Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universal dissipative dynamics in strongly correlated quantum gases

Abstract

Dissipation is an unavoidable feature of quantum systems, typically associated with decoherence and the modification of quantum correlations. In the study of strongly correlated quantum matter, we often have to overcome or suppress dissipation to uncover the underlying quantum phenomena. However, here we demonstrate that dissipation can serve as a probe for intrinsic correlations in quantum many-body systems. Applying tunable dissipation in ultracold atomic systems, we observe universal dissipative dynamics in strongly correlated one-dimensional quantum gases. Specifically, we find a universal stretched-exponential decay of the total particle number, where the stretched exponent measures the anomalous dimension of the spectral function—a parameter for characterizing strong quantum fluctuations. This approach offers a versatile framework for probing features of strongly correlated systems, including spin–charge separation and Fermi arcs in quantum materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the experimental set-up.
Fig. 2: Dissipation dynamics at different dissipation strengths for Luttinger liquid at γ = 1.54.
Fig. 3: Dissipation dynamics at different γ.
Fig. 4: Dissipation dynamics at different initial temperatures.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the repository https://cloud.tsinghua.edu.cn/d/f5c45e9cb7124155979f/. Any additional information is available from the corresponding authors upon reasonable request.

References

  1. Diehl, S. et al. Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008).

    Article  Google Scholar 

  2. Breuer, H.-P., Laine, E.-M., Piilo, J. & Vacchini, B. Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016).

    Article  ADS  Google Scholar 

  3. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2020).

    Article  ADS  Google Scholar 

  4. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  5. Bouganne, R., Bosch Aguilera, M., Ghermaoui, A., Beugnon, J. & Gerbier, F. Anomalous decay of coherence in a dissipative many-body system. Nat. Phys. 16, 21–25 (2020).

    Article  Google Scholar 

  6. Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

    Article  ADS  Google Scholar 

  7. Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

    Article  ADS  Google Scholar 

  8. Ferioli, G., Glicenstein, A., Ferrier-Barbut, I. & Browaeys, A. A non-equilibrium superradiant phase transition in free space. Nat. Phys. 19, 1345–1349 (2023).

  9. Dogra, L. H.et al. Universal equation of state for wave turbulence in a quantum gas. Nature 620, 521–524 (2023).

  10. Inouye, S. et al. Superradiant Rayleigh scattering from a Bose–Einstein condensate. Science 285, 571–575 (1999).

    Article  Google Scholar 

  11. Baumann, K., Guerlin, C., Brennecke, F. & Esslinger, T. Dicke quantum phase transition with a superfluid gas in an optical cavity. Nature 464, 1301–1306 (2010).

    Article  ADS  Google Scholar 

  12. Zhang, X. et al. Observation of a superradiant quantum phase transition in an intracavity degenerate Fermi gas. Science 373, 1359–1362 (2021).

    Article  ADS  Google Scholar 

  13. Konishi, H., Roux, K., Helson, V. & Brantut, J.-P. Universal pair polaritons in a strongly interacting Fermi gas. Nature 596, 509–513 (2021).

    Article  ADS  Google Scholar 

  14. Lu, Y.-K., Margalit, Y. & Ketterle, W. Bosonic stimulation of atom–light scattering in an ultracold gas. Nat. Phys. 19, 210–214 (2023).

    Google Scholar 

  15. Keßler, H. et al. Observation of a dissipative time crystal. Phys. Rev. Lett. 127, 043602 (2021).

    Article  ADS  Google Scholar 

  16. Kongkhambut, P. et al. Observation of a continuous time crystal. Science 377, 670–673 (2022).

    Article  ADS  Google Scholar 

  17. Lin, Y. et al. Dissipative production of a maximally entangled steady state of two quantum bits. Nature 504, 415–418 (2013).

    Article  ADS  Google Scholar 

  18. Krauter, H. et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011).

    Article  ADS  Google Scholar 

  19. Pan, L., Chen, X., Chen, Y. & Zhai, H. Non-Hermitian linear response theory. Nat. Phys. 16, 767–771 (2020).

    Article  Google Scholar 

  20. Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 2011).

  21. Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2003).

  22. Jiang, Y.-Z., Chen, Y.-Y. & Guan, X.-W. Understanding many-body physics in one dimension from the Lieb–Liniger model. Chin. Phys. B 24, 050311 (2015).

    Article  ADS  Google Scholar 

  23. Liang, L. et al. Probing quantum many-body correlations by universal ramping dynamics. Sci. Bull. 67, 2550–2556 (2022).

    Article  Google Scholar 

  24. Kinoshita, T., Wenger, T. & Weiss, D. S. Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004).

    Article  ADS  Google Scholar 

  25. Paredes, B. et al. Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004).

    Article  ADS  Google Scholar 

  26. Haller, E. et al. Realization of an excited, strongly correlated quantum gas phase. Science 325, 1224–1227 (2009).

    Article  ADS  Google Scholar 

  27. Haller, E. et al. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons. Nature 466, 597–600 (2010).

    Article  ADS  Google Scholar 

  28. Meinert, F. et al. Bloch oscillations in the absence of a lattice. Science 356, 945–948 (2017).

    Article  ADS  Google Scholar 

  29. Yang, B. et al. Quantum criticality and the Tomonaga–Luttinger liquid in one-dimensional Bose gases. Phys. Rev. Lett. 119, 165701 (2017).

    Article  ADS  Google Scholar 

  30. Erne, S., Bücker, R., Gasenzer, T., Berges, J. & Schmiedmayer, J. Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature 563, 225–229 (2018).

    Article  ADS  Google Scholar 

  31. Wilson, J. M. et al. Observation of dynamical fermionization. Science 367, 1461–1464 (2020).

    Article  ADS  Google Scholar 

  32. Vijayan, J. et al. Time-resolved observation of spin–charge deconfinement in fermionic Hubbard chains. Science 367, 186–189 (2020).

    Article  ADS  Google Scholar 

  33. Senaratne, R. et al. Spin–charge separation in a one-dimensional Fermi gas with tunable interactions. Science 376, 1305–1308 (2022).

    Article  ADS  Google Scholar 

  34. See Toh, J. H. et al. Many-body dynamical delocalization in a kicked one-dimensional ultracold gas. Nat. Phys. 18, 1297–1301 (2022).

    Article  Google Scholar 

  35. Le, Y., Zhang, Y., Gopalakrishnan, S., Rigol, M. & Weiss, D. S. Observation of hydrodynamization and local prethermalization in 1D Bose gases. Nature 618, 494–499 (2023).

    Article  ADS  Google Scholar 

  36. Cavazos-Cavazos, D., Senaratne, R., Kafle, A. & Hulet, R. G. Thermal disruption of a Luttinger liquid. Nat. Commun. 14, 3154 (2023).

    Article  ADS  Google Scholar 

  37. Guo, Y. et al. Anomalous cooling of bosons by dimensional reduction. Sci. Adv. 10, 7 (2024).

  38. Yao, H., Pizzino, L. & Giamarchi, T. Strongly-interacting bosons at 2D-1D dimensional crossover. SciPost Phys. 15, 050 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  39. Kohlert, T. et al. Observation of many-body localization in a one-dimensional system with single-particle mobility edge. Phys. Rev. Lett. 122, 170403 (2019).

    Article  ADS  Google Scholar 

  40. Gring, M. et al. Relaxation and prethermalization in an isolated quantum system. Science 337, 1318–1322 (2012).

    Article  ADS  Google Scholar 

  41. Dunjko, V., Lorent, V. & Olshanii, M. Thomas–Fermi regime, Tonks–Girardeau regime, and in between. Phys. Rev. Lett. 86, 5413 (2001).

    Article  ADS  Google Scholar 

  42. Cheng, S., Chen, Y.-Y., Guan, X.-W., Yang, W.-L. & Lin, H.-Q. One-body dynamical correlation function of Lieb-Liniger model at finite temperature. Phys. Rev. A 111, L010802 (2025).

    Article  MathSciNet  Google Scholar 

  43. Cheng, S. et al. Exact spectral function of one-dimensional Bose gases. Preprint at https://arxiv.org/abs/2209.15221 (2022).

  44. Olshanii, M. Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938 (1998).

    Article  ADS  Google Scholar 

  45. Palzer, S., Zipkes, C., Sias, C. & Köhl, M. Quantum transport through a Tonks–Girardeau gas. Phys. Rev. Lett. 103, 150601 (2009).

    Article  ADS  Google Scholar 

  46. Yao, H., Giamarchi, T. & Sanchez-Palencia, L. Lieb–Liniger bosons in a shallow quasiperiodic potential: Bose glass phase and fractal Mott lobes. Phys. Rev. Lett. 125, 060401 (2020).

    Article  ADS  Google Scholar 

  47. Boninsegni, M., Prokof’ev, N. & Svistunov, B. Worm algorithm for continuous-space path integral Monte Carlo simulations. Phys. Rev. Lett. 96, 070601 (2006).

    Article  ADS  Google Scholar 

  48. Troyer, M., Ammon, B. & Heeb, E. Parallel object oriented Monte Carlo simulations. Lect. Notes Comput. Sci. 1505, 191 (1998).

    Article  Google Scholar 

  49. Albuquerque, A. et al. The ALPS project release 1.3: open-source software for strongly correlated systems. J. Magn. Magn. Mater. 310, 1187–1193 (2007).

    Article  ADS  Google Scholar 

  50. Bauer, B. et al. The ALPS project release 2.0: open source software for strongly correlated systems. J. Stat. Mech. Theory Exp. 2011, P05001 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with H. Zhai, X.-W. Guan and T. Giamarchi and technical support from W. Zhang and Z. Zhang. This work is supported by the National Natural Science Foundation of China (92165203, W.C.; 92476110, J.H.; 12174358, Y.C.), National Key Research and Development Program of China (2022YFA1405300, Y.C.; 2021YFA1400904, W.C.; 2021YFA0718303, J.H.; 2023YFA1406702, W.C.), NSAF (U2330401, Y.C.) and Swiss National Science Foundation (200020-188687, 200020-219400, H.Y.).

Author information

Authors and Affiliations

Contributions

Y.Z., Y.T. and J.Y. built the set-up, performed the experiment and analysed the data with the assistance of Z.Z., Z.C. and T.T. Y.C. and Y.W. built the theoretical model. H.Y. performed the numerical calculations and calibrated the temperature. W.C. and J.H. conceived and supervised this work. Y.Z., Y.T., J.H. and W.C. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Jiazhong Hu, Yu Chen or Wenlan Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Masaya Nakagawa, João Sabino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Dependence of Luttinger parameter on temperature.

The Luttinger parameter K versus the rescaled temperature T/Td, with Td = 2n2/2mkB denoting the degenerate temperature. Different colors represent different dimensionless interaction strengths γ.

Extended Data Fig. 2 Finite-time correction.

a, The cyan line is the dissipation curve in the form of Eq. 5 with η = 0.91. The yellow line is the dissipation curve with the same η = 0.91 but at zero temperature formed in Eq. 4. Here, t* is the rescaled dissipation time t* = πkBTt/h. When we use the stretched-exponential function \(N(0)\exp \left[-{(t/{\tau }_{0}^{{\prime} })}^{{\alpha }^{* }}\right]\) to fit the cyan line, the red line gives α* = 0.69 when we set the time upper bound at t* = 4.8. Here the y axis is in a logarithmic scale and the x axis is in a linear scale. b, For different γ or η, as the t* increases, the fitted α* decreases and the dashed line represents the t* we use in our experiment.

Extended Data Fig. 3 \({\tau }_{0}^{-\alpha }\) versus dissipation strength.

We plot the \({\tau }_{0}^{-\alpha }\) versus light intensity shown in Fig. 2, and \({\tau }_{0}^{-\alpha }\) shows a linear dependence on light intensity. The vertical error bars are one-sigma standard deviation calculated by error bars of the τ0 and α in Fig. 2.

Extended Data Table 1 Temperature variation under different initial temperatures

Supplementary information

Supplementary Information

Supplementary Discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Tian, Y., Ye, J. et al. Universal dissipative dynamics in strongly correlated quantum gases. Nat. Phys. 21, 530–535 (2025). https://doi.org/10.1038/s41567-025-02800-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02800-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing