Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superconductivity controlled by twist angle in monolayer NbSe2 on graphene

Abstract

Superconductivity serves as a basis for non-trivial quantum phenomena and devices, but they often require artificial control of the superconducting gap. In real space, there are various ways to tailor the superconducting gap, such as by introducing interfaces and defects. However, it is challenging to manipulate the superconducting gap in momentum space. Here we demonstrate that the superconducting gap of NbSe2 monolayers on graphene can be modified at specific momenta by changing the twist angle between the layers. Our spectroscopic-imaging-based scanning tunnelling microscopy experiments reveal the interference patterns of Bogoliubov quasiparticles that are twisted with respect to NbSe2 and graphene lattices. We find that these chiral interference patterns originate from the twist-dependent sextet of regions in momentum space in which the Fermi surfaces of the NbSe2 monolayer and graphene overlap. This finding not only broadens our understanding of superconductivity in twisted bilayer systems but also opens up possibilities for designing artificial superconducting materials and devices with tunable properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STM characterizations of NbSe2 atomic layers grown on graphene.
Fig. 2: Moiré and QPI modulations in the NbSe2 monolayer on graphene with θ = 28°.
Fig. 3: Superconducting gap of the NbSe2 monolayer on graphene with θ = 28°.
Fig. 4: Twisted Bogoliubov quasiparticles.
Fig. 5: Sextet model of the twisted Bogoliubov QPI.
Fig. 6: Simulated Bogoliubov QPI patterns in the twisted stacks.

Similar content being viewed by others

Data availability

Additional data supporting the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The codes supporting the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  2. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  3. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  ADS  Google Scholar 

  4. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  5. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  6. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  7. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  ADS  Google Scholar 

  8. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    Article  Google Scholar 

  9. Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  10. Xu, J.-P. et al. Artificial topological superconductor by the proximity effect. Phys. Rev. Lett. 112, 217001 (2014).

    Article  ADS  Google Scholar 

  11. Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).

    Article  ADS  Google Scholar 

  12. Lüpke, F. et al. Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2. Nat. Phys. 16, 526–530 (2020).

    Article  Google Scholar 

  13. Kezilebieke, S. et al. Moiré-enabled topological superconductivity. Nano Lett. 22, 328–333 (2022).

    Article  ADS  Google Scholar 

  14. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  Google Scholar 

  15. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  Google Scholar 

  16. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  17. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  ADS  Google Scholar 

  18. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article  ADS  Google Scholar 

  19. Oh, M. et al. Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 600, 240–245 (2021).

    Article  ADS  Google Scholar 

  20. Wilson, J. A., Salvo, F. J. D. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 50, 1171–1248 (2001).

    Article  ADS  Google Scholar 

  21. Moncton, D. E., Axe, J. D. & DiSalvo, F. J. Study of superlattice formation in 2H-NbSe2 and 2H-TaSe2 by neutron scattering. Phys. Rev. Lett. 34, 734–737 (1975).

    Article  ADS  Google Scholar 

  22. Revolinsky, E., Spiering, G. & Beerntsen, D. Superconductivity in the niobium-selenium system. J. Phys. Chem. Solids 26, 1029–1034 (1965).

    Article  ADS  Google Scholar 

  23. Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2016).

    Article  Google Scholar 

  24. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  Google Scholar 

  25. Wang, H. et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition. Nat. Commun. 8, 394 (2017).

    Article  ADS  Google Scholar 

  26. Xing, Y. et al. Ising superconductivity and quantum phase transition in macro-size monolayer NbSe2. Nano Lett. 17, 6802–6807 (2017).

    Article  ADS  Google Scholar 

  27. Zhao, K. et al. Disorder-induced multifractal superconductivity in monolayer niobium dichalcogenides. Nat. Phys. 15, 904–910 (2019).

    Article  Google Scholar 

  28. Chen, Y. et al. Visualizing the anomalous charge density wave states in graphene/NbSe2 heterostructures. Adv. Mater. 32, 2003746 (2020).

    Article  Google Scholar 

  29. Dreher, P. et al. Proximity effects on the charge density wave order and superconductivity in single-layer NbSe2. ACS Nano 15, 19430–19438 (2021).

    Article  Google Scholar 

  30. Ganguli, S. C., Vaňo, V., Kezilebieke, S., Lado, J. L. & Liljeroth, P. Confinement-engineered superconductor to correlated-insulator transition in a van der Waals monolayer. Nano Lett. 22, 1845–1850 (2022).

    Article  ADS  Google Scholar 

  31. Zhang, Z., Watanabe, K., Taniguchi, T. & LeRoy, B. J. Local characterization and engineering of proximitized correlated states in graphene/Nbse2 vertical heterostructures. Phys. Rev. B 102, 085429 (2020).

    Article  ADS  Google Scholar 

  32. Coletti, C. et al. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 81, 235401 (2010).

    Article  ADS  Google Scholar 

  33. Machida, T., Kohsaka, Y. & Hanaguri, T. A scanning tunneling microscope for spectroscopic imaging below 90 mK in magnetic fields up to 17.5 T. Rev. Sci. Instrum. 89, 093707 (2018).

    Article  ADS  Google Scholar 

  34. Goler, S. et al. Revealing the atomic structure of the buffer layer between SiC(0001) and epitaxial graphene. Carbon 51, 249–254 (2013).

    Article  Google Scholar 

  35. Riedl, C., Coletti, C. & Starke, U. Structural and electronic properties of epitaxial graphene on SiC(0001): a review of growth, characterization, transfer doping and hydrogen intercalation. J. Phys. D: Appl. Phys. 43, 374009 (2010).

    Article  Google Scholar 

  36. Kohsaka, Y. et al. An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates. Science 315, 1380–1385 (2007).

    Article  ADS  Google Scholar 

  37. Pham, T. T. et al. Higher-indexed moiré patterns and surface states of MoTe2/graphene heterostructure grown by molecular beam epitaxy. npj 2D Mater. Appl. 6, 48 (2022).

    Article  Google Scholar 

  38. Liu, G.-B., Shan, W.-Y., Yao, Y., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

    Article  ADS  Google Scholar 

  39. Arguello, C. J. et al. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H-NbSe2. Phys. Rev. Lett. 114, 037001 (2015).

    Article  ADS  Google Scholar 

  40. Gao, S. et al. Atomic-scale strain manipulation of a charge density wave. Proc. Natl Acad. Sci. USA 115, 6986–6990 (2018).

    Article  ADS  Google Scholar 

  41. Liu, X., Chong, Y. X., Sharma, R. & Davis, J. C. S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 372, 1447–1452 (2021).

    Article  ADS  Google Scholar 

  42. Cao, L. et al. Directly visualizing nematic superconductivity driven by the pair density wave in NbSe2. Nat. Commun. 15, 7234 (2024).

    Article  Google Scholar 

  43. Brun, C. et al. Dynamical Coulomb blockade observed in nanosized electrical contacts. Phys. Rev. Lett. 108, 126802 (2012).

    Article  ADS  Google Scholar 

  44. Devoret, M. H. et al. Effect of the electromagnetic environment on the Coulomb blockade in ultrasmall tunnel junctions. Phys. Rev. Lett. 64, 1824–1827 (1990).

    Article  ADS  Google Scholar 

  45. Ingold, G.-L. & Nazarov, Y. V. Charge Tunneling Rates in Ultrasmall Junctions 21–107 (Springer, 1992).

  46. Ast, C. R. et al. Sensing the quantum limit in scanning tunnelling spectroscopy. Nat. Commun. 7, 13009 (2016).

    Article  ADS  Google Scholar 

  47. Gor’kov, L. P. & Rashba, E. I. Superconducting 2D system with lifted spin degeneracy: mixed singlet-triplet state. Phys. Rev. Lett. 87, 037004 (2001).

    Article  ADS  Google Scholar 

  48. Gani, Y. S., Steinberg, H. & Rossi, E. Superconductivity in twisted graphene NbSe2 heterostructures. Phys. Rev. B 99, 235404 (2019).

    Article  ADS  Google Scholar 

  49. Li, Y. & Koshino, M. Twist-angle dependence of the proximity spin-orbit coupling in graphene on transition-metal dichalcogenides. Phys. Rev. B 99, 075438 (2019).

    Article  ADS  Google Scholar 

  50. Asano, S. & Yanase, Y. Tuning monolayer superconductivity in twisted NbSe2 graphene heterostructures. Phys. Rev. B 110, 134516 (2024).

    Article  Google Scholar 

  51. Sticlet, D. & Morari, C. Topological superconductivity from magnetic impurities on monolayer NbSe2. Phys. Rev. B 100, 075420 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. J. Butler, M. Nakano, K. Sugawara, Y. Okada, Y. Hasegawa and P. Wahl for valuable discussions and comments. This work was supported by the RIKEN TRIP initiative (Many-Body Electron Systems) and JSPS KAKENHI grant nos. JP19H05824, JP21K18145, JP22H04933, JP22K18696, JP22K20362, JP23K13067, JP23K17353, JP23K22452, JP23K25831 JP24H00007, JP24K21530 and JST PRESTO JPMJPR19L8. M.N. acknowledges support from RIKEN’s SPDR fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.N. prepared the samples, carried out the SI-STM measurements and analysed the data with assistance from T.M. S.A. and Y.Y. contributed to the construction of the sextet model. T.H. supervised the project. M.N. and T.H. wrote the manuscript. All authors discussed the results and contributed to finalizing the manuscript.

Corresponding authors

Correspondence to Masahiro Naritsuka or Tetsuo Hanaguri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Somesh Ganguli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Notes 1–5.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naritsuka, M., Machida, T., Asano, S. et al. Superconductivity controlled by twist angle in monolayer NbSe2 on graphene. Nat. Phys. 21, 746–753 (2025). https://doi.org/10.1038/s41567-025-02828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02828-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing