Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Output control of dissipative nonlinear multimode amplifiers using spacetime symmetry mapping

Abstract

In many linear and nonlinear systems, time-reversal symmetry makes it possible to control the output waves by appropriately shaping the input waves. However, time-reversal symmetry is broken in systems with energy dissipation, necessitating a different approach for relating the input and output fields. We theoretically consider a saturated multimode fibre amplifier in which light generates a heat flow and suffers thermo-optical nonlinearity, thus breaking time-reversal symmetry. We identify a spacetime symmetry that maps the target output back to an input field. This spacetime symmetry mapping applies phase conjugation, gain and absorption substitution but not time reversal, and it holds in a steady state and for slowly varying inputs. Our approach enables coherent wavefront control of nonlinear dissipative systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Steady-state time-reversal of a multimode amplifier with thermo-optical nonlinearity and linear gain.
Fig. 2: Focusing through a nonlinear multimode amplifier with gain saturation.
Fig. 3: Spacetime symmetry mapping of a dynamic nonlinear amplifier.

Similar content being viewed by others

Data availability

The data are available via Zenodo at https://doi.org/10.5281/zenodo.14190653 (ref. 51).

Code availability

The codes are available at https://github.com/joe851642001/MWAT.

References

  1. Fink, M. Time reversal in acoustics. Contemp. Phys. 37, 95–109 (1996).

    Article  ADS  Google Scholar 

  2. Potton, R. J. Reciprocity in optics. Rep. Prog. Phys. 67, 717 (2004).

    Article  ADS  Google Scholar 

  3. Przadka, A. et al. Time reversal of water waves. Phys. Rev. Lett. 109, 064501 (2012).

    Article  ADS  Google Scholar 

  4. Fink, M. Time-reversal mirrors. J. Phys. D 26, 1333 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  5. Fink, M. & Prada, C. Acoustic time-reversal mirrors. Inverse Probl. https://doi.org/10.1088/0266-5611/17/1/201 (2001).

    Article  Google Scholar 

  6. Kuperman, W. et al. Phase conjugation in the ocean: experimental demonstration of an acoustic time-reversal mirror. J. Acoust. Soc. Am. 103, 25–40 (1998).

    Article  ADS  Google Scholar 

  7. Mounaix, M. et al. Time reversed optical waves by arbitrary vector spatiotemporal field generation. Nat. Commun. 11, 5813 (2020).

    Article  ADS  Google Scholar 

  8. Zel’Dovich, B. Y., Popovichev, V., Ragul’Skii, V. & Faizullov, F. in Landmark Papers on Photorefractive Nonlinear Optics (eds Yeh, P. & Gu, C.) 303–306 (World Scientific, 1995).

  9. Bloom, D. M. & Bjorklund, G. C. Conjugate wave-front generation and image reconstruction by four-wave mixing. Appl. Phys. Lett. 31, 592–594 (1977).

    Article  ADS  Google Scholar 

  10. Yariv, A. & Pepper, D. M. Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing. Opt. Lett. 1, 16–18 (1977).

    Article  ADS  Google Scholar 

  11. Nosach, O. Y., Popovichev, V. I., Ragul’Skii, V. & Faizullov, F. Cancellation of phase distortions in an amplifying medium with a ‘Brillouin mirror’. ZhETF Pis ma Redaktsiiu 16, 617 (1972).

  12. Wang, V. & Giuliano, C. R. Correction of phase aberrations via stimulated Brillouin scattering. Opt. Lett. 2, 4–6 (1978).

    Article  ADS  Google Scholar 

  13. Agarwal, G., Friberg, A. T. & Wolf, E. Scattering theory of distortion correction by phase conjugation. J. Opt. Soc. Am. 73, 529–538 (1983).

    Article  ADS  Google Scholar 

  14. Yariv, A., Fekete, D. & Pepper, D. M. Compensation for channel dispersion by nonlinear optical phase conjugation. Opt. Lett. 4, 52–54 (1979).

    Article  ADS  Google Scholar 

  15. Lerosey, G., De Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    Article  ADS  Google Scholar 

  16. Yaqoob, Z., Psaltis, D., Feld, M. S. & Yang, C. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics 2, 110–115 (2008).

    Article  ADS  Google Scholar 

  17. Papadopoulos, I. N., Farahi, S., Moser, C. & Psaltis, D. Focusing and scanning light through a multimode optical fiber using digital phase conjugation. Opt. Express 20, 10583–10590 (2012).

    Article  ADS  Google Scholar 

  18. Dezfooliyan, A. & Weiner, A. M. Spatiotemporal focusing of phase compensation and time reversal in ultrawideband systems with limited rate feedback. IEEE Trans. Veh. Technol. 65, 1998–2006 (2015).

    Article  Google Scholar 

  19. Feldkhun, D., Tzang, O., Wagner, K. H. & Piestun, R. Focusing and scanning through scattering media in microseconds. Optica 6, 72–75 (2019).

    Article  ADS  Google Scholar 

  20. Baek, Y., de Aguiar, H. B. & Gigan, S. Phase conjugation with spatially incoherent light in complex media. Nat. Photonics 17, 1114–1119 (2023).

    Article  ADS  Google Scholar 

  21. Cheng, Z., Li, C., Khadria, A., Zhang, Y. & Wang, L. V. High-gain and high-speed wavefront shaping through scattering media. Nat. Photonics 17, 299–305 (2023).

    Article  ADS  Google Scholar 

  22. Bureau, F. et al. Three-dimensional ultrasound matrix imaging. Nat. Commun. 14, 6793 (2023).

    Article  ADS  Google Scholar 

  23. Yariv, A. Phase conjugate optics and real-time holography. IEEE J. Quantum Electron. 14, 650–660 (1978).

    Article  ADS  Google Scholar 

  24. Pepper, D. M. Nonlinear optical phase conjugation. Opt. Eng. 21, 212156 (1982).

    Article  Google Scholar 

  25. Rouseff, D. et al. Underwater acoustic communication by passive-phase conjugation: theory and experimental results. IEEE J. Ocean. Eng. 26, 821–831 (2001).

    Article  ADS  Google Scholar 

  26. Popoff, S., Lerosey, G., Fink, M., Boccara, A. C. & Gigan, S. Image transmission through an opaque material. Nat. Commun. 1, 81 (2010).

    Article  ADS  Google Scholar 

  27. Fisher, R. A. (ed.) Optical Phase Conjugation (Academic, 2012).

  28. Mosk, A. P., Lagendijk, A., Lerosey, G. & Fink, M. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics 6, 283–292 (2012).

    Article  ADS  Google Scholar 

  29. Alexandropoulos, G. C. et al. Time reversal for 6G spatiotemporal focusing: recent experiments, opportunities, and challenges. IEEE Veh. Technol. Mag. 17, 74–82 (2022).

  30. Tanter, M., Thomas, J.-L., Coulouvrat, F. & Fink, M. Breaking of time reversal invariance in nonlinear acoustics. Phys. Rev. E 64, 016602 (2001).

    Article  ADS  Google Scholar 

  31. Ducrozet, G., Fink, M. & Chabchoub, A. Time-reversal of nonlinear waves: applicability and limitations. Phys. Rev. Fluids 1, 054302 (2016).

    Article  ADS  Google Scholar 

  32. Fernandes, D. E. & Silveirinha, M. G. Role of time-reversal symmetry in the dynamical response of one-way nonlinear devices. Phys. Rev. Appl. 18, 024002 (2022).

    Article  ADS  Google Scholar 

  33. Pepper, D. M. & Yariv, A. Compensation for phase distortions in nonlinear media by phase conjugation. Opt. Lett. 5, 59–60 (1980).

    Article  ADS  Google Scholar 

  34. Fisher, R. A., Suydam, B. & Yevick, D. Optical phase conjugation for time-domain undoing of dispersive self-phase-modulation effects. Opt. Lett. 8, 611–613 (1983).

    Article  ADS  Google Scholar 

  35. Chabchoub, A. & Fink, M. Time-reversal generation of rogue waves. Phys. Rev. Lett. 112, 124101 (2014).

    Article  ADS  Google Scholar 

  36. Ducrozet, G., Bonnefoy, F., Mori, N., Fink, M. & Chabchoub, A. Experimental reconstruction of extreme sea waves by time reversal principle. J. Fluid Mech. 884, A20 (2020).

  37. Chong, Y., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    Article  ADS  Google Scholar 

  38. Pichler, K. et al. Random anti-lasing through coherent perfect absorption in a disordered medium. Nature 567, 351–355 (2019).

    Article  ADS  Google Scholar 

  39. Longhi, S. Time-reversed optical parametric oscillation. Phys. Rev. Lett. 107, 033901 (2011).

    Article  ADS  Google Scholar 

  40. Suwunnarat, S. et al. Non-linear coherent perfect absorption in the proximity of exceptional points. Commun. Phys. 5, 5 (2022).

    Article  Google Scholar 

  41. Cheng, M.-Y. et al. High-energy and high-peak-power nanosecond pulse generation with beam quality control in 200-μm core highly multimode yb-doped fiber amplifiers. Opt. Lett. 30, 358–360 (2005).

    Article  ADS  Google Scholar 

  42. Jauregui, C., Limpert, J. & Tünnermann, A. High-power fibre lasers. Nat. Photonics 7, 861–867 (2013).

    Article  ADS  Google Scholar 

  43. Zervas, M. N. & Codemard, C. A. High power fiber lasers: a review. IEEE J. Sel. Top. Quantum Electron. 20, 219–241 (2014).

    Article  ADS  Google Scholar 

  44. Jauregui, C., Stihler, C. & Limpert, J. Transverse mode instability. Adv. Opt. Photonics 12, 429–484 (2020).

    Article  ADS  Google Scholar 

  45. Chen, C.-W., Wisal, K., Eliezer, Y., Stone, A. D. & Cao, H. Suppressing transverse mode instability through multimode excitation in a fiber amplifier. Proc. Natl Acad. Sci. USA 120, e2217735120 (2023).

  46. Wisal, K., Chen, C.-W., Cao, H. & Stone, A. D. Theory of transverse mode instability in fiber amplifiers with multimode excitations. APL Photonics 9, 066114 (2024).

  47. Florentin, R. et al. Shaping the light amplified in a multimode fiber. Light Sci. Appl 6, e16208 (2017).

    Article  Google Scholar 

  48. Florentin, R., Kermene, V., Desfarges-Berthelemot, A. & Barthelemy, A. Shaping of amplified beam from a highly multimode Yb-doped fiber using transmission matrix. Opt. Express 27, 32638–32648 (2019).

    Article  ADS  Google Scholar 

  49. Chen, C.-W. et al. Mitigating stimulated Brillouin scattering in multimode fibers with focused output via wavefront shaping. Nat. Commun. 14, 7343 (2023).

    Article  ADS  Google Scholar 

  50. Wisal, K., Warren-Smith, S. C., Chen, C.-W., Cao, H. & Stone, A. D. Theory of stimulated Brillouin scattering in fibers for highly multimode excitations. Phys. Rev. X 14, 031053 (2024).

    Google Scholar 

  51. Chen, C.-W. et al. Dataset for ‘Output control of dissipative nonlinear multimode amplifiers via spacetime symmetry mapping’. Zenodo https://doi.org/10.5281/zenodo.14190653 (2024).

Download references

Acknowledgements

We thank Y. Eliezer for assisting in establishing the time-domain simulation code. We also thank A. Yamilov, O. D. Miller and S. Fan for fruitful discussions. This work is supported by the Air Force Office of Scientific Research (Grant No. FA9550-24-1-0182 to H.C. and A.D.S.) and by the Simons Foundation (A.D.S. and M.F.). We acknowledge the computational resources provided by the Yale High Performance Computing Cluster.

Author information

Authors and Affiliations

Authors

Contributions

H.C. proposed the idea and initiated this project. C.-W.C. performed the numerical simulations under the supervision of H.C. K.W. performed the theoretical analysis under the supervision of A.D.S. M.F. provided key insights that shaped the scope of this study. C.-W.C., K.W., A.D.S. and H.C. wrote the paper with input from M.F.

Corresponding author

Correspondence to Hui Cao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Mario Ferraro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–VIII and Figs. 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CW., Wisal, K., Fink, M. et al. Output control of dissipative nonlinear multimode amplifiers using spacetime symmetry mapping. Nat. Phys. 21, 839–845 (2025). https://doi.org/10.1038/s41567-025-02853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02853-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing