Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-efficiency optical training of itinerant two-dimensional magnets

An Author Correction to this article was published on 04 August 2025

This article has been updated

Abstract

Cooling a material into a ferromagnetic phase can produce arbitrary metastable patterns of magnetic domains rather than a spatially uniform magnetic state. Control over the formation of these patterns could provide non-chemical methods of creating spintronic devices. Here we demonstrate high-efficiency optical training of magnetic domain formation in the two-dimensional van der Waals magnet Fe3GeTe2 during zero-field cooling. At ultralow power densities of around 20 µW µm−2, electrons excited by linearly polarized photons catalyse the formation of larger domains for both spin orientations. Furthermore, circularly polarized photons of the same low power density produce a single domain with its magnetization orientation determined by the optical helicity. We propose that the emergence of this single domain is caused by the optically injected spin-polarized electrons acting as initial magnetic seeds that guide different regions of the sample into the same spin orientation. Our work presents an unconventional route to tailoring spin textures in two-dimensional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thickness characterization of atomically thin FGT flakes and the schematic of the experimental set-up.
Fig. 2: Enlarged magnetic domain size in FGT by LP light incidence during ZFC.
Fig. 3: Controlling magnetic domains in FGT by CP light incidence during ZFC.
Fig. 4: Illustrations of the magnetic domain formation processes in a practical 2D magnet and the inhomogeneous magnetic properties of 2D FGT.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data relevant to this study are available from the corresponding author upon reasonable request.

Code availability

The data analysis computer codes used in this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Kardar, M. Statistical Physics of Fields (Cambridge Univ. Press, 2007).

  2. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  ADS  Google Scholar 

  3. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  ADS  Google Scholar 

  4. Fu, L. & Kane, C. L. Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett. 100, 096407 (2008).

    Article  ADS  Google Scholar 

  5. Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article  ADS  Google Scholar 

  6. Wang, Y. et al. Strain-sensitive magnetization reversal of a van der Waals magnet. Adv. Mater. 32, 2004533 (2020).

    Article  Google Scholar 

  7. Zhang, X. et al. Gate-tunable spin waves in antiferromagnetic atomic bilayers. Nat. Mater. 19, 838–842 (2020).

    Article  ADS  Google Scholar 

  8. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  ADS  Google Scholar 

  9. Jin, C. et al. Imaging and control of critical fluctuations in two-dimensional magnets. Nat. Mater. 19, 1290–1294 (2020).

    Article  ADS  Google Scholar 

  10. Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226–229 (2005).

    Article  ADS  Google Scholar 

  11. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  ADS  Google Scholar 

  12. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  Google Scholar 

  13. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  ADS  Google Scholar 

  14. May, A. F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 13, 4436–4442 (2019).

    Article  Google Scholar 

  15. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  Google Scholar 

  16. Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  ADS  Google Scholar 

  17. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  ADS  Google Scholar 

  18. Zheng, G. L. et al. Gate-tuned interlayer coupling in van der Waals ferromagnet Fe3GeTe2 nanoflakes. Phys. Rev. Lett. 125, 047202 (2020).

    Article  ADS  Google Scholar 

  19. Liu, B. et al. Light-tunable ferromagnetism in atomically thin Fe3GeTe2 driven by femtosecond laser pulse. Phys. Rev. Lett. 125, 267205 (2020).

    Article  ADS  Google Scholar 

  20. Zhang, P. et al. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. 21, 1373–1378 (2022).

    Article  ADS  Google Scholar 

  21. Da̧browski, M. et al. All-optical control of spin in a 2D van der Waals magnet. Nat. Commun. 13, 5976 (2022).

    Article  ADS  Google Scholar 

  22. Yang, M. et al. Creation of skyrmions in van der Waals ferromagnet Fe3GeTe2 on (Co/Pd)n superlattice. Sci. Adv. 6, eabb5157 (2020).

    Article  ADS  Google Scholar 

  23. Zhao, B. et al. Room temperature spin-valve with van der Waals ferromagnet Fe5GeTe2/graphene heterostructure. Adv. Mater. 35, 2209113 (2023).

    Article  Google Scholar 

  24. Xu, S.-Y. et al. Spontaneous gyrotropic electronic order in a transition-metal dichalcogenide. Nature 578, 545–549 (2020).

    Article  ADS  Google Scholar 

  25. Qiu, J.-X. et al. Axion optical induction of antiferromagnetic order. Nat. Mater. 22, 583–590 (2023).

    Article  ADS  Google Scholar 

  26. Pershoguba, S. S. & Yakovenko, V. M. Optical control of topological memory based on orbital magnetization. Phys. Rev. B 105, 064423 (2022).

    Article  ADS  Google Scholar 

  27. Yu, T., Claassen, M., Kennes, D. M. & Sentef, M. A. Optical manipulation of domains in chiral topological superconductors. Phys. Rev. Res. 3, 013253 (2021).

    Article  Google Scholar 

  28. Kübler, J. Theory of Itinerant Electron Magnetism (Oxford Univ. Press, 2017).

  29. Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 9, 1554 (2018).

    Article  ADS  Google Scholar 

  30. Tu, Z. et al. Ambient effect on the Curie temperatures and magnetic domains in metallic two-dimensional magnets. npj 2D Mater. Appl. 5, 62 (2021).

    Article  Google Scholar 

  31. Tan, P. H. et al. The shear mode of multilayer graphene. Nat. Mater. 11, 294–300 (2012).

    Article  ADS  Google Scholar 

  32. Deiseroth, H.-J., Aleksandrov, K., Reiner, C., Kienle, L. & Kremer, R. K. Fe3GeTe2 and Ni3GeTe2—two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 1561–1567 (2006).

    Article  Google Scholar 

  33. Seo, J. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. 6, eaay8912 (2020).

    Article  ADS  Google Scholar 

  34. Stahl, J., Shlaen, E. & Johrendt, D. The van der Waals ferromagnets Fe5−δGeTe2 and Fe5−δxNixGeTe2—crystal structure, stacking faults, and magnetic properties. Z. Anorg. Allg. Chem. 644, 1923–1929 (2018).

    Article  Google Scholar 

  35. May, A. F., Calder, S., Cantoni, C., Cao, H. & McGuire, M. A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3−xGeTe2. Phys. Rev. B 93, 014411 (2016).

    Article  ADS  Google Scholar 

  36. Park, S. Y. et al. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping. Nano Lett. 20, 95–100 (2020).

    Article  ADS  Google Scholar 

  37. Kimel, A. V. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  ADS  Google Scholar 

  38. Choi, G. M., Schleife, A. & Cahill, D. G. Optical-helicity-driven magnetization dynamics in metallic ferromagnets. Nat. Commun. 8, 15085 (2017).

    Article  ADS  Google Scholar 

  39. Hassdenteufel, A. et al. Thermally assisted all-optical helicity dependent magnetic switching in amorphous Fe100−xTbx alloy films. Adv. Mater. 25, 3122–3128 (2013).

    Article  Google Scholar 

  40. Khorsand, A. R. et al. Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 108, 127205 (2012).

    Article  ADS  Google Scholar 

  41. Lui, C. H., Liu, L., Mak, K. F., Flynn, G. W. & Heinz, T. F. Ultraflat graphene. Nature 462, 339–341 (2009).

    Article  ADS  Google Scholar 

  42. Martin, J. et al. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2007).

    Article  Google Scholar 

  43. Gonzalez-Herrero, H. et al. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 352, 437–441 (2016).

    Article  ADS  Google Scholar 

  44. Davies, J. E. et al. Magnetization reversal of Co/Pt multilayers: microscopic origin of high-field magnetic irreversibility. Phys. Rev. B 70, 224434 (2004).

    Article  ADS  Google Scholar 

  45. Davies, J. E., Wu, J., Leighton, C. & Liu, K. Magnetization reversal and nanoscopic magnetic-phase separation in La1−xSrxCoO3. Phys. Rev. B 72, 134419 (2005).

    Article  ADS  Google Scholar 

  46. Gilbert, D. A. et al. Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves. Sci. Rep. 4, 4204 (2014).

    Article  Google Scholar 

  47. Mak, K. F. et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C.G. acknowledges the support from the Air Force Office of Scientific Research (FA9550-22-1-0349). Sample preparation carried out by T.X. was supported by the National Science Foundation (DMR-2340773 and FuSe-2425599). Optical characterizations and optical training were supported by the National Science Foundation (DMR-2326944 and ECCS-2429994). Work at GU was supported by the National Science Foundation (DMR-2005108 and ECCS-2429995). C.G. and T.X. are grateful for the helpful discussions with P. M. Haney and L. Yang. C.G. and T.X. appreciate T. E. Murphy for technical assistance in setting up optics. T.X. is grateful for the discussion with Z. Tu.

Author information

Authors and Affiliations

Authors

Contributions

C.G. conceived the project and designed experiments. T.X. conducted 2D sample exfoliation and RMCD measurements under C.G.’s supervision. T.X., D.B., K.L. and C.G. carried out the FORC studies. T.X. and C.G. analysed the data, with helpful discussion with Z.Q.Q. H.S.A. synthesized and characterized Fe3GeTe2 and Fe5GeTe2 crystals under the supervision of D.G.M. T.X., J.L. and C.G. wrote the paper, with helpful suggestions given by V.M.Y. All authors commented on the paper.

Corresponding author

Correspondence to Cheng Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Saroj Dash, Liuyan Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Notes 1–4.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Liang, J., Bhattacharya, D. et al. High-efficiency optical training of itinerant two-dimensional magnets. Nat. Phys. 21, 1118–1124 (2025). https://doi.org/10.1038/s41567-025-02928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02928-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing