Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local minima in quantum systems

Abstract

Finding ground states of quantum many-body systems is known to be hard for both classical and quantum computers. Consequently, when a quantum system is cooled in a low-temperature thermal bath, the ground state cannot always be found efficiently. Instead, the system may become trapped in a local minimum of the energy. In this work, we study the problem of finding local minima in quantum systems under thermal perturbations. Although local minima are much easier to find than ground states, we show that finding a local minimum is hard on classical computers, even when the task is merely to output a single-qubit observable at any local minimum. By contrast, we prove that a quantum computer can always find a local minimum efficiently using a thermal gradient descent algorithm that mimics natural cooling processes. To establish the classical hardness of finding local minima, we construct a family of two-dimensional Hamiltonians such that any problem solvable by polynomial-time quantum algorithms can be reduced to finding local minima of these Hamiltonians. Therefore, cooling systems to local minima is universal for quantum computation and, assuming that quantum computation is more powerful than classical computation, finding local minima is classically hard but quantumly easy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of energy landscapes.

Similar content being viewed by others

Data availability

We did not analyse or generate any datasets because our work proceeds within a theoretical and mathematical approach.

Code availability

We do not have any computer code because our work proceeds within a theoretical and mathematical approach. All algorithms are analysed mathematically in the Supplementary Information.

References

  1. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  2. Kohn, W. Nobel lecture: electronic structure of matter—wave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1999).

    Article  ADS  Google Scholar 

  3. Ceperley, D. & Alder, B. Quantum Monte Carlo. Science 231, 555–560 (1986).

    Article  ADS  Google Scholar 

  4. Sandvik, A. W. Stochastic series expansion method with operator-loop update. Phys. Rev. B 59, R14157–R14160 (1999).

    Article  ADS  Google Scholar 

  5. Becca, F. & Sorella, S. Quantum Monte Carlo Approaches for Correlated Systems (Cambridge Univ. Press, 2017).

  6. White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).

    Article  ADS  Google Scholar 

  7. White, S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345–10356 (1993).

    Article  ADS  Google Scholar 

  8. Perez-Garcia, D., Verstraete, F., Wolf, M. M. & Cirac, J. I. Matrix product state representations. Quantum Inf. Comput. 7, 401–430 (2007).

    MathSciNet  Google Scholar 

  9. Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).

    Article  ADS  Google Scholar 

  10. Schollwock, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  11. Haghshenas, R., O’Rourke, M. J. & Chan, G. K.-L. Conversion of projected entangled pair states into a canonical form. Phys. Rev. B 100, 054404 (2019).

    Article  ADS  Google Scholar 

  12. Hyatt, K. & Stoudenmire, E. M. DMRG approach to optimizing two-dimensional tensor networks. Preprint at https://arxiv.org/abs/1908.08833 (2019).

  13. Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  14. Hibat-Allah, M., Ganahl, M., Hayward, L. E., Melko, R. G. & Carrasquilla, J. Recurrent neural network wave functions. Phys. Rev. Res. 2, 023358 (2020).

    Article  Google Scholar 

  15. Deng, D.-L., Li, X. & Sarma, S. D. Quantum entanglement in neural network states. Phys. Rev. X 7, 021021 (2017).

    Google Scholar 

  16. Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 1263–1272 (JMLR, 2017).

  17. Qiao, Z., Welborn, M., Anandkumar, A., Manby, F. R. & Miller, T. F. OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features. J. Chem. Phys. 153, 124111 (2020).

  18. Huang, H.-Y., Kueng, R., Torlai, G., Albert, V. V. & Preskill, J. Provably efficient machine learning for quantum many-body problems. Science https://doi.org/10.1126/science.abk3333 (2022).

  19. Lewis, L. et al. Improved machine learning algorithm for predicting ground state properties. Nat. Commun. 15, 895 (2024).

  20. Kitaev, A. Y., Shen, A. & Vyalyi, M. N. Classical and Quantum Computation (American Mathematical Society, 2002).

  21. Kempe, J., Kitaev, A. & Regev, O. The complexity of the local Hamiltonian problem. SIAM J. Comput. 35, 1070–1097 (2006).

    Article  MathSciNet  Google Scholar 

  22. Lin, L. & Tong, Y. Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers. PRX Quantum 3, 010318 (2022).

    Article  ADS  Google Scholar 

  23. Gharibian, S. & Le Gall, F. Dequantizing the quantum singular value transformation: hardness and applications to quantum chemistry and the quantum PCP conjecture. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2022) 19–32 (Association for Computing Machinery, 2022).

  24. Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at https://arxiv.org/abs/quant-ph/0001106 (2000).

  25. Temme, K., Osborne, T. J., Vollbrecht, K. G., Poulin, D. & Verstraete, F. Quantum Metropolis sampling. Nature 471, 87–90 (2011).

    Article  ADS  Google Scholar 

  26. Rall, P., Wang, C. & Wocjan, P. Thermal state preparation via rounding promises. Quantum 7, 1132 (2023).

    Article  Google Scholar 

  27. Chen, C.-F., Kastoryano, M. J., Brandão, F. G. S. L. & Gilyén, A. Quantum thermal state preparation. Preprint at https://arxiv.org/abs/2303.18224 (2023).

  28. Ding, Z., Chen, C.-F. & Lin, L. Single-ancilla ground state preparation via Lindbladians. Phys. Rev. Res. 6, 033147(2024).

  29. Chen, C.-F., Kastoryano, M. J. & Gilyén, A. An efficient and exact noncommutative quantum Gibbs sampler. Preprint at https://arxiv.org/abs/2311.09207 (2023).

  30. Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  31. Davies, E. B. Generators of dynamical semigroups. J. Funct. Anal. 34, 421–432 (1979).

    Article  MathSciNet  Google Scholar 

  32. Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).

  33. Mozgunov, E. & Lidar, D. Completely positive master equation for arbitrary driving and small level spacing. Quantum 4, 227 (2020).

    Article  Google Scholar 

  34. Nathan, F. & Rudner, M. S. Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020).

    Article  ADS  Google Scholar 

  35. Edwards, S. F. & Anderson, P. W. Theory of spin glasses. J. Phys. F 5, 965 (1975).

    Article  ADS  Google Scholar 

  36. Kirkpatrick, S. & Sherrington, D. Infinite-ranged models of spin-glasses. Phys. Rev. B 17, 4384 (1978).

    Article  ADS  Google Scholar 

  37. Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986).

    Article  ADS  Google Scholar 

  38. Mydosh, J. A. Spin Glasses: An Experimental Introduction (CRC Press, 1993).

  39. Pardalos, P. M. & Vavasis, S. A. Quadratic programming with one negative eigenvalue is np-hard. J. Glob. Optimiz. 1, 15–22 (1991).

    Article  MathSciNet  Google Scholar 

  40. Boyd, S., Boyd, S. P. & Vandenberghe, L. Convex Optimization (Cambridge Univ. Press, 2004).

  41. Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E. & Ma, T. Finding approximate local minima faster than gradient descent. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017) 1195–1199 (Association for Computing Machinery, 2017).

  42. Jin, C., Netrapalli, P. & Jordan, M.I. Accelerated gradient descent escapes saddle points faster than gradient descent. In Proc. Machine Learning Research 1042–1085 (MLR Press, 2018).

  43. Ahmadi, A. A. & Zhang, J. On the complexity of finding a local minimizer of a quadratic function over a polytope. Math. Program. 195, 783–792 (2022).

    Article  MathSciNet  Google Scholar 

  44. Davies, E. B. Quantum Theory of Open Systems (Academic Press, 1976).

  45. Redfield, A. G. The theory of relaxation processes. Adv. Magn. Opt. Reson. 1, 1–32 (1965).

  46. Terhal, B. M. & DiVincenzo, D. P. Problem of equilibration and the computation of correlation functions on a quantum computer. Phys. Rev. A 61, 022301 (2000).

    Article  ADS  Google Scholar 

  47. Chen, C.-F. & Brandao, F. G. S. L. Fast thermalization from the eigenstate thermalization hypothesis. Preprint at https://arxiv.org/abs/2112.07646 (2023).

  48. Shtanko, O. & Movassagh, R. Preparing thermal states on noiseless and noisy programmable quantum processors. Preprint at https://arxiv.org/abs/2112.14688 (2023).

  49. Gilyén, A., Chen, C.-F., Doriguello, J. F. & Kastoryano, M. J. Quantum generalizations of Glauber and Metropolis dynamics. Preprint at https://arxiv.org/abs/2405.20322 (2024).

  50. Ding, Z., Li, B. & Lin, L. Efficient quantum Gibbs samplers with Kubo–Martin–Schwinger detailed balance condition. Preprint at https://arxiv.org/abs/2404.05998 (2024).

  51. Jiang, J. & Irani, S. Quantum Metropolis sampling via weak measurement. Preprint at https://arxiv.org/abs/2406.16023 (2024).

  52. Oliveira, R. & Terhal, B. M. The complexity of quantum spin systems on a two-dimensional square lattice. Quantum Inf. Comput. 8, 900–924 (2008).

    MathSciNet  Google Scholar 

  53. Aharonov, D. et al. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37, 166–194 (2007).

    Article  MathSciNet  Google Scholar 

  54. Piddock, S. & Montanaro, A. The complexity of antiferromagnetic interactions and 2D lattices. Quantum Inf. Comput. 17, 636–672 (2017).

    MathSciNet  Google Scholar 

  55. Cubitt, T. & Montanaro, A. Complexity classification of local Hamiltonian problems. SIAM J. Comput. 45, 268–316 (2016).

    Article  MathSciNet  Google Scholar 

  56. Cubitt, T. S., Montanaro, A. & Piddock, S. Universal quantum Hamiltonians. Proc. Natl Acad. Sci. USA 115, 9497–9502 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  57. Zhou, L. & Aharonov, D. Strongly universal Hamiltonian simulators. Preprint at https://arxiv.org/abs/2102.02991 (2021).

  58. Nielsen, M. A., Dowling, M. R., Gu, M. & Doherty, A. C. Quantum computation as geometry. Science 311, 1133–1135 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  59. McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018).

    Article  ADS  Google Scholar 

  60. O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).

    Google Scholar 

  61. Grimsley, H. R., Economou, S. E., Barnes, E. & Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10, 3007 (2019).

    Article  ADS  Google Scholar 

  62. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).

    Article  Google Scholar 

  63. Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).

    Article  ADS  Google Scholar 

  64. Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009).

    Article  Google Scholar 

  65. Jordan, J., Orús, R., Vidal, G., Verstraete, F. & Cirac, J. I. Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. Phys. Rev. Lett. 101, 250602 (2008).

    Article  ADS  Google Scholar 

  66. Vanderstraeten, L., Haegeman, J., Corboz, P. & Verstraete, F. Gradient methods for variational optimization of projected entangled-pair states. Phys. Rev. B 94, 155123 (2016).

    Article  ADS  Google Scholar 

  67. Corboz, P. Variational optimization with infinite projected entangled-pair states. Phys. Rev. B 94, 035133 (2016).

    Article  ADS  Google Scholar 

  68. Landau, Z., Vazirani, U. & Vidick, T. A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians. Nat. Phys. 11, 566–569 (2015).

    Article  Google Scholar 

  69. Arad, I., Landau, Z., Vazirani, U. & Vidick, T. Rigorous RG algorithms and area laws for low energy eigenstates in 1D. Commun. Math. Phys. 356, 65–105 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  70. Abrahamsen, N. A polynomial-time algorithm for ground states of spin trees. Preprint at https://arxiv.org/abs/1907.04862 (2019).

  71. Stoudenmire, E. M. & White, S. R. Studying two-dimensional systems with the density matrix renormalization group. Annu. Rev. Condens. Matter Phys. 3, 111–128 (2012).

    Article  Google Scholar 

  72. Wu, H.-Q., Gong, S.-S. & Sheng, D. N. Randomness-induced spin-liquid-like phase in the spin-\(\frac{1}{2}{J}_{1}-{J}_{2}\) triangular Heisenberg model. Phys. Rev. B 99, 085141 (2019).

    Article  ADS  Google Scholar 

  73. Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Chiral spin liquid phase of the triangular lattice Hubbard model: a density matrix renormalization group study. Phys. Rev. X 10, 021042 (2020).

    Google Scholar 

  74. Zaletel, M. P. & Pollmann, F. Isometric tensor network states in two dimensions. Phys. Rev. Lett. 124, 037201 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  75. Deng, D.-L., Li, X. & Sarma, S. D. Machine learning topological states. Phys. Rev. B 96, 195145 (2017).

    Article  ADS  Google Scholar 

  76. Nomura, Y., Darmawan, A. S., Yamaji, Y. & Imada, M. Restricted Boltzmann machine learning for solving strongly correlated quantum systems. Phys. Rev. B 96, 205152 (2017).

    Article  ADS  Google Scholar 

  77. Choo, K., Mezzacapo, A. & Carleo, G. Fermionic neural-network states for ab-initio electronic structure. Nat. Commun. 11, 2368 (2020).

    Article  ADS  Google Scholar 

  78. Ferrari, F., Becca, F. & Carrasquilla, J. Neural Gutzwiller-projected variational wave functions. Phys. Rev. B 100, 125131 (2019).

    Article  ADS  Google Scholar 

  79. Glasser, I., Pancotti, N., August, M., Rodriguez, I. D. & Cirac, J. I. Neural-network quantum states, string-bond states, and chiral topological states. Phys. Rev. X 8, 011006 (2018).

    Google Scholar 

  80. Choo, K., Carleo, G., Regnault, N. & Neupert, T. Symmetries and many-body excitations with neural-network quantum states. Phys. Rev. Lett. 121, 167204 (2018).

    Article  ADS  Google Scholar 

  81. Vieijra, T. et al. Restricted Boltzmann machines for quantum states with non-abelian or anyonic symmetries. Phys. Rev. Lett. 124, 097201 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  82. Morawetz, S., De Vlugt, I. J. S., Carrasquilla, J. & Melko, R. G. U(1)-symmetric recurrent neural networks for quantum state reconstruction. Phys. Rev. A 104, 012401 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  83. Luo, D. et al. Gauge-invariant and anyonic-symmetric autoregressive neural network for quantum lattice models. Phys. Rev. Res. 5, 013216 (2023).

    Article  Google Scholar 

  84. Basso, J., Chen, C. F., & Dalzell, A. M. Optimizing random local Hamiltonians by dissipation. Preprint at https://arxiv.org/abs/2411.02578 (2024).

  85. Leng, J., Hickman, E., Li, J. & Wu, X. Quantum Hamiltonian descent. Preprint at https://arxiv.org/abs/2303.01471 (2023).

  86. Leng, J., Zheng, Y. & Wu, X. A quantum-classical performance separation in nonconvex optimization. Preprint at https://arxiv.org/abs/2311.00811 (2023).

  87. Chen, Z., Lu, Y., Wang, H., Liu, Y. & Li, T. Quantum Langevin dynamics for optimization. Preprint at https://arxiv.org/abs/2311.15587 (2023).

  88. Coles, P. J. et al. Thermodynamic AI and the fluctuation frontier. In 2023 IEEE International Conference on Rebooting Computing (ICRC) 1–10 (ICRC, 2023).

  89. Aifer, M. et al. Thermodynamic linear algebra. npj Unconv. Comput. 1, 13 (2024).

    Article  Google Scholar 

  90. Chen, C.-F., Huang, H.-Y., Preskill, J. & Zhou, L. Local minima in quantum systems. In Proce. 56th Annual ACM Symposium on Theory of Computing (STOC 2024) 1323–1330 (Association for Computing Machinery, 2024).

Download references

Acknowledgements

We thank A. Anshu, R. Babbush, S. Bravyi, F. Brandao, G. Chan, S. Chen, S. Choi, J. Cotler, D. Gosset, J. R. McClean and M. Soleimanifar for their valuable input. H.H. thanks P. Coles, G. Crooks and F. Sbahi for the inspiring discussions and for sharing their recent works on classical thermodynamics for AI applications88,89. Part of the manuscript was previously published as a STOC abstract90. C.C. is supported by the AWS Center for Quantum Computing internship. H.H. is supported by a Google PhD fellowship and a MediaTek Research Young Scholarship. H.H. acknowledges the visiting associate position at the Massachusetts Institute of Technology. L.Z. acknowledges funding from the Walter Burke Institute for Theoretical Physics at Caltech. J.P. acknowledges support from the United States Department of Energy Office of Science, Office of Advanced Scientific Computing Research (Grant Nos. DE-NA0003525 and DE-SC0020290), the United States Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator, and the National Science Foundation (Grant No. PHY-1733907). The Institute for Quantum Information and Matter is an NSF Physics Frontiers Center.

Author information

Authors and Affiliations

Authors

Contributions

H.H., J.P. and L.Z. conceived the study of local minima of quantum systems. H.H. and L.Z. developed the computational complexity framework and the analysis of local minima under local unitary perturbations. C.C. introduced the quantum thermodynamics aspect. C.C. and H.H. established the theoretical framework for quantum thermal gradient descent. C.C. and L.Z. proved the BQP-hardness of finding local minima under thermal perturbation. All authors contributed to the writing of the manuscript.

Corresponding authors

Correspondence to Chi-Fang Chen, Hsin-Yuan Huang, John Preskill or Leo Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Ángela Capel, Tongyang Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7 and Fig. 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CF., Huang, HY., Preskill, J. et al. Local minima in quantum systems. Nat. Phys. 21, 654–660 (2025). https://doi.org/10.1038/s41567-025-02781-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02781-4

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics