Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stable singular fractional skyrmion spin texture from the quantum Kelvin–Helmholtz instability

Abstract

Topological defects give rise to non-trivial excitations—such as solitons, vortices and skyrmions—characterized by integer-valued topological charges. However, their classification becomes difficult when singularities are present in the order parameter field, complicating the computation of these charges. Although exotic nonlinear excitations have been theoretically proposed in the superfluid 3He-A phase and spinor Bose–Einstein condensates, they have not been experimentally observed and their stability has not been investigated. Here we demonstrate the presence of a singular skyrmion that goes beyond the framework of topology in a ferromagnetic superfluid. These skyrmions emerge from anomalous symmetry-breaking associated with an eccentric spin singularity and carry half the elementary charge—a feature that distinguishes them from conventional skyrmions and merons. We realize the universal regime of the quantum Kelvin–Helmholtz instability, and we identify the unconventional fractional skyrmions produced by emission from a magnetic domain wall and the spontaneous splitting of an integer skyrmion with spin singularities. The singular skyrmions are stable even after 2 s of hold time. Our results confirm the universality between classical and quantum Kelvin–Helmholtz instabilities and broaden our understanding of complex nonlinear dynamics for a non-trivial texture in topological quantum systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EFSs from the quantum KHI.
Fig. 2: The quantum KHI.
Fig. 3: Nonlinear dynamics after the KHI.
Fig. 4: Eccentric fractional skyrmion.
Fig. 5: The birth and death of the EFS.

Similar content being viewed by others

Data availability

The data are available from the corresponding authors. Source data are provided with this paper.

References

  1. Stegeman, G. & Segev, M. Optical spatial solitons and their interactions: universality and diversity. Science 286, 1518–1523 (1999).

    Article  Google Scholar 

  2. Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  3. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  ADS  Google Scholar 

  4. Nakahara, M. Geometry, Topology and Physics (CRC, 2018).

  5. Skyrme, T. H. R. A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962).

    Article  MathSciNet  Google Scholar 

  6. Essmann, U. & Träuble, H. The direct observation of individual flux lines in type II superconductors. Phys. Lett. A 24, 526–527 (1967).

    Article  ADS  Google Scholar 

  7. Williams, G. A. & Packard, R. E. Photographs of quantized vortex lines in rotating He ii. Phys. Rev. Lett. 33, 280–283 (1974).

    Article  ADS  Google Scholar 

  8. Parts, Ü. et al. Phase diagram of vortices in superfluid 3He-A. Phys. Rev. Lett. 75, 3320–3323 (1995).

    Article  ADS  Google Scholar 

  9. Karimäki, J. M. & Thuneberg, E. V. Periodic vortex structures in superfluid 3He-A. Phys. Rev. B 60, 15290–15301 (1999).

    Article  ADS  Google Scholar 

  10. Takeuchi, H. Spin-current instability at a magnetic domain wall in a ferromagnetic superfluid: a generation mechanism of eccentric fractional skyrmions. Phys. Rev. A 105, 013328 (2022).

    Article  ADS  Google Scholar 

  11. Thomson, W. XLVI. Hydrokinetic solutions and observations. Philos. Mag. 42, 362–377 (1871).

    Article  Google Scholar 

  12. von Helmholtz, H. On the discontinuous movements of fluids. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36, 337–346 (1868).

    Article  Google Scholar 

  13. Smyth, W. D. & Moum, J. N. Ocean mixing by Kelvin-Helmholtz instability. Oceanography 25, 140–149 (2012).

    Article  Google Scholar 

  14. Delamere, P. A. & Bagenal, F. Solar wind interaction with Jupiter’s magnetosphere. J. Geophys. Res. 115, 10201 (2010).

    Article  Google Scholar 

  15. Blaauwgeers, R. et al. Shear flow and Kelvin-Helmholtz instability in superfluids. Phys. Rev. Lett. 89, 155301 (2002).

    Article  ADS  Google Scholar 

  16. Volovik, G. E. On the Kelvin-Helmholtz instability in superfluids. JETP Lett. 75, 418–422 (2002).

    Article  ADS  Google Scholar 

  17. Finne, A. et al. Dynamics of vortices and interfaces in superfluid 3He. Rep. Prog. Phys. 69, 3157 (2006).

    Article  ADS  Google Scholar 

  18. Takeuchi, H., Suzuki, N., Kasamatsu, K., Saito, H. & Tsubota, M. Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates. Phys. Rev. B 81, 094517 (2010).

    Article  ADS  Google Scholar 

  19. Suzuki, N., Takeuchi, H., Kasamatsu, K., Tsubota, M. & Saito, H. Crossover between Kelvin-Helmholtz and counter-superflow instabilities in two-component Bose-Einstein condensates. Phys. Rev. A 82, 063604 (2010).

    Article  ADS  Google Scholar 

  20. Baggaley, A. W. & Parker, N. G. Kelvin-Helmholtz instability in a single-component atomic superfluid. Phys. Rev. A 97, 053608 (2018).

    Article  ADS  Google Scholar 

  21. Kokubo, H., Kasamatsu, K. & Takeuchi, H. Pattern formation of quantum Kelvin-Helmholtz instability in binary superfluids. Phys. Rev. A 104, 023312 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  22. Kokubo, H., Kasamatsu, K. & Takeuchi, H. Vorticity distribution in quantum Kelvin–Helmholtz instability of binary Bose–Einstein condensates. J. Low Temp. Phys. 208, 410–417 (2022).

    Article  ADS  Google Scholar 

  23. Mukherjee, B. et al. Crystallization of bosonic quantum Hall states in a rotating quantum gas. Nature 601, 58–62 (2022).

    Article  ADS  Google Scholar 

  24. Hernandez-Rajkov, D. et al. Connecting shear flow and vortex array instabilities in annular atomic superfluids. Nat. Phys. 20, 939–944 (2024).

    Article  Google Scholar 

  25. Volovik, G. E. Superfluids in rotation: Landau-Lifshitz vortex sheets vs Onsager-Feynman vortices. Phys.-Uspekhi 58, 897 (2015).

    Article  ADS  Google Scholar 

  26. Parts, Ü. et al. Vortex sheet in rotating superfluid 3He-A. Phys. Rev. Lett. 72, 3839–3842 (1994).

    Article  ADS  Google Scholar 

  27. Parts, Ü. et al. Bragg reflection from equidistant planes of vortex sheets in rotating 3He-A. Pisma ZhETF 59, 816–820 (1994).

    Google Scholar 

  28. Eltsov, V. B. et al. Transitions from vortex lines to sheets: interplay of topology and dynamics in an anisotropic superfluid. Phys. Rev. Lett. 88, 065301 (2002).

    Article  ADS  Google Scholar 

  29. Hänninen, R. et al. Structure of the surface vortex sheet between two rotating 3He superfluids. Phys. Rev. Lett. 90, 225301 (2003).

    Article  ADS  Google Scholar 

  30. Kasamatsu, K., Tsubota, M. & Ueda, M. Vortex phase diagram in rotating two-component Bose-Einstein condensates. Phys. Rev. Lett. 91, 150406 (2003).

    Article  ADS  Google Scholar 

  31. Kasamatsu, K. & Tsubota, M. Vortex sheet in rotating two-component Bose-Einstein condensates. Phys. Rev. A 79, 023606 (2009).

    Article  ADS  Google Scholar 

  32. Williamson, L. A. & Blakie, P. B. Universal coarsening dynamics of a quenched ferromagnetic spin-1 condensate. Phys. Rev. Lett. 116, 025301 (2016).

    Article  ADS  Google Scholar 

  33. Huh, S. et al. Universality class of a spinor Bose-Einstein condensate far from equilibrium. Nat. Phys. 20, 402–408 (2024).

    Article  Google Scholar 

  34. Mermin, N. D. & Ho, T.-L. Circulation and angular momentum in the A phase of superfluid helium-3. Phys. Rev. Lett. 36, 594–597 (1976).

    Article  ADS  Google Scholar 

  35. Salomaa, M. M. & Volovik, G. E. Quantized vortices in superfluid 3He. Rev. Mod. Phys. 59, 533–613 (1987).

    Article  ADS  Google Scholar 

  36. Takeuchi, H. Quantum elliptic vortex in a nematic-spin Bose-Einstein condensate. Phys. Rev. Lett. 126, 195302 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  37. Takeuchi, H. Phase diagram of vortices in the polar phase of spin-1 Bose-Einstein condensates. Phys. Rev. A 104, 013316 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  38. Isoshima, T., Machida, K. & Ohmi, T. Quantum vortex in a spinor Bose-Einstein condensate. J. Phys. Soc. Jpn 70, 1604 (2001).

    Article  ADS  Google Scholar 

  39. Cladé, P., Ryu, C., Ramanathan, A., Helmerson, K. & Phillips, W. D. Observation of a 2D Bose gas: from thermal to quasicondensate to superfluid. Phys. Rev. Lett. 102, 170401 (2009).

    Article  ADS  Google Scholar 

  40. Kwon, W. J., Moon, G., Choi, J.-y, Seo, S. W. & Shin, Y.-i Relaxation of superfluid turbulence in highly oblate Bose-Einstein condensates. Phys. Rev. A 90, 063627 (2014).

    Article  ADS  Google Scholar 

  41. Kobyakov, D., Bezett, A., Lundh, E., Marklund, M. & Bychkov, V. Turbulence in binary Bose-Einstein condensates generated by highly nonlinear Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Phys. Rev. A 89, 013631 (2014).

    Article  ADS  Google Scholar 

  42. Henn, E. A. L., Seman, J. A., Roati, G., Magalhães, K. M. F. & Bagnato, V. S. Emergence of turbulence in an oscillating Bose-Einstein condensate. Phys. Rev. Lett. 103, 045301 (2009).

    Article  ADS  Google Scholar 

  43. Navon, N., Gaunt, A. L., Robert, P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 539, 72–75 (2016).

    Article  ADS  Google Scholar 

  44. Gałka, M. et al. Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett. 129, 190402 (2022).

    Article  ADS  Google Scholar 

  45. Hong, D. et al. Spin-driven stationary turbulence in spinor Bose-Einstein condensates. Phys. Rev. A 108, 013318 (2023).

    Article  ADS  Google Scholar 

  46. Fujimoto, K. & Tsubota, M. Spin turbulence in a trapped spin-1 spinor Bose-Einstein condensate. Phys. Rev. A 85, 053641 (2012).

    Article  ADS  Google Scholar 

  47. Tsubota, M., Aoki, Y. & Fujimoto, K. Spin-glass-like behavior in the spin turbulence of spinor Bose-Einstein condensates. Phys. Rev. A 88, 061601 (2013).

    Article  ADS  Google Scholar 

  48. Schweikhard, V. et al. Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates. Phys. Rev. Lett. 93, 210403 (2004).

    Article  ADS  Google Scholar 

  49. Kasamatsu, K., Tsubota, M. & Ueda, M. Vortex molecules in coherently coupled two-component Bose-Einstein condensates. Phys. Rev. Lett. 93, 250406 (2004).

    Article  ADS  Google Scholar 

  50. Huh, S., Kim, K., Kwon, K. & Choi, J.-y Observation of a strongly ferromagnetic spinor Bose-Einstein condensate. Phys. Rev. Res. 2, 033471 (2020).

    Article  Google Scholar 

  51. Kawaguchi, Y. & Ueda, M. Spinor Bose-Einstein condensates. Phys. Rep. 520, 253–381 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  52. Choi, J.-y, Seo, S. W., Kwon, W. J. & Shin, Y.-i Probing phase fluctuations in a 2D degenerate Bose gas by free expansion. Phys. Rev. Lett. 109, 125301 (2012).

    Article  ADS  Google Scholar 

  53. Kawaguchi, Y., Saito, H., Kudo, K. & Ueda, M. Spontaneous magnetic ordering in a ferromagnetic spinor dipolar Bose-Einstein condensate. Phys. Rev. A 82, 043627 (2010).

    Article  ADS  Google Scholar 

  54. Gudnason, S. B. & Speight, J. M. Realistic classical binding energies in the ω-Skyrme model. J. High Energy Phys. 2020, 184 (2020).

    Article  MathSciNet  Google Scholar 

  55. Leiler, G. & Rezzolla, L. Iterated Crank-Nicolson method for hyperbolic and parabolic equations in numerical relativity. Phys. Rev. D 73, 044001 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  56. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  Google Scholar 

  57. Shin, Y. et al. Dynamical instability of a doubly quantized vortex in a Bose-Einstein condensate. Phys. Rev. Lett. 93, 160406 (2004).

    Article  ADS  Google Scholar 

  58. Weiss, L. S. et al. Controlled creation of a singular spinor vortex by circumventing the Dirac belt trick. Nat. Commun. 10, 4772 (2019).

    Article  ADS  Google Scholar 

  59. Becker, C. et al. Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates. Nat. Phys. 4, 496–501 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with G. E. Volovik, W. J. Kwon, M. O. Borgh and Y. Shin. J.-y.C. acknowledges grants from the National Research Foundation of Korea (NRF) (Project Nos. RS-2023-00207974, RS-2023-00218998, RS-2023-00256050, RS-2023-NR119928 and 2023M3K5A1094812). W.Y. and S.K.K. acknowledge support from the Brain Pool Plus Program through the NRF funded by the Ministry of Science and ICT (Grant No. 2020H1D3A2A03099291) and the NRF (Grant No. 2021R1C1C1006273). H.T. acknowledges suppors from the JST, Japan (PRESTO Grant No. JPMJPR23O5) and JSPS (KAKENHI Grants No. JP18KK0391 and JP20H01842).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the work presented in this paper. J.-y.C., S.-J.H., S.K.K. and H.T. conceived and supervised the project. S.-J.H., G.Y. and S.H. carried out the experiment. S.-J.H., S.H., K.K. and J.H. maintained the experimental apparatus, and W.Y. and S.L. performed the numerical simulation. All authors contributed to the data analysis, discussion of the results and writing of the paper.

Corresponding authors

Correspondence to Hiromitsu Takeuchi, Se Kwon Kim or Jae-yoon Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Experiments of the quantum Kelvin-Helmholtz instability.

a, Schematic plot of the experimental sequence (not in scale). It consists of four different time zones: degenerate gas production, domain wall preparation, counterflow injection, and hold time without field gradient. b, Optical density image of the polar condensate before quenching the quadratic Zeeman energy (QZE). A field gradient \({B}_{{\rm{DW}}}^{{\prime} }\) is applied along the y-axis to prepare a well-aligned single-domain wall state during the coarsening dynamics. The counterflow in the interface layer is generated by different gradient fields \({B}_{c}^{{\prime} }\) along the x-axis. c, The snapshot images of longitudinal magnetization distribution Fz during the experimental sequences. The gradient pulse also introduces a rotational motion of the DW boundary. After a hold time of (th = 30 ms), flutter-finger patterns are well developed. The scale bar corresponds to 100 μm.

Extended Data Fig. 2 Broken-axis core domain wall.

a, Longitudinal magnetization density Fz of the broken-axis (BA) core domain wall state at q/h = − 20 Hz. b, Density profile the spin \(| 0\rangle\) state, and c, its transverse magnetization density Fx of the BA-core domain wall. The transverse magnetization Fx turns its sign at the Bloch line. The Bloch line is represented as the opposite spin vector in the transverse magnetization. d, Central cross-section profile of the longitudinal magnetization (yellow dashed line in a). e-g, BA-core domain wall without the Bloch line. The transverse spin vector points in the same direction. h, The histogram of the spin-flip occurrence at the interfaces of the domain wall.

Source data

Extended Data Fig. 3 Data analysis for Kelvin-Helmholtz instability.

a, Exemplary image of longitudinal magnetization Fz, displaying the flutter-finger pattern. b, Trajectory of domain wall in (a), which is obtained by finding the points where Fz(rDW) = 0. c, The height difference from the linear fit results as a function of the projected distance along the fitted line. d, Spline interpolated power spectrum of the interface modulation. e, Averaged power spectrum of domain wall waves for various pulse durations.

Source data

Extended Data Fig. 4 Numerical simulation of the Kelvin-Helmholtz instability and EFS pair generation.

a-d, Longitudinal spin density Fz at different hold times t. Because of the harmonic potential, the domain wall axis rotates. b, The KHI is represented as the Flutter-Finger pattern at t = 0.08 s. c, At a later time, a single magnetic droplet is emitted from the fingertip (yellow box), d, and split into two magnetic droplets like in the experiment. e, The Zoomed plot for local spin vector, f, longitudinal spin density Fz, and g, density distribution n0 of spin \(| 0\rangle\) state for c and d. The yellow circles indicate the region where the BEC is in the local antiferromagnetic phase with zero spin density. h, After 25 ms, two EFSs with the same spin vorticity are generated from the skyrmion-like spin texture. As a result, i, two magnetic droplets and j, two ‘C’ shapes are observed in the Fz and n0, respectively. The spin singular points in e and h are present at the same locations as the dark nodes of the ‘C’ shape in g and i, respectively. One can find the movie files of the numeric simulation for Fz and n0 in the OSF storage (https://osf.io/4hk9v/files/osfstorage?view_only=).

Extended Data Fig. 5 Spin singularity along the domain wall.

a, Longitudinal magnetization after applying gradient pulse. b, Absorption image of the spin \(| 0\rangle\) state. Anti-ferromagnetic spin singular point is highlighted by the white circle. c, Density profile of the along the domain wall. Density dips (red arrows) denote the singular point.

Source data

Extended Data Fig. 6 Matter-wave interference using two-photon Raman transition.

a, Schematic diagram of Raman transition. All Raman beams are 4 GHz red detuned to D1 transition line, and the frequency difference is set to Δν = ν1ν2 = 803.8 MHz, corresponding to the hyperfine splitting between the \(\left\vert 1,1\right\rangle\) and \(\left\vert 2,2\right\rangle\) states. The laser beams have linlin configuration and their beam waist are 1 mm, larger than the condensate diameter (~ 300 μm). b, Experimental sequence for matter-wave interference. We first apply the π/2 pulse of the Raman transition with a counterpropagating configuration (k, − k). Then, the copy of condensate in \(\left\vert 2,2\right\rangle\) state can move along the direction of Raman lasers with a photon recoil momentum 2k. Having a time interval of ΔtR = 200μs between the two Raman pulses, the condensates in each hyperfine spin state have Δr = 34 μm of spatial displacement. The sequence ends with applying the second π/2 pulse of Raman beams with its mutual angle of 3. The difference in photon recoil momentum from the Raman pulse results in the spatial modulation in the atomic density profile. c, When the condensate contains EFS, the spin \(| 1\rangle\) state contains unity charge vortex. After the matter-wave interference, it displays two Y-shaped patterns because of the finite displacement Δr.

Extended Data Fig. 7 Eccentric fractional skyrmions.

Representative experimental images of showcasing the EFS. At a fixed hold time ts = 60 ms, we repeat the experiment at the same experimental conditions and measure the density profiles of all spin states and spin \(| 1\rangle\) state after two-photon Raman interference. a-e, Longitudinal magnetization, f-j,\(| 0\rangle\) state density, and k-p, interference pattern in the \(| 1\rangle\) state. Images in each column are measured in the same experimental sequence. Yellow boxes represent the same area, and yellow arrows indicate the spin singular point. The mass vorticity is represented in the Y-shaped patterns in (k-p), highlighted with yellow lines.

Extended Data Fig. 8 Classifying spin textures.

By measuring the density (top row) and relative phase information (bottom row) in the \(| 1\rangle\) state simultaneously, the magnetic droplets can be categorized to have different types of spin textures: a, trivial (Nv = 0, straight interference fringe) b, EFS (Nv = 1, Y-shaped pattern) c, and integer skyrmion (Nv = 2, fork-shaped pattern).

Extended Data Fig. 9 Spin texture after 2s of hold time.

a, Longitudinal magnetization, Fz, b, interference pattern in the \(| 1\rangle\) spin state, and c, angular density distribution of the \(| 0\rangle\) state at the domain wall boundary Fz = 0. Inset image displays the density profile, and yellow boxes correspond to the same region. d,e, Longitudinal magnetization and f,g, Raman interference images with EFS after 2 s of hold time. The EFS can be survived even after 2s (a-c) or lost by drifting outside of the condensate (d,f) or decay to a vortex without a magnetic core (e,f).

Source data

Source data

Source Data Fig. 2

Source data for Fig. 2c–f.

Source Data Fig. 4

Source data for Fig. 4c.

Source Data Fig. 5

Source data for Fig. 5a,b.

Source Data Extended Data Fig. 2

Source data for Extended Data Fig. 2d,h.

Source Data Extended Data Fig. 3

Source data for Extended Data Fig. 3c,d,f.

Source Data Extended Data Fig. 5

Source data for Extended Data Fig. 5c.

Source Data Extended Data Fig. 9

Source data for Extended Data Fig. 9c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huh, S., Yun, W., Yun, G. et al. Stable singular fractional skyrmion spin texture from the quantum Kelvin–Helmholtz instability. Nat. Phys. 21, 1398–1403 (2025). https://doi.org/10.1038/s41567-025-02982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02982-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing