Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Observation of the diffusive Nambu–Goldstone mode of a non-equilibrium phase transition

Abstract

Second-order phase transitions are governed by a spontaneous symmetry-breaking mechanism, which yields collective excitations with a gapless spectrum called Nambu–Goldstone modes. Although these modes propagate as sound waves in conservative systems, non-equilibrium phase transitions have been predicted to feature a diffusive Nambu–Goldstone mode. Here, we present the experimental characterization of such a mode in a non-equilibrium Bose–Einstein condensate of microcavity polaritons. The mode appears in the spectroscopic response of the condensate to an extra probe laser as spectral narrowing, along with the emergence of a tilted frequency plateau. Breaking the symmetry with another phase-fixing beam causes a gap to open in the imaginary part of the spectrum and the disappearance of the Nambu–Goldstone mode. These observations confirm theoretical predictions for the Nambu–Goldstone mode of non-equilibrium phase transitions and reveal the symmetry-breaking mechanism underlying polariton condensation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experiment and theoretical predictions for the NG mode.
Fig. 2: Observation of the diffusive NG mode.
Fig. 3: Explicit symmetry breaking and disappearance of the narrow NG mode.

Similar content being viewed by others

Data availability

The raw data are available via Zenodo at https://doi.org/10.5281/zenodo.15079205 (ref. 57).

References

  1. Huang, K. Introduction to Statistical Physics 2nd edn (CRC, 2010).

  2. Sachdev, S. Quantum Phase Transitions 2nd edn (Cambridge Univ. Press, 2011).

  3. Nambu, Y. & Jona-Lasinio, G. Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345–358 (1961).

    Article  ADS  Google Scholar 

  4. Goldstone, J. Field theories with ‘superconductor’ solutions. Il Nuovo Cimento (1955-1965) 19, 154–164 (1961).

    Article  MathSciNet  Google Scholar 

  5. Goldstone, J., Salam, A. & Weinberg, S. Broken symmetries. Phys. Rev. 127, 965–970 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  6. Lange, R. V. Nonrelativistic theorem analogous to the Goldstone theorem. Phys. Rev. 146, 301–303 (1966).

    Article  ADS  Google Scholar 

  7. Takahashi, D. A. & Nitta, M. Counting rule of Nambu-Goldstone modes for internal and spacetime symmetries: Bogoliubov theory approach. Ann. Phys. 354, 101–156 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  8. Gunton, J. D. & Buckingham, M. J. Condensation of the ideal Bose gas as a cooperative transition. Phys. Rev. 166, 152–158 (1968).

    Article  ADS  Google Scholar 

  9. Pitaevskii, L. & Stringari, S. Bose-Einstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

  10. Steinhauer, J., Ozeri, R., Katz, N. & Davidson, N. Excitation spectrum of a Bose-Einstein condensate. Phys. Rev. Lett. 88, 120407 (2002).

    Article  ADS  Google Scholar 

  11. Schmittmann, B. & Zia, R. Statistical Mechanics of Driven Diffusive Systems (Elsevier, 1995).

  12. Hidaka, Y. & Minami, Y. Spontaneous symmetry breaking and Nambu-Goldstone modes in open classical and quantum systems. Prog. Theor. Exp. Phys. 2020, 033A01 (2020).

  13. Bloch, J., Carusotto, I. & Wouters, M. Non-equilibrium Bose-Einstein condensation in photonic systems. Nat. Rev. Phys. 4, 470–488 (2022).

    Article  Google Scholar 

  14. Graham, R. & Haken, H. The quantum-fluctuations of the optical parametric oscillator. I. Z. Phys. A: Hadrons Nucl. 210, 276–302 (1968).

    Article  Google Scholar 

  15. DeGiorgio, V. & Scully, M. O. Analogy between the laser threshold region and a second-order phase transition. Phys. Rev. A 2, 1170–1177 (1970).

    Article  ADS  Google Scholar 

  16. Graham, R. & Haken, H. Laserlight—first example of a second-order phase transition far away from thermal equilibrium. Z. Phys. 237, 31–46 (1970).

    Article  ADS  Google Scholar 

  17. Grossmann, S. & Richter, P. H. Laser threshold and nonlinear Landau fluctuation theory of phase transitions. Z. Phys. A: Hadrons Nucl. 242, 458–475 (1971).

    Article  Google Scholar 

  18. Baumberg, J. et al. Parametric oscillation in a vertical microcavity: a polariton condensate or micro-optical parametric oscillation. Phys. Rev. B 62, R16247 (2000).

    Article  ADS  Google Scholar 

  19. Stevenson, R. M. et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85, 3680–3683 (2000).

    Article  ADS  Google Scholar 

  20. Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  21. Richard, M. et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72, 201301 (2005).

    Article  ADS  Google Scholar 

  22. Szymańska, M. H., Keeling, J. & Littlewood, P. B. Nonequilibrium quantum condensation in an incoherently pumped dissipative system. Phys. Rev. Lett. 96, 230602 (2006).

    Article  ADS  Google Scholar 

  23. Wouters, M. & Carusotto, I. Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime. Phys. Rev. A 76, 043807 (2007).

    Article  ADS  Google Scholar 

  24. Wouters, M. & Carusotto, I. Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons. Phys. Rev. Lett. 99, 140402 (2007).

    Article  ADS  Google Scholar 

  25. Keeling, J., Szymańska, M. H. & Littlewood, P. B. in Optical Generation and Control of Quantum Coherence in Semiconductor Nanostructures (eds Slavcheva, G. & Roussignol, P.) 293–329 (Springer, 2010).

  26. Dunnett, K. & Szymańska, M. H. Keldysh field theory for nonequilibrium condensation in a parametrically pumped polariton system. Phys. Rev. B 93, 195306 (2016).

    Article  ADS  Google Scholar 

  27. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  ADS  Google Scholar 

  28. Carusotto, I. & Ciuti, C. Spontaneous microcavity-polariton coherence across the parametric threshold: quantum Monte Carlo studies. Phys. Rev. B 72, 125335 (2005).

    Article  ADS  Google Scholar 

  29. Stepanov, P. et al. Dispersion relation of the collective excitations in a resonantly driven polariton fluid. Nat. Commun. 10, 3869 (2019).

    Article  ADS  Google Scholar 

  30. Claude, F. et al. High-resolution coherent probe spectroscopy of a polariton quantum fluid. Phys. Rev. Lett. 129, 103601 (2022).

    Article  ADS  Google Scholar 

  31. Chow, W. W., Scully, M. O. & Van Stryland, E. W. Line narrowing in a symmetry broken laser. Opt. Commun. 15, 6–9 (1975).

    Article  ADS  Google Scholar 

  32. Courtois, J., Smith, A., Fabre, C. & Reynaud, S. Phase diffusion and quantum noise in the optical parametric oscillator: a semiclassical approach. J. Mod. Opt. 38, 177–191 (1991).

    Article  ADS  Google Scholar 

  33. Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000).

    Article  ADS  Google Scholar 

  34. Baas, A., Karr, J.-P., Romanelli, M., Bramati, A. & Giacobino, E. Quantum degeneracy of microcavity polaritons. Phys. Rev. Lett. 96, 176401 (2006).

    Article  ADS  Google Scholar 

  35. Aßmann, M. et al. From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proc. Natl Acad. Sci. USA 108, 1804–1809 (2011).

    Article  ADS  Google Scholar 

  36. Nakayama, M. & Ueda, M. Observation of diffusive and dispersive profiles of the nonequilibrium polariton-condensate dispersion relation in a CuBr microcavity. Phys. Rev. B 95, 125315 (2017).

    Article  ADS  Google Scholar 

  37. Ballarini, D. et al. Observation of long-lived polariton states in semiconductor microcavities across the parametric threshold. Phys. Rev. Lett. 102, 056402 (2009).

    Article  ADS  Google Scholar 

  38. Pieczarka, M. et al. Observation of quantum depletion in a non-equilibrium exciton-polariton condensate. Nat. Commun. 11, 429 (2020).

    Article  ADS  Google Scholar 

  39. Estrecho, E. et al. Low-energy collective oscillations and Bogoliubov sound in an exciton-polariton condensate. Phys. Rev. Lett. 126, 075301 (2021).

    Article  ADS  Google Scholar 

  40. Ballarini, D. et al. Directional Goldstone waves in polariton condensates close to equilibrium. Nat. Commun. 11, 217 (2020).

    Article  ADS  Google Scholar 

  41. Claude, F. et al. Spectrum of collective excitations of a quantum fluid of polaritons. Phys. Rev. B 107, 174507 (2023).

    Article  ADS  Google Scholar 

  42. Wouters, M. & Carusotto, I. Absence of long-range coherence in the parametric emission of photonic wires. Phys. Rev. B 74, 245316 (2006).

    Article  ADS  Google Scholar 

  43. Porras, D. & Tejedor, C. Linewidth of a polariton laser: theoretical analysis of self-interaction effects. Phys. Rev. B 67, 161310 (2003).

    Article  ADS  Google Scholar 

  44. Love, A. P. D. et al. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101, 067404 (2008).

    Article  ADS  Google Scholar 

  45. Amelio, I. & Carusotto, I. Bogoliubov theory of the laser linewidth and application to polariton condensates. Phys. Rev. A 105, 023527 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  46. Alaeian, H., Giedke, G., Carusotto, I., Löw, R. & Pfau, T. Limit cycle phase and goldstone mode in driven dissipative systems. Phys. Rev. A 103, 013712 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  47. Ji, K., Gladilin, V. N. & Wouters, M. Temporal coherence of one-dimensional nonequilibrium quantum fluids. Phys. Rev. B 91, 045301 (2015).

    Article  ADS  Google Scholar 

  48. Fontaine, Q. et al. Kardar–Parisi–Zhang universality in a one-dimensional polariton condensate. Nature 608, 687–691 (2022).

    Article  ADS  Google Scholar 

  49. Ferrier, A., Zamora, A., Dagvadorj, G. & Szymańska, M. H. Searching for the Kardar-Parisi-Zhang phase in microcavity polaritons. Phys. Rev. B 105, 205301 (2022).

    Article  ADS  Google Scholar 

  50. Léonard, J., Morales, A., Zupancic, P., Donner, T. & Esslinger, T. Monitoring and manipulating Higgs and Goldstone modes in a supersolid quantum gas. Science 358, 1415–1418 (2017).

    Article  ADS  Google Scholar 

  51. Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

    Article  ADS  Google Scholar 

  52. Trypogeorgos, D. et al. Emerging supersolidity in photonic-crystal polariton condensates. Nature 639, 337–341 (2025).

    Article  Google Scholar 

  53. Nigro, D. et al. Supersolidity of polariton condensates in photonic crystal waveguides. Phys. Rev. Lett. 134, 056002 (2025).

    Article  Google Scholar 

  54. Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–57 (2019).

    Article  ADS  Google Scholar 

  55. Clark, L. W., Schine, N., Baum, C., Jia, N. & Simon, J. Observation of Laughlin states made of light. Nature 582, 41–45 (2020).

    Article  ADS  Google Scholar 

  56. Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).

    Article  Google Scholar 

  57. Claude, F. et al. Observation of the diffusive Nambu-Goldstone mode of a non-equilibrium phase transition. Zenodo https://doi.org/10.5281/zenodo.15079205 (2025).

Download references

Acknowledgements

We are thankful to J. H. Wilson for enlightening conversations on NG modes in various field theories. We acknowledge financial support from the H2020-FETFLAG-2018-2020 project PhoQuS (n.820392). I.C. acknowledges financial support from the Provincia Autonoma di Trento, from the Q@TN Initiative and from the National Quantum Science and Technology Institute through the PNRR MUR Project (Grant No. PE0000023-NQSTI), co-funded by the European Union - NextGeneration EU. M.J.J. and A.B. acknowledge financial support from the Sirteq DIM. Q.G. and A.B. are members of the Institut Universitaire de France.

Author information

Authors and Affiliations

Authors

Contributions

F.C. performed the experiments. F.C. and M.J.J. analysed the data and prepared the figures. Q.G. advised on experimental technical details. M.W. and I.C. performed the theoretical analysis and the numerical calculation and interpreted the results with the help of F.C., M.J.J. and A.B. M.J.J. and I.C. wrote the manuscript with input from all authors. A.B. and E.G. reviewed the manuscript. This collaborative effort was led by A.B., who conceived and supervised the project.

Corresponding authors

Correspondence to Maxime J. Jacquet or Alberto Bramati.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Helgi Sigurðsson, Marzena H. Szymańska and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

“Supplementary Appendices A–F.”

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claude, F., Jacquet, M.J., Glorieux, Q. et al. Observation of the diffusive Nambu–Goldstone mode of a non-equilibrium phase transition. Nat. Phys. 21, 924–930 (2025). https://doi.org/10.1038/s41567-025-02902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02902-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing