Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flexoelectricity and surface ferroelectricity of water ice

Abstract

Frozen water at ambient pressure—common ice, also known as hexagonal Ih ice—is a non-polar material, even though individual water molecules are polar. Consequently, ice is not piezoelectric and cannot generate electricity under pressure. However, it may in principle generate electricity under bending, because the coupling between polarization and strain gradient (flexoelectricity) is always allowed by symmetry. Here we measure the flexoelectricity of ice and find it to be comparable to that of benchmark electroceramics such as TiO2 and SrTiO3. Moreover, the sensitivity of flexoelectric measurements to surface boundary conditions has revealed a ferroelectric phase transition around 160 K confined within the near-surface region of the ice slabs. Beyond potential applications in low-cost transducers made in situ in cold locations, these findings have profound consequences for our understanding of natural phenomena involving ice: our calculations of the flexoelectric charge density generated in ice–graupel collisions inside thunderstorm clouds compare favourably to the experimental charge transferred in such events, suggesting a possible participation of ice flexoelectricity in the generation of lightning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up for measuring ice flexoelectricity.
Fig. 2: Temperature dependence of the flexoelectricity and mechanical properties of ice.
Fig. 3: Surface contribution to enhanced flexoelectricity.
Fig. 4: Ab initio simulations of interfaces between metal electrodes and 0001-oriented ice.
Fig. 5: Flexoelectricity in ice electrification events.

Similar content being viewed by others

Data availability

The data that support this study are available via figshare at https://doi.org/10.6084/m9.figshare.29378186 (ref. 76). Source data are provided with this paper.

References

  1. Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885–944 (2012).

    Article  ADS  Google Scholar 

  2. Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

    Article  ADS  Google Scholar 

  3. Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).

    Article  Google Scholar 

  4. Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article  ADS  Google Scholar 

  5. Petrenko, V. F. & Whitworth, R. W. Physics of Ice (OUP Oxford, 1999).

  6. Salzmann, C. G. Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys. 150, 060901 (2019).

    Article  ADS  Google Scholar 

  7. Rosu-Finsen, A. et al. Medium-density amorphous ice. Science 379, 474–478 (2023).

    Article  ADS  Google Scholar 

  8. Xu, P. et al. Elastic ice microfibers. Science 373, 187–192 (2021).

    Article  ADS  Google Scholar 

  9. Saunders, C. in Planetary Atmospheric Electricity (eds LeBlanc, F. et al.) 335–353 (Springer, 2008); https://doi.org/10.1007/978-0-387-87664-1_22

  10. Dash, J. G., Rempel, A. W. & Wettlaufer, J. S. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78, 695–741 (2006).

    Article  ADS  Google Scholar 

  11. Thiel, D. V. Electromagnetic emission (EME) from ice crack formation: preliminary observations. Cold Reg. Sci. Technol. 21, 49–60 (1992).

    Article  Google Scholar 

  12. Fifolt, D. A., Petrenko, V. F. & Schulson, E. M. Preliminary study of electromagnetic emissions from cracks in ice. Philos. Mag. B 67, 289–299 (1993).

    Article  ADS  Google Scholar 

  13. Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu Rev. Mater. Sci. 43, 387–421 (2013).

    Article  ADS  Google Scholar 

  14. Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    Article  ADS  Google Scholar 

  15. Deng, Q., Liu, L. P. & Sharma, P. Flexoelectricity in soft materials and biological membranes. J. Mech. Phys. Solids 62, 209–227 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Narvaez, J., Vasquez-Sancho, F. & Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 538, 219–221 (2016).

    Article  ADS  Google Scholar 

  17. Yang, M. M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

    Article  ADS  Google Scholar 

  18. Vasquez-Sancho, F., Abdollahi, A., Damjanovic, D. & Catalan, G. Flexoelectricity in bones. Adv. Mater. 30, 1705316 (2018).

    Article  Google Scholar 

  19. Shu, L. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 19, 605–609 (2020).

    Article  ADS  Google Scholar 

  20. Torbati, M., Mozaffari, K., Liu, L. & Sharma, P. Coupling of mechanical deformation and electromagnetic fields in biological cells. Rev. Mod. Phys. 94, 025003 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  21. Peng, W. et al. Flexoelectric polarizing and control of a ferromagnetic metal. Nat. Phys. 20, 450–455 (2024).

    Article  Google Scholar 

  22. Slater, B. & Michaelides, A. Surface premelting of water ice. Nat. Rev. Chem. 3, 172–188 (2019).

    Article  Google Scholar 

  23. Ribeiro, I. D. A. & Koning, M. D. Grain-boundary sliding in ice Ih: tribology and rheology at the nanoscale. J. Phys. Chem. C 125, 627–634 (2021).

    Article  Google Scholar 

  24. Ma, Q., Wen, X., Lv, L., Deng, Q. & Shen, S. On the flexoelectric-like effect of Nb-doped SrTiO3 single crystals. Appl. Phys. Lett. 123, 082902 (2023).

    Article  ADS  Google Scholar 

  25. Zubko, P., Catalan, G., Buckley, A., Welche, P. R. & Scott, J. F. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

    Article  ADS  Google Scholar 

  26. Vales-Castro, P. et al. Flexoelectricity in antiferroelectrics. Appl. Phys. Lett. https://doi.org/10.1063/1.5044724 (2018).

  27. Ma, W. & Cross, L. E. Flexoelectricity of barium titanate. Appl Phys. Lett. 88, 232902 (2006).

    Article  ADS  Google Scholar 

  28. Narvaez, J. & Catalan, G. Origin of the enhanced flexoelectricity of relaxor ferroelectrics. Appl. Phys. Lett. https://doi.org/10.1063/1.4871686 (2014).

  29. Mishima, O., Calvert, L. & Whalley, E. ‘Melting ice’I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984).

    Article  ADS  Google Scholar 

  30. Garg, A. K. High-pressure Raman spectroscopic study of the ice Ih → ice IX phase transition. Phys. Status Solidi a 110, 467–480 (1988).

    Article  ADS  Google Scholar 

  31. Su, X. C., Lianos, L., Shen, Y. R. & Somorjai, G. A. Surface-induced ferroelectric ice on Pt(111). Phys. Rev. Lett. 80, 1533–1536 (1998).

    Article  ADS  Google Scholar 

  32. Sugimoto, T., Aiga, N., Otsuki, Y., Watanabe, K. & Matsumoto, Y. Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in a heteroepitaxial ice film. Nat. Phys. 12, 1063–1068 (2016).

    Article  Google Scholar 

  33. Aiga, N., Sugimoto, T., Otsuki, Y., Watanabe, K. & Matsumoto, Y. Origins of emergent high-Tc ferroelectric ordering in heteroepitaxial ice films: sum-frequency generation vibrational spectroscopy of H2O and D2O ice films on Pt(111). Phys. Rev. B https://doi.org/10.1103/PhysRevB.97.075410 (2018).

  34. Shen, S. & Hu, S. A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Tagantsev, A. K. & Yurkov, A. S. Flexoelectric effect in finite samples. J. Appl. Phys. 112, 044103 (2012).

    Article  ADS  Google Scholar 

  36. Stengel, M. Surface control of flexoelectricity. Phys. Rev. B 90, 201112 (2014).

    Article  ADS  Google Scholar 

  37. Narvaez, J., Saremi, S., Hong, J., Stengel, M. & Catalan, G. Large flexoelectric anisotropy in paraelectric barium titanate. Phys. Rev. Lett. 115, 037601 (2015).

    Article  ADS  Google Scholar 

  38. Martí, X. et al. Skin layer of BiFeO3 single crystals. Phys. Rev. Lett. 106, 236101 (2011).

    Article  ADS  Google Scholar 

  39. Zhang, X. et al. Large flexoelectriclike response from the spontaneously polarized surfaces in ferroelectric ceramics. Phys. Rev. Lett. 121, 057602 (2018).

    Article  ADS  Google Scholar 

  40. Pan, D. et al. Surface energy and surface proton order of ice Ih. Phys. Rev. Lett. 101, 155703 (2008).

    Article  ADS  Google Scholar 

  41. Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729–4733 (1977).

    Article  ADS  Google Scholar 

  42. Buser, O. & Aufdermaur, A. in Electrical Processes in Atmospheres (eds Dolezalek, H., Reiter, R. & Landsberg, H. E.) 294–301 (Springer, 1976).

  43. Mazzega, E., del Pennino, U., Loria, A. & Mantovani, S. Volta effect and liquidlike layer at the ice surface. J. Chem. Phys. 64, 1028–1031 (1976).

    Article  ADS  Google Scholar 

  44. Batra, I. P. & Kleinman, L. Chemisorption of oxygen on aluminum surfaces. J. Electron Spectrosc. Relat. Phenom. 33, 175–241 (1984).

    Article  ADS  Google Scholar 

  45. Scott, J. F. Ferroelectrics go bananas. J. Phys. Condens. Matter https://doi.org/10.1088/0953-8984/20/02/021001 (2008).

  46. Pedroza, L. S., Poissier, A. & Fernandez-Serra, M. V. Local order of liquid water at metallic electrode surfaces. J. Chem. Phys. 142, 034706 (2015).

    Article  ADS  Google Scholar 

  47. Sugimoto, T. & Matsumoto, Y. Orientational ordering in heteroepitaxial water ice on metal surfaces. Phys. Chem. Chem. Phys. 22, 16453–16466 (2020).

    Article  Google Scholar 

  48. Poissier, A., Ganeshan, S. & Fernandez-Serra, M. The role of hydrogen bonding in water–metal interactions. Phys. Chem. Chem. Phys. 13, 3375–3384 (2011).

    Article  Google Scholar 

  49. Mizzi, C. A., Lin, A. Y. W. & Marks, L. D. Does flexoelectricity drive triboelectricity? Phys. Rev. Lett. 123, 116103 (2019).

    Article  ADS  Google Scholar 

  50. Mizzi, C. A. & Marks, L. D. When flexoelectricity drives triboelectricity. Nano Lett. 22, 3939–3945 (2022).

    Article  ADS  Google Scholar 

  51. Qiao, H. et al. Mixed triboelectric and flexoelectric charge transfer at the nanoscale. Adv. Sci. 8, 2101793 (2021).

    Article  Google Scholar 

  52. Kumar, M., Lim, J., Park, J.-Y. & Seo, H. Flexoelectric effect driven colossal triboelectricity with multilayer graphene. Curr. Appl. Phys. 32, 59–65 (2021).

    Article  ADS  Google Scholar 

  53. Lin, S., Zheng, M., Xu, L., Zhu, L. & Wang, Z. L. Electron transfer driven by tip-induced flexoelectricity in contact electrification. J. Phys. D 55, 315502 (2022).

    Article  ADS  Google Scholar 

  54. Olson, K. P. & Marks, L. D. What puts the ‘tribo’ in triboelectricity? Nano Lett. 24, 12299–12306 (2024).

    Article  ADS  Google Scholar 

  55. Sobarzo, J. C. et al. Spontaneous ordering of identical materials into a triboelectric series. Nature 638, 664–669 (2025).

    Article  ADS  Google Scholar 

  56. Milbrandt, J. A. & Morrison, H. Prediction of graupel density in a bulk microphysics scheme. J. Atmos. Sci. 70, 410–429 (2013).

    Article  ADS  Google Scholar 

  57. Wettlaufer, J. S. & Dash, J. G. Melting below zero. Sci. Am. 282, 50–53 (2000).

    Article  Google Scholar 

  58. Takahashi, T. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 35, 1536–1548 (1978).

    Article  ADS  Google Scholar 

  59. Gaskell, W. & Illingworth, A. Charge transfer accompanying individual collisions between ice particles and its role in thunderstorm electrification. Q. J. R. Meteorol. Soc. 106, 841–854 (1980).

    Article  ADS  Google Scholar 

  60. Williams, E. R. The tripole structure of thunderstorms. J. Geophys. Res. Atmos. 94, 13151–13167 (1989).

    Article  ADS  Google Scholar 

  61. Jayaratne, E., Saunders, C. & Hallett, J. Laboratory studies of the charging of soft-hail during ice crystal interactions. Q. J. R. Meteorol. Soc. 109, 609–630 (1983).

    ADS  Google Scholar 

  62. Keith, W. & Saunders, C. The effect of centrifugal acceleration on the charging of a riming hailstone. Meteorol. Atmos. Phys. 41, 55–61 (1989).

    Article  ADS  Google Scholar 

  63. Caranti, G., Avila, E. & Ré, M. Charge transfer during individual collisions in ice growing from vapor deposition. J. Geophys. Res. Atmos. 96, 15365–15375 (1991).

    Article  ADS  Google Scholar 

  64. Avila, E. E. & Caranti, G. M. A laboratory study of static charging by fracture in ice growing by riming. J. Geophys. Res. Atmos. 99, 10611–10620 (1994).

    Article  ADS  Google Scholar 

  65. Pereyra, R. G. & Avila, E. E. Charge transfer measurements during single ice crystal collisions with a target growing by riming. J. Geophys. Res. Atmos. 107, AAC 23-21-AAC 23-29 (2002).

  66. Luque, M. Y., Nollas, F., Pereyra, R. G., Bürgesser, R. E. & Ávila, E. E. Charge separation in collisions between ice crystals and a spherical simulated graupel of centimeter size. J. Geophys. Res. Atmos. 125, e2019JD030941 (2020).

    Article  ADS  Google Scholar 

  67. Gaskell, W. Field and Laboratory Studies of Precipitation Charges (Univ. Manchester, 1979).

  68. Pamuk, B., Allen, P. B. & Fernández-Serra, M. V. Electronic and nuclear quantum effects on the ice XI/ice Ih phase transition. Phys. Rev. B 92, 134105 (2015).

    Article  ADS  Google Scholar 

  69. Dash, J. & Wettlaufer, J. The surface physics of ice in thunderstorms. Can. J. Phys. 81, 201–207 (2003).

    Article  ADS  Google Scholar 

  70. Ordejón, P., Artacho, E. & Soler, J. M. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 53, R10441 (1996).

    Article  ADS  Google Scholar 

  71. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).

    Article  ADS  Google Scholar 

  72. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  73. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  ADS  Google Scholar 

  74. Wang, J., Román-Pérez, G., Soler, J. M., Artacho, E. & Fernández-Serra, M.-V. Density, structure, and dynamics of water: the effect of van der Waals interactions. J. Chem. Phys. 134, 024516 (2011).

    Article  ADS  Google Scholar 

  75. Pamuk, B. et al. Anomalous nuclear quantum effects in ice. Phys. Rev. Lett. 108, 193003 (2012).

    Article  ADS  Google Scholar 

  76. Wen, X. et al. Flexoelectricity and surface ferroelectricity of water ice. figshare https://doi.org/10.6084/m9.figshare.29378186 (2025).

Download references

Acknowledgements

We thank J. Liu for her code for processing the experimental data, N. Domingo, D. Pesquera and M. Stengel for useful discussions and P. Vales, J. M. Caicedo, D. Pesquera, S. Ganguly and J. Padilla for technical support. We thank the anonymous referee #5 for suggesting and actually deriving the closed-form expression for contact charge \(Q\), as well as other constructive comments. G.C. acknowledges the support from the National Research Agency (Agencia Estatal de Investigación, No. PID2023-148673NB-I00) and from the Catalan AGAUR agency (grant no. 2021-SGR-0129). S.S. acknowledges support from the National Natural Science Foundation of China (No. 12090030). ICN2 is funded by the CERCA programme/Generalitat de Catalunya and by the Severo Ochoa Centres of Excellence programme (grant no. CEX2021-001214-S). X.W. acknowledges the support from the China Scholarship Council (grant no. 201906280215), and from the Juan de la Cierva fellowship (grant no. JDC2022-048192-I) funded by MICIU/AEI/10.13039/501100011033 and by European Union NextGenerationEU/PRTR. M.F.-S. and A.M. were funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0019394, as part of the CCS Program.

Author information

Authors and Affiliations

Authors

Contributions

G.C. conceived the idea and coordinated this work. G.C. and X.W. designed the experiments. X.W. and Q.M. performed the experiments under the supervision of G.C. and S.S. A.M. and M.F.-S. performed the ab initio calculations and associated data modelling. X.W. performed the calculations and analysis of the electrification section. X.W. and G.C. wrote the manuscript with input from all the other authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to X. Wen, S. Shen or G. Catalan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Ji Chen, Daesu Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–12, Figs. 1–14 and Table 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Ma, Q., Mannino, A. et al. Flexoelectricity and surface ferroelectricity of water ice. Nat. Phys. (2025). https://doi.org/10.1038/s41567-025-02995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-025-02995-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing