Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measurement of phonon angular momentum

Abstract

In condensed matter, angular momentum is intimately related to the emergence of topological quantum states, including chiral superconductivity, quantum spin liquids and various chiral quasiparticles. Recently, it has been predicted that microscopic lattice excitations, known as phonons, can carry finite angular momentum, leading to specific physical properties of materials. However, phonon angular momentum has not yet been observed directly. Here we demonstrate that angular momentum conservation results in a macroscopic mechanical torque when applying a time-reversal symmetry-breaking thermal gradient along the chiral axis of single-crystal tellurium. We probe this torque using a cantilever-based device and establish that it changes sign by flipping the chirality or thermal gradient. This behavior disappears in polycrystalline samples that lack a preferred chirality. Our experimental results align well with theoretical calculations. We provide compelling evidence for phonon angular momentum, which might enable quantum states with potential applications in microelectronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The phonon AM-induced mechanical rotation and torque.
Fig. 2: Chirality-dependent phonon AM.
Fig. 3: Thermal gradient and temperature control of phonon AM.
Fig. 4: Chirality and thermal gradient dependence of τ.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Einstein, A. & de Haas, W. J. Experimental proof of the existence of Ampère’s molecular currents. KNAW Proc. 18, 696–711 (1915).

    Google Scholar 

  2. Scott, G. G. Review of gyromagnetic ratio experiments. Rev. Mod. Phys. 34, 102–109 (1962).

    Article  ADS  Google Scholar 

  3. Zhang, L. F. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).

    Article  ADS  Google Scholar 

  4. Hamada, M., Minamitani, E., Hirayama, M. & Murakami, S. Phonon angular momentum induced by the temperature gradient. Phys. Rev. Lett. 121, 175301 (2018).

    Article  ADS  Google Scholar 

  5. Romao, C. P., Catena, R., Spaldin, N. A. & Matas, M. Chiral phonons as dark matter detectors. Phys. Rev. Res. 5, 043262 (2023).

    Article  Google Scholar 

  6. Ren, Y. F., Xiang, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).

    Article  ADS  Google Scholar 

  7. Kim, K. et al. Chiral phonon activated spin Seeback effect. Nat. Mater. 22, 322–328 (2023).

    Article  ADS  Google Scholar 

  8. Basini, M. et al. Terahertz electric-field-driven dynamical multiferroicity in SrTiO3. Nature 628, 534–539 (2024).

    Article  Google Scholar 

  9. Ohe, K. et al. Chirality-induced selectivity of phonon angular momentum in chiral quartz crystals. Phys. Rev. Lett. 132, 056302 (2024).

    Article  ADS  Google Scholar 

  10. Chen et al. Chiral phonon diode effect in chiral cystals. Nano Lett. 4, 1688–1693 (2022).

  11. Liu, M. et al. Light-driven nanoscale plasmonic motors. Nat. Nanotech. 5, 570–573 (2010).

    Article  ADS  Google Scholar 

  12. Zhang, T. T., Murakami, S. & Miao, H. Topological and chiral phonons. Nat. Commun. 16, 3560 (2025).

    Article  ADS  Google Scholar 

  13. Zhang, T. T., Liu, Y., Miao, H. & Murakami, S. New advances in phonons: from band topology to quasiparticle chirality. Preprint at https://arxiv.org/abs/2505.06179 (2025).

  14. Alfonsov, A., Büchner, B. & Kataev, V. All-on-chip concurrent measurements of the static magnetization and of the electron spin resonance with microcantilevers. Appl. Magn. Reson. 53, 555–563 (2022).

    Article  Google Scholar 

  15. Fukuroi, T. & Muto, Y. Specific heat of tellurium and selenium at very low temperatures. Chem. Metall. 8, 213–222 (1956).

    Google Scholar 

  16. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  ADS  Google Scholar 

  17. Tang, F. et al. Three-dimensional quantum Hall effect and metal–insulator transition in ZrTe5. Nature 569, 537–541 (2019).

    Article  Google Scholar 

  18. Gooth, J. et al. Axionic charge density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019).

    Article  Google Scholar 

  19. Miao, H. et al. Spontaneous chirality flipping in an orthogonal spin-charged ordered topological magnet. Phys. Rev. X 14, 011053 (2024).

    Google Scholar 

  20. Yang, F., et al. Incommensurate transverse Peierls transition. Preprint at https://arxiv.org/abs/2410.10539 (2024).

  21. Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022).

    Article  Google Scholar 

  22. Choi, I. H. et al. Real-time dynamics of angular momentum transfer from spin to acoustic chiral phonon in oxide heterostructures. Nat. Nanotech. 19, 1277–1282 (2024).

    Article  ADS  Google Scholar 

  23. Grissonnanche, G. et al. Chiral phonons in the pseudogap phase of cuprates. Nat. Phys. 16, 1108–1111 (2020).

    Article  Google Scholar 

  24. Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    Article  ADS  Google Scholar 

  25. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  ADS  Google Scholar 

  26. Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

    Article  Google Scholar 

  27. Šmejkal, L. et al. Chiral magnons in altermagnetic RuO2. Phys. Rev. Lett. 131, 256703 (2023).

    Article  ADS  Google Scholar 

  28. Park, S. & Yang, B.-J. Phonon angular momentum Hall effect. Nano Lett. 20, 7694–7699 (2020).

    Article  ADS  Google Scholar 

  29. Wen, X. G., Wilczek, F. & Zee, A. Chiral spin states and superconductivity. Phys. Rev. B 39, 11413 (1989).

    Article  ADS  Google Scholar 

  30. Kitaev, A. Y. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  31. Ideue, T. et al. Pressure-induced topological phase transition in noncentrosymmetric element tellurium. Proc. Natl Acad. Sci. USA 116, 25530 (2019).

    Article  ADS  Google Scholar 

  32. Koma, A. & Tanaka, S. Etch pits and crystal structure of tellurium. Phys. Stat. Sol. 40, 239–248 (1970).

    Article  ADS  Google Scholar 

  33. Ades, S. & Champnes, C. H. Optical activity of tellurium to 20 μm. J. Opt. Soc. Am. 65, 217–218 (1975).

    Article  ADS  Google Scholar 

  34. Furukawa, T. et al. Current induced magnetization caused by crystal chirality in nonmagnetic elemental tellurium. Phys. Rev. Res. 3, 023111 (2021).

    Article  Google Scholar 

  35. Spirito, D., Marras, S. & Martin-Garcia, B. Lattice dynamics in chiral tellurium by linear and circularly polarized Raman spectroscopy: crystal orientation and handedness. J. Mater. Chem. C 12, 2544 (2024).

    Article  Google Scholar 

  36. Streib, S. Difference between angular momentum and pseudoangular momentum. Phys. Rev. B 103, L100409 (2021).

    Article  ADS  Google Scholar 

  37. Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

    Article  ADS  Google Scholar 

  38. Zhang, T. & Murakami, S. Chiral phonons and pseudoangular momentum in nonsymmorphic systems. Phys. Rev. Res. 4, L012024 (2022).

    Article  Google Scholar 

  39. Zhu, H. et al. Observation of chiral phonons. Science 359, 579 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  40. Miao, H. et al. Observation of double Weyl phonons in parity-breaking FeSi. Phys. Rev. Lett. 121, 035302 (2018).

    Article  ADS  Google Scholar 

  41. Ishito, K. et al. Truly chiral phonons in α-HgS. Nat. Phys. 19, 35–39 (2023).

    Google Scholar 

  42. Ueda, H. et al. Chiral phonons in quartz probed by x-rays. Nature 618, 946–950 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Christianson, C. Hua, R. Hermann, A. May, M. McGuire, B. Sales, R. Zhang and T. Zhang for stimulating discussions. This research (torque measurement, crystal growth and part of the numerical calculations) was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. N.P. and Y.Z. (numerical calculations) were supported by the Max Planck Partner laboratory for quantum materials of the Max Planck Institute Chemical Physics of Solids.

Author information

Authors and Affiliations

Authors

Contributions

H.M. conceived of the project. H.Z. designed and performed the experiments with help from F.Y., T.Z.W., J.-Q.Y. and H.M. N.P. and Y.Z. performed the theoretical calculations. H.Z., P.R., L.L., C.F., Y.Z., J.-Q.Y. and H.M. analysed and interpreted the experimental data. H.Z., Y.Z. and H.M. wrote the paper with input from all authors.

Corresponding authors

Correspondence to H. Zhang, Yang Zhang, J.-Q. Yan or H. Miao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Chirality of Te single crystals.

Etching image on fresh surfaces of right-handed (a) and left-handed (b) Te samples for the torque measurements. Red and cyan ‘4-shaped’ polygons represent characteristic features for right- and left-handed Te single crystals, respectively.

Extended Data Fig. 2 Calibration of temperature gradient.

(a) A typical pulse of sample temperature measurement in the dummy-setup. (b) The measured temperature gradient at various temperatures for the dummy-setup. (c) The calculated \(\nabla\)T for the cantilever-setup. The power density, \(J=\left(\frac{{\rm{P}}}{{\rm{A}}}\right)\), where P and A stand for the laser power and sample cross-area, respectively.

Source data

Extended Data Fig. 3 Torque response of right-handed Te single crystal.

Position dependent scan of thermally activated torque response for a right-handed Te single crystal.

Source data

Extended Data Fig. 4 Laser power (P) dependence of τ.

Cantilevers 1 and 2 show opposite torque. The magnitude of τ approximately follows a linear dependence of laser power and consistent with the theoretical estimation of Eq. (4), δJphT.

Source data

Supplementary information

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Extended Data Fig./Table 2

Statistical source data.

Source Data Extended Data Fig./Table 3

Statistical source data.

Source Data Extended Data Fig./Table 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Peshcherenko, N., Yang, F. et al. Measurement of phonon angular momentum. Nat. Phys. 21, 1387–1391 (2025). https://doi.org/10.1038/s41567-025-02952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02952-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing