Abstract
Finding ground states of quantum many-body systems is known to be hard for both classical and quantum computers. Consequently, when a quantum system is cooled in a low-temperature thermal bath, the ground state cannot always be found efficiently. Instead, the system may become trapped in a local minimum of the energy. In this work, we study the problem of finding local minima in quantum systems under thermal perturbations. Although local minima are much easier to find than ground states, we show that finding a local minimum is hard on classical computers, even when the task is merely to output a single-qubit observable at any local minimum. By contrast, we prove that a quantum computer can always find a local minimum efficiently using a thermal gradient descent algorithm that mimics natural cooling processes. To establish the classical hardness of finding local minima, we construct a family of two-dimensional Hamiltonians such that any problem solvable by polynomial-time quantum algorithms can be reduced to finding local minima of these Hamiltonians. Therefore, cooling systems to local minima is universal for quantum computation and, assuming that quantum computation is more powerful than classical computation, finding local minima is classically hard but quantumly easy.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
Data availability
We did not analyse or generate any datasets because our work proceeds within a theoretical and mathematical approach.
Code availability
We do not have any computer code because our work proceeds within a theoretical and mathematical approach. All algorithms are analysed mathematically in the Supplementary Information.
References
Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).
Kohn, W. Nobel lecture: electronic structure of matter—wave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1999).
Ceperley, D. & Alder, B. Quantum Monte Carlo. Science 231, 555–560 (1986).
Sandvik, A. W. Stochastic series expansion method with operator-loop update. Phys. Rev. B 59, R14157–R14160 (1999).
Becca, F. & Sorella, S. Quantum Monte Carlo Approaches for Correlated Systems (Cambridge Univ. Press, 2017).
White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).
White, S. R. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B 48, 10345–10356 (1993).
Perez-Garcia, D., Verstraete, F., Wolf, M. M. & Cirac, J. I. Matrix product state representations. Quantum Inf. Comput. 7, 401–430 (2007).
Verstraete, F., Murg, V. & Cirac, J. I. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57, 143–224 (2008).
Schollwock, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96–192 (2011).
Haghshenas, R., O’Rourke, M. J. & Chan, G. K.-L. Conversion of projected entangled pair states into a canonical form. Phys. Rev. B 100, 054404 (2019).
Hyatt, K. & Stoudenmire, E. M. DMRG approach to optimizing two-dimensional tensor networks. Preprint at https://arxiv.org/abs/1908.08833 (2019).
Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).
Hibat-Allah, M., Ganahl, M., Hayward, L. E., Melko, R. G. & Carrasquilla, J. Recurrent neural network wave functions. Phys. Rev. Res. 2, 023358 (2020).
Deng, D.-L., Li, X. & Sarma, S. D. Quantum entanglement in neural network states. Phys. Rev. X 7, 021021 (2017).
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 1263–1272 (JMLR, 2017).
Qiao, Z., Welborn, M., Anandkumar, A., Manby, F. R. & Miller, T. F. OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features. J. Chem. Phys. 153, 124111 (2020).
Huang, H.-Y., Kueng, R., Torlai, G., Albert, V. V. & Preskill, J. Provably efficient machine learning for quantum many-body problems. Science https://doi.org/10.1126/science.abk3333 (2022).
Lewis, L. et al. Improved machine learning algorithm for predicting ground state properties. Nat. Commun. 15, 895 (2024).
Kitaev, A. Y., Shen, A. & Vyalyi, M. N. Classical and Quantum Computation (American Mathematical Society, 2002).
Kempe, J., Kitaev, A. & Regev, O. The complexity of the local Hamiltonian problem. SIAM J. Comput. 35, 1070–1097 (2006).
Lin, L. & Tong, Y. Heisenberg-limited ground-state energy estimation for early fault-tolerant quantum computers. PRX Quantum 3, 010318 (2022).
Gharibian, S. & Le Gall, F. Dequantizing the quantum singular value transformation: hardness and applications to quantum chemistry and the quantum PCP conjecture. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2022) 19–32 (Association for Computing Machinery, 2022).
Farhi, E., Goldstone, J., Gutmann, S. & Sipser, M. Quantum computation by adiabatic evolution. Preprint at https://arxiv.org/abs/quant-ph/0001106 (2000).
Temme, K., Osborne, T. J., Vollbrecht, K. G., Poulin, D. & Verstraete, F. Quantum Metropolis sampling. Nature 471, 87–90 (2011).
Rall, P., Wang, C. & Wocjan, P. Thermal state preparation via rounding promises. Quantum 7, 1132 (2023).
Chen, C.-F., Kastoryano, M. J., Brandão, F. G. S. L. & Gilyén, A. Quantum thermal state preparation. Preprint at https://arxiv.org/abs/2303.18224 (2023).
Ding, Z., Chen, C.-F. & Lin, L. Single-ancilla ground state preparation via Lindbladians. Phys. Rev. Res. 6, 033147(2024).
Chen, C.-F., Kastoryano, M. J. & Gilyén, A. An efficient and exact noncommutative quantum Gibbs sampler. Preprint at https://arxiv.org/abs/2311.09207 (2023).
Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976).
Davies, E. B. Generators of dynamical semigroups. J. Funct. Anal. 34, 421–432 (1979).
Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).
Mozgunov, E. & Lidar, D. Completely positive master equation for arbitrary driving and small level spacing. Quantum 4, 227 (2020).
Nathan, F. & Rudner, M. S. Universal Lindblad equation for open quantum systems. Phys. Rev. B 102, 115109 (2020).
Edwards, S. F. & Anderson, P. W. Theory of spin glasses. J. Phys. F 5, 965 (1975).
Kirkpatrick, S. & Sherrington, D. Infinite-ranged models of spin-glasses. Phys. Rev. B 17, 4384 (1978).
Binder, K. & Young, A. P. Spin glasses: experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 58, 801 (1986).
Mydosh, J. A. Spin Glasses: An Experimental Introduction (CRC Press, 1993).
Pardalos, P. M. & Vavasis, S. A. Quadratic programming with one negative eigenvalue is np-hard. J. Glob. Optimiz. 1, 15–22 (1991).
Boyd, S., Boyd, S. P. & Vandenberghe, L. Convex Optimization (Cambridge Univ. Press, 2004).
Agarwal, N., Allen-Zhu, Z., Bullins, B., Hazan, E. & Ma, T. Finding approximate local minima faster than gradient descent. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017) 1195–1199 (Association for Computing Machinery, 2017).
Jin, C., Netrapalli, P. & Jordan, M.I. Accelerated gradient descent escapes saddle points faster than gradient descent. In Proc. Machine Learning Research 1042–1085 (MLR Press, 2018).
Ahmadi, A. A. & Zhang, J. On the complexity of finding a local minimizer of a quadratic function over a polytope. Math. Program. 195, 783–792 (2022).
Davies, E. B. Quantum Theory of Open Systems (Academic Press, 1976).
Redfield, A. G. The theory of relaxation processes. Adv. Magn. Opt. Reson. 1, 1–32 (1965).
Terhal, B. M. & DiVincenzo, D. P. Problem of equilibration and the computation of correlation functions on a quantum computer. Phys. Rev. A 61, 022301 (2000).
Chen, C.-F. & Brandao, F. G. S. L. Fast thermalization from the eigenstate thermalization hypothesis. Preprint at https://arxiv.org/abs/2112.07646 (2023).
Shtanko, O. & Movassagh, R. Preparing thermal states on noiseless and noisy programmable quantum processors. Preprint at https://arxiv.org/abs/2112.14688 (2023).
Gilyén, A., Chen, C.-F., Doriguello, J. F. & Kastoryano, M. J. Quantum generalizations of Glauber and Metropolis dynamics. Preprint at https://arxiv.org/abs/2405.20322 (2024).
Ding, Z., Li, B. & Lin, L. Efficient quantum Gibbs samplers with Kubo–Martin–Schwinger detailed balance condition. Preprint at https://arxiv.org/abs/2404.05998 (2024).
Jiang, J. & Irani, S. Quantum Metropolis sampling via weak measurement. Preprint at https://arxiv.org/abs/2406.16023 (2024).
Oliveira, R. & Terhal, B. M. The complexity of quantum spin systems on a two-dimensional square lattice. Quantum Inf. Comput. 8, 900–924 (2008).
Aharonov, D. et al. Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37, 166–194 (2007).
Piddock, S. & Montanaro, A. The complexity of antiferromagnetic interactions and 2D lattices. Quantum Inf. Comput. 17, 636–672 (2017).
Cubitt, T. & Montanaro, A. Complexity classification of local Hamiltonian problems. SIAM J. Comput. 45, 268–316 (2016).
Cubitt, T. S., Montanaro, A. & Piddock, S. Universal quantum Hamiltonians. Proc. Natl Acad. Sci. USA 115, 9497–9502 (2018).
Zhou, L. & Aharonov, D. Strongly universal Hamiltonian simulators. Preprint at https://arxiv.org/abs/2102.02991 (2021).
Nielsen, M. A., Dowling, M. R., Gu, M. & Doherty, A. C. Quantum computation as geometry. Science 311, 1133–1135 (2006).
McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R. & Neven, H. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 4812 (2018).
O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 031007 (2016).
Grimsley, H. R., Economou, S. E., Barnes, E. & Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nat. Commun. 10, 3007 (2019).
Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644 (2021).
Lee, S. et al. Evaluating the evidence for exponential quantum advantage in ground-state quantum chemistry. Nat. Commun. 14, 1952 (2023).
Verstraete, F., Wolf, M. M. & Cirac, J. I. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 5, 633–636 (2009).
Jordan, J., Orús, R., Vidal, G., Verstraete, F. & Cirac, J. I. Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. Phys. Rev. Lett. 101, 250602 (2008).
Vanderstraeten, L., Haegeman, J., Corboz, P. & Verstraete, F. Gradient methods for variational optimization of projected entangled-pair states. Phys. Rev. B 94, 155123 (2016).
Corboz, P. Variational optimization with infinite projected entangled-pair states. Phys. Rev. B 94, 035133 (2016).
Landau, Z., Vazirani, U. & Vidick, T. A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians. Nat. Phys. 11, 566–569 (2015).
Arad, I., Landau, Z., Vazirani, U. & Vidick, T. Rigorous RG algorithms and area laws for low energy eigenstates in 1D. Commun. Math. Phys. 356, 65–105 (2017).
Abrahamsen, N. A polynomial-time algorithm for ground states of spin trees. Preprint at https://arxiv.org/abs/1907.04862 (2019).
Stoudenmire, E. M. & White, S. R. Studying two-dimensional systems with the density matrix renormalization group. Annu. Rev. Condens. Matter Phys. 3, 111–128 (2012).
Wu, H.-Q., Gong, S.-S. & Sheng, D. N. Randomness-induced spin-liquid-like phase in the spin-\(\frac{1}{2}{J}_{1}-{J}_{2}\) triangular Heisenberg model. Phys. Rev. B 99, 085141 (2019).
Szasz, A., Motruk, J., Zaletel, M. P. & Moore, J. E. Chiral spin liquid phase of the triangular lattice Hubbard model: a density matrix renormalization group study. Phys. Rev. X 10, 021042 (2020).
Zaletel, M. P. & Pollmann, F. Isometric tensor network states in two dimensions. Phys. Rev. Lett. 124, 037201 (2020).
Deng, D.-L., Li, X. & Sarma, S. D. Machine learning topological states. Phys. Rev. B 96, 195145 (2017).
Nomura, Y., Darmawan, A. S., Yamaji, Y. & Imada, M. Restricted Boltzmann machine learning for solving strongly correlated quantum systems. Phys. Rev. B 96, 205152 (2017).
Choo, K., Mezzacapo, A. & Carleo, G. Fermionic neural-network states for ab-initio electronic structure. Nat. Commun. 11, 2368 (2020).
Ferrari, F., Becca, F. & Carrasquilla, J. Neural Gutzwiller-projected variational wave functions. Phys. Rev. B 100, 125131 (2019).
Glasser, I., Pancotti, N., August, M., Rodriguez, I. D. & Cirac, J. I. Neural-network quantum states, string-bond states, and chiral topological states. Phys. Rev. X 8, 011006 (2018).
Choo, K., Carleo, G., Regnault, N. & Neupert, T. Symmetries and many-body excitations with neural-network quantum states. Phys. Rev. Lett. 121, 167204 (2018).
Vieijra, T. et al. Restricted Boltzmann machines for quantum states with non-abelian or anyonic symmetries. Phys. Rev. Lett. 124, 097201 (2020).
Morawetz, S., De Vlugt, I. J. S., Carrasquilla, J. & Melko, R. G. U(1)-symmetric recurrent neural networks for quantum state reconstruction. Phys. Rev. A 104, 012401 (2021).
Luo, D. et al. Gauge-invariant and anyonic-symmetric autoregressive neural network for quantum lattice models. Phys. Rev. Res. 5, 013216 (2023).
Basso, J., Chen, C. F., & Dalzell, A. M. Optimizing random local Hamiltonians by dissipation. Preprint at https://arxiv.org/abs/2411.02578 (2024).
Leng, J., Hickman, E., Li, J. & Wu, X. Quantum Hamiltonian descent. Preprint at https://arxiv.org/abs/2303.01471 (2023).
Leng, J., Zheng, Y. & Wu, X. A quantum-classical performance separation in nonconvex optimization. Preprint at https://arxiv.org/abs/2311.00811 (2023).
Chen, Z., Lu, Y., Wang, H., Liu, Y. & Li, T. Quantum Langevin dynamics for optimization. Preprint at https://arxiv.org/abs/2311.15587 (2023).
Coles, P. J. et al. Thermodynamic AI and the fluctuation frontier. In 2023 IEEE International Conference on Rebooting Computing (ICRC) 1–10 (ICRC, 2023).
Aifer, M. et al. Thermodynamic linear algebra. npj Unconv. Comput. 1, 13 (2024).
Chen, C.-F., Huang, H.-Y., Preskill, J. & Zhou, L. Local minima in quantum systems. In Proce. 56th Annual ACM Symposium on Theory of Computing (STOC 2024) 1323–1330 (Association for Computing Machinery, 2024).
Acknowledgements
We thank A. Anshu, R. Babbush, S. Bravyi, F. Brandao, G. Chan, S. Chen, S. Choi, J. Cotler, D. Gosset, J. R. McClean and M. Soleimanifar for their valuable input. H.H. thanks P. Coles, G. Crooks and F. Sbahi for the inspiring discussions and for sharing their recent works on classical thermodynamics for AI applications88,89. Part of the manuscript was previously published as a STOC abstract90. C.C. is supported by the AWS Center for Quantum Computing internship. H.H. is supported by a Google PhD fellowship and a MediaTek Research Young Scholarship. H.H. acknowledges the visiting associate position at the Massachusetts Institute of Technology. L.Z. acknowledges funding from the Walter Burke Institute for Theoretical Physics at Caltech. J.P. acknowledges support from the United States Department of Energy Office of Science, Office of Advanced Scientific Computing Research (Grant Nos. DE-NA0003525 and DE-SC0020290), the United States Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator, and the National Science Foundation (Grant No. PHY-1733907). The Institute for Quantum Information and Matter is an NSF Physics Frontiers Center.
Author information
Authors and Affiliations
Contributions
H.H., J.P. and L.Z. conceived the study of local minima of quantum systems. H.H. and L.Z. developed the computational complexity framework and the analysis of local minima under local unitary perturbations. C.C. introduced the quantum thermodynamics aspect. C.C. and H.H. established the theoretical framework for quantum thermal gradient descent. C.C. and L.Z. proved the BQP-hardness of finding local minima under thermal perturbation. All authors contributed to the writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks Ángela Capel, Tongyang Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections 1–7 and Fig. 1–4.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chen, CF., Huang, HY., Preskill, J. et al. Local minima in quantum systems. Nat. Phys. 21, 654–660 (2025). https://doi.org/10.1038/s41567-025-02781-4
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41567-025-02781-4
This article is cited by
-
Quantum computers quickly find local minima
Nature Physics (2025)