Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Realization of an untrusted intermediate relay architecture using a quantum dot single-photon source

Abstract

To fully exploit the potential of quantum technologies, quantum networks are needed to link different systems, enhancing applications in computing, cryptography and metrology. Central to these networks are quantum relays that can facilitate long-distance entanglement distribution and quantum communication. In this work, we present a modular and scalable quantum relay architecture using a high-quality single-photon source. The proposed network incorporates three untrusted intermediate nodes and is capable of a repetition rate of 304.52 MHz. We use a measurement-device-independent protocol to demonstrate secure key establishment over fibres covering up to 300 km. This study highlights the potential of single-photon sources in quantum relays to enhance information transmission, expand network coverage and improve deployment flexibility, with promising applications in future quantum networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Five-node network structure.
Fig. 2: Single-photon source setup.
Fig. 3: Interference between single photons and coherent light pulses.
Fig. 4: Key-rate performance.
Fig. 5: Details of the experimental setup.

Similar content being viewed by others

Data availability

All data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The code for simulating the key rate is available from the corresponding authors upon reasonable request.

References

  1. Shor, P. W. Algorithms for quantum computation: discrete logarithms and factoring. In Proc. 35th Annual Symposium on Foundations of Computer Science 124–134 (IEEE, 1994).

  2. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proc. 28th Annual ACM Symposium on Theory of Computing 212–219 (ACM, 1996).

  3. Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In Proc. IEEE International Conference on Computers, Systems and Signal Processing 175–179 (IEEE, 1984).

  4. Ekert, A. K. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991).

    Article  MathSciNet  Google Scholar 

  5. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  Google Scholar 

  6. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    Article  Google Scholar 

  7. Chen, Y.-A. et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature 589, 214–219 (2021).

    Article  Google Scholar 

  8. Peev, M. et al. The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009).

    Article  Google Scholar 

  9. Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387–10409 (2011).

    Article  Google Scholar 

  10. Simon, C. Towards a global quantum network. Nat. Photon. 11, 678–680 (2017).

    Article  Google Scholar 

  11. Van Meter, R. & Devitt, S. J. The path to scalable distributed quantum computing. Computer 49, 31–42 (2016).

  12. Broadbent, A., Fitzsimons, J. & Kashefi, E. Universal blind quantum computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science 517–526 (IEEE, 2009).

  13. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).

    Article  Google Scholar 

  14. Duan, L.-M., Lukin, M., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  Google Scholar 

  15. Jacobs, B. C., Pittman, T. B. & Franson, J. D. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002).

    Article  Google Scholar 

  16. Waks, E., Zeevi, A. & Yamamoto, Y. Security of quantum key distribution with entangled photons against individual attacks. Phys. Rev. A 65, 052310 (2002).

    Article  Google Scholar 

  17. de Riedmatten, H. et al. Long distance quantum teleportation in a quantum relay configuration. Phys. Rev. Lett. 92, 047904 (2004).

    Article  Google Scholar 

  18. Collins, D., Gisin, N. & De Riedmatten, H. Quantum relays for long distance quantum cryptography. J. Mod. Opt. 52, 735–753 (2005).

    Article  Google Scholar 

  19. Jing, B. et al. Entanglement of three quantum memories via interference of three single photons. Nat. Photon. 13, 210–213 (2019).

    Article  Google Scholar 

  20. Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020).

    Article  Google Scholar 

  21. Pompili, M. et al. Realization of a multinode quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article  Google Scholar 

  22. Hermans, S. et al. Qubit teleportation between non-neighbouring nodes in a quantum network. Nature 605, 663–668 (2022).

    Article  Google Scholar 

  23. Liu, J.-L. et al. Creation of memory–memory entanglement in a metropolitan quantum network. Nature 629, 579–585 (2024).

    Article  Google Scholar 

  24. Lucamarini, M., Yuan, Z., Dynes, J. & Shields, A. Overcoming the rate–distance limit of quantum key distribution without quantum repeaters. Nature 557, 400–403 (2018).

    Article  Google Scholar 

  25. Ma, X., Zeng, P. & Zhou, H. Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018).

    Google Scholar 

  26. Hwang, W.-Y. Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003).

    Article  Google Scholar 

  27. Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

    Article  Google Scholar 

  28. Wang, X.-B. Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005).

    Article  Google Scholar 

  29. Lo, H.-K. & Chau, H. F. Unconditional security of quantum key distribution over arbitrarily long distances. Science 283, 2050–2056 (1999).

    Article  Google Scholar 

  30. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290 (2000).

    Article  Google Scholar 

  31. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    Article  Google Scholar 

  32. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

    Article  Google Scholar 

  33. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  Google Scholar 

  34. Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Phys. Rev. Lett. 116, 020401 (2016).

    Article  Google Scholar 

  35. Ding, X. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing. Nat. Photon. 19, 387–391 (2025).

    Article  Google Scholar 

  36. Chou, C. W., Polyakov, S. V., Kuzmich, A. & Kimble, H. J. Single-photon generation from stored excitation in an atomic ensemble. Phys. Rev. Lett. 92, 213601 (2004).

    Article  Google Scholar 

  37. Ripka, F., Kübler, H., Löw, R. & Pfau, T. A room-temperature single-photon source based on strongly interacting Rydberg atoms. Science 362, 446–449 (2018).

    Article  Google Scholar 

  38. Zeng, P., Wu, W. & Ma, X. Symmetry-protected privacy: beating the rate-distance linear bound over a noisy channel. Phys. Rev. Appl. 13, 064013 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Program for Quantum Science and Technology (grant numbers 2021ZD0300702 to T.-Y.C., 2021ZD0301300-1 to T.-Y.C., 2021ZD0300804 to X.M., 2021ZD0301400 to Y.-M.H., 2021ZD0300204 to Y.-H.H., 2021ZD0300800 to Q.Z., X.-P.X. and M.-Y.Z.), the National Natural Science Foundation of China (grant numbers 12174216 to X.M., 12022402 to Y.-M.H. and 62474168 to Y.-H.H.), the Anhui Initiative in Quantum Information Technologies (grant number AHY060000 to C.-Y.L.), the Shanghai Municipal Science and Technology Major Project (grant number 2019SHZDZX01 to C.-Y.L. and Y.-H.H.), the Chinese Academy of Sciences (CAS) Project for Young Scientists in Basic Research (grant number YSBR-112 to Y.-H.H.), the Youth Innovation Promotion Association of CAS (grant number Y2023128 to Y.-M.H.), the Independent Deployment Project of HFNL (grant number ZB2025010300 to Y.-M.H.), the Strategic Priority Research Program of CAS (grant number XDA0520401 to Y.-M.H.), the China Postdoctoral Science Foundation (grant number 2022T150628 to X.D.) and the Postdoctoral Research Project in Anhui Province (grant number 2024C890 to X.Y.). C.-Y.L. acknowledges support from the New Cornerstone Science Foundation. T.-Y.C. acknowledges support from the Anhui Initiative in Quantum Information Technologies.

Author information

Authors and Affiliations

Authors

Contributions

T.-Y.C., X.M. and J.-W.P. conceived the research. M.Z., Y.-M.H., T.-Y.C., Y.H., X.M., C.-Y.L. and J.-W.P. designed the experiment. M.Z. and Y.-M.H. carried out the experiment and performed data post-processing. Y.H. and X.M. performed the protocol security analysis and data post-processing. Y.H., Y.-M.H. and B.-C.L. performed a theoretical interference analysis. J.-Y.Z., R.-Z.L. and Y.-H.H. grew and fabricated the quantum dot samples. Y.-P.G., X.D., G.-Y.Z., H.W. and C.-Y.L. contributed to the generation of single-photon sources. M.-C.X. and Z.N. fabricated the cavity mirror. X.Y., M.-Y.Z., X.-P.X. and Q.Z. contributed to fluorescence upconversion. W.-X.P. and H.-T.Z. assisted with the experiment scheme discussion. D.Q. and X.J. developed the polyimide circuit board and maintained it for frequency locking. Y.H., X.M., M.Z., Y.-M.H., T.-Y.C., C.-Y.L. and J.-W.P. co-wrote the paper, with input from the other authors. All authors discussed the results and proofread the paper. J.-W.P. supervised the project.

Corresponding authors

Correspondence to Chao-Yang Lu, Xiongfeng Ma, Teng-Yun Chen or Jian-Wei Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Paul Hilaire and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12, Table 1, simulation and discussion.

Source data

Source Data Fig. 1

Vector graphic.

Source Data Fig. 2

Vector graphic.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Simulation source data.

Source Data Fig. 5

Vector graphic.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, M., He, YM., Huang, Y. et al. Realization of an untrusted intermediate relay architecture using a quantum dot single-photon source. Nat. Phys. (2025). https://doi.org/10.1038/s41567-025-03005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-025-03005-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing