. Lett. 56, 856 (2001).

    Article  ADS  Google Scholar 

  39. Gurevich, A. et al. Very high upper critical fields in MgB2 produced by selective tuning of impurity scattering. Supercond. Sci. Technol. 17, 278 (2004).

    Article  ADS  Google Scholar 

  40. Matsuda, Y., Izawa, K. & Vekhter, I. Nodal structure of unconventional superconductors probed by angle resolved thermal transport measurements. J. Phys.: Condens. Matter 18, R705 (2006).

    ADS  Google Scholar 

  41. Volovik, G. E. Superconductivity with lines of GAP nodes: density of states in the vortex. JETP Lett. 58, 469 (1993).

    ADS  Google Scholar 

  42. Kubert, C. & Hirschfeld, P. J. Vortex contribution to specific heat of dirty d-wave superconductors: breakdown of scaling. Solid State Commun. 105, 459 (1998).

    Article  ADS  Google Scholar 

  43. Aubin, H., Behnia, K., Ribault, M., Gagnon, R. & Taillefer, L. Angular position of nodes in the superconducting gap of YBCO. Phys. Rev. Lett. 78, 2624 (1997).

    Article  ADS  Google Scholar 

  44. Suderow, H., Aubin, H., Behnia, K. & Huxley, A. Quasi-particle vortex scattering in UPt3. Phys. Lett. A 234, 64–68 (1997).

    Article  ADS  Google Scholar 

  45. Izawa, K. et al. Superconducting gap structure of spin-triplet superconductor Sr2RuO4 studied by thermal conductivity. Phys. Rev. Lett. 86, 2653 (2001).

    Article  ADS  Google Scholar 

  46. Shakeripour, H., Petrovic, C. & Taillefer, L. Heat transport as a probe of superconducting gap structure. New J. Phys. 11, 055065 (2009).

    Article  ADS  Google Scholar 

  47. Mielke, C. III et al. Time-reversal symmetry-breaking charge order in a kagome superconductor. Nature 602, 245–250 (2022).

    Article  ADS  Google Scholar 

  48. Guo, C. et al. Switchable chiral transport in charge-ordered kagome metal CsV3Sb5. Nature 611, 461–466 (2022).

    Article  ADS  Google Scholar 

  49. Roppongi, M. et al. Bulk evidence of anisotropic s-wave pairing with no sign change in the kagome superconductor CsV3Sb5. Nat. Commun. 14, 667 (2023).

    Article  ADS  Google Scholar 

  50. Wang, Z. et al. Electronic nature of chiral charge order in the kagome superconductor CsV3Sb5. Phys. Rev. B 104, 075148 (2021).

    Article  ADS  Google Scholar 

  51. Telford, E. J. et al. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 21, 754–760 (2022).

    Article  ADS  Google Scholar 

  52. Bing, D. et al. Optical contrast for identifying the thickness of two-dimensional materials. Opt. Commun. 406, 128–138 (2018).

    Article  ADS  Google Scholar 

  53. Gurevich, A. Upper critical field and the Fulde–Ferrel–Larkin–Ovchinnikov transition in multiband superconductors. Phys. Rev. B 82, 184504 (2010).

    Article  ADS  Google Scholar 

  54. Prozorov, R. & Kogan, V. G. Effective demagnetizing factors of diamagnetic samples of various shapes. Phys. Rev. Appl. 10, 014030 (2018).

    Article  ADS  Google Scholar 

  55. Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432 (1998).

    Article  ADS  Google Scholar 

  56. Tagliati, S., Krasnov, V. M. & Rydh, A. Differential membrane-based nanocalorimeter for high-resolution measurements of low-temperature specific heat. Rev. Sci. Instrum. 83, 055107 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.Z.H.’s group acknowledges primary support from the US Department of Energy, Office of Science, National Quantum Information Science Research Centers, the Quantum Science Center (at ORNL) and Princeton University; STM and transport instrumentation support from the Gordon and Betty Moore Foundation (Grant No. GBMF9461); and support from the US DOE under the Basic Energy Sciences programme (Grant No. DOE/BES DE-FG-02-05ER46200) for the theoretical work and sample characterization, including ARPES. M.Z.H. acknowledges partial support from the US DOE under the Basic Energy Sciences programme (grant number DOE/BES DE-FG-02-05ER46200) for the sample characterization based on advanced spectroscopy work. Sample growth was supported by the National Key Research and Development Program of China (Grant Nos. 2020YFA0308800 and 2022YFA1403400), the National Science Foundation of China (Grant No. 92065109) and the Beijing Natural Science Foundation (Grant Nos Z210006 and Z190006). Z.W. thanks the Analysis and Testing Center at BIT for assistance with facility support. L.B. is supported by DOE-BES (Award DE-SC0002613). The National High Magnetic Field Laboratory (NHMFL) acknowledges support from the US-NSF Cooperative agreement (Grant No. DMR-DMR-2128556) and the state of Florida. We thank T. Murphy, G. Jones, L. Jiao, D. Graf and R. Nowell at NHMFL for technical support. B.L. and M.H.F. are supported by the Swiss National Science Foundation (SNSF) through Division II (number 207908). B.L. additionally acknowledges funding from the Forschungskredit of the University of Zurich (Grant Nr. FK-24-090).

Author information

Authors and Affiliations

Authors

Contributions

The electrical transport experiments were performed by M.S.H. and Q.Z. The thermal transport work was performed by E.S.C., M.S.H. and Q.Z. The heat capacity measurements were performed by D.R. in consultation with A.F.B. and L.B. Crystals were grown by Y.L., J.L., Z.W. and Y.Y. The theoretical calculations were performed by B.L., M.H.F. and T.N. Figure development and writing of the paper were undertaken by M.S.H., L.B., M.H.F., T.N. and M.Z.H. M.Z.H. supervised the project. All authors discussed the results, interpretation and conclusion.

Corresponding authors

Correspondence to Md Shafayat Hossain, Zhiwei Wang, Titus Neupert, Luis Balicas or M. Zahid Hasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Hiroshi Kontani and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–IX and Figs. 1–15.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.S., Zhang, Q., Choi, E.S. et al. Unconventional gapping behaviour in a kagome superconductor. Nat. Phys. 21, 556–563 (2025). https://doi.org/10.1038/s41567-024-02770-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-024-02770-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing