Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Androgen receptor signalling in non-prostatic malignancies: challenges and opportunities

Abstract

The androgen receptor (AR) signalling pathway has been intensively studied in the context of prostate cancer, where androgen deprivation therapy is part of the standard of care for metastatic disease. By contrast, fewer studies have investigated the impact and translational potential of targeting AR in other cancer types where it is also expressed and functional. In this Review, we discuss the current understanding of AR in non-prostatic cancer types and summarize ongoing AR-directed clinical trials. While different androgen levels contribute to sexual dimorphism in cancer, targeting the AR system could benefit both sexes and help overcome resistance to targeted therapies. However, a bimodal function of AR signalling, which suppresses stromal changes associated with the early stages of cancer development, also needs to be considered. Future research is necessary to scrutinize cellular and molecular mechanisms of action of AR in cancer cells and the tumour microenvironment, to develop selective modulators of AR activity, and to identify patients with non-prostatic cancer who might benefit from targeting this pathway. AR-directed manipulation of host immune cells may offer a promising therapeutic approach for many types of cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Androgens and AR signalling, production and major functions.
Fig. 2: Cell-intrinsic actions of AR.
Fig. 3: Role of AR in the TME.

Similar content being viewed by others

References

  1. Pletcher, A. & Shibata, M. Prostate organogenesis. Development 149, dev200394 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dai, C., Heemers, H. & Sharifi, N. Androgen signaling in prostate cancer. Cold Spring Harb. Perspect. Med. 7, a030452 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clocchiatti, A., Cora, E., Zhang, Y. & Dotto, G. P. Sexual dimorphism in cancer. Nat. Rev. Cancer 16, 330–339 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Haupt, S., Caramia, F., Klein, S. L., Rubin, J. B. & Haupt, Y. Sex disparities matter in cancer development and therapy. Nat. Rev. Cancer 21, 393–407 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rubin, J. B. The spectrum of sex differences in cancer. Trends Cancer 8, 303–315 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dotto, G. P. Gender and sex-time to bridge the gap. EMBO Mol. Med. 11, e10668 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Davey, R. A. & Grossmann, M. Androgen receptor structure, function and biology: from bench to bedside. Clin. Biochem. Rev. 37, 3–15 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Heemers, H. V. & Tindall, D. J. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28, 778–808 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Kono, M. et al. Androgen receptor function and androgen receptor-targeted therapies in breast cancer: a review. JAMA Oncol. 3, 1266–1273 (2017).

    Article  PubMed  Google Scholar 

  11. Shukla, G. C., Plaga, A. R., Shankar, E. & Gupta, S. Androgen receptor-related diseases: what do we know? Andrology 4, 366–381 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Matsumoto, T. et al. The androgen receptor in health and disease. Annu. Rev. Physiol. 75, 201–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, W.-J. et al. Comparison of the roles of estrogens and androgens in breast cancer and prostate cancer. J. Cell. Biochem. 121, 2756–2769 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Leach, D. A., Fernandes, R. C. & Bevan, C. L. Cellular specificity of androgen receptor, coregulators, and pioneer factors in prostate cancer. Endocr. Oncol. 2, R112–R131 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dahiya, U. R. & Heemers, H. V. Analyzing the androgen receptor interactome in prostate cancer: implications for therapeutic intervention. Cells 11, 936 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Leung, J. K. & Sadar, M. D. Non-genomic actions of the androgen receptor in prostate cancer. Front. Endocrinol. 8, 2 (2017).

    Article  Google Scholar 

  17. Bennesch, M. A. & Picard, D. Minireview: tipping the balance: ligand-independent activation of steroid receptors. Mol. Endocrinol. 29, 349–363 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo, Z. et al. Regulation of androgen receptor activity by tyrosine phosphorylation. Cancer Cell 10, 309–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Ueda, T., Bruchovsky, N. & Sadar, M. D. Activation of the androgen receptor N-terminal domain by interleukin-6 via mAPK and STAT3 signal transduction pathways. J. Biol. Chem. 277, 7076–7085 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Cai, L. et al. ZFX mediates non-canonical oncogenic functions of the androgen receptor splice variant 7 in castrate-resistant prostate cancer. Mol. Cell 72, 341–354.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dahiya, V. & Bagchi, G. Non-canonical androgen signaling pathways and implications in prostate cancer. Biochim. Biophys. Acta Mol. Cell Res. 1869, 119357 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Thomas, P. Membrane androgen receptors unrelated to nuclear steroid receptors. Endocrinology 160, 772–781 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Hughes, I. A. et al. Androgen insensitivity syndrome. Lancet 380, 1419–1428 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Turcu, A. F., Rege, J., Auchus, R. J. & Rainey, W. E. 11-oxygenated androgens in health and disease. Nat. Rev. Endocrinol. 16, 284–296 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marchetti, P. M. & Barth, J. H. Clinical biochemistry of dihydrotestosterone. Ann. Clin. Biochem. 50, 95–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Labrie, F. All sex steroids are made intracellularly in peripheral tissues by the mechanisms of intracrinology after menopause. J. Steroid Biochem. Mol. Biol. 145, 133–138 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Pugeat, M. et al. Sex hormone-binding globulin gene expression in the liver: drugs and the metabolic syndrome. Mol. Cell. Endocrinol. 316, 53–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Simó, R., Sáez-López, C., Barbosa-Desongles, A., Hernández, C. & Selva, D. M. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol. Metab. 26, 376–383 (2015).

    Article  PubMed  Google Scholar 

  29. Samarkina, A. et al. Androgen receptor is a determinant of melanoma targeted drug resistance. Nat. Commun. 14, 6498 (2023). This study reveals that increased AR expression in melanoma cells is both required and sufficient to confer resistance to BRAF inhibitors through transcriptional activation mechanisms that can be targeted.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Castoria, G. et al. Androgen-stimulated DNA synthesis and cytoskeletal changes in fibroblasts by a nontranscriptional receptor action. J. Cell Biol. 161, 547–556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Acharya, S. et al. Biphasic transcriptional and posttranscriptional regulation of MYB by androgen signaling mediates its growth control in prostate cancer. J. Biol. Chem. 299, 102725 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Shao, C. et al. Biphasic effect of androgens on prostate cancer cells and its correlation with androgen receptor coactivator dopa decarboxylase. J. Androl. 28, 804–812 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Li, F. et al. Sex differences orchestrated by androgens at single-cell resolution. Nature 629, 193–200 (2024). This study presents a single-cell transcriptomic atlas of sex differences in mice, revealing how androgens modulate immune gene expression and cell populations.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, J., Wang, Q., Tan, A. F., Loh, C. J. L. & Toh, H. C. Sex differences in cancer and immunotherapy outcomes: the role of androgen receptor. Front. Immunol. 15, 1416941 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leo, J. et al. Stranger things: new roles and opportunities for androgen receptor in oncology beyond prostate cancer. Endocrinology 164, bqad071 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dai, C. & Ellisen, L. W. Revisiting androgen receptor signaling in breast cancer. Oncologist 28, 383–391 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen, J. et al. The androgen receptor in bladder cancer. Nat. Rev. Urol. 20, 560–574 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Munoz, J., Wheler, J. J. & Kurzrock, R. Androgen receptors beyond prostate cancer: an old marker as a new target. Oncotarget 6, 592–603 (2014).

    Article  PubMed Central  Google Scholar 

  39. Lee, D. K. & Chang, C. Expression and degradation of androgen receptor: mechanism and clinical implication. J. Clin. Endocrinol. Metab. 88, 4043–4054 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Cai, C. et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 20, 457–471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huhtaniemi, R. et al. High intratumoral dihydrotestosterone is associated with antiandrogen resistance in VCaP prostate cancer xenografts in castrated mice. iScience 25, 104287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shiota, M., Yokomizo, A. & Naito, S. Increased androgen receptor transcription: a cause of castration-resistant prostate cancer and a possible therapeutic target. J. Mol. Endocrinol. 47, R25–R41 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Landi, M. T. et al. Genome-wide association meta-analyses combining multiple risk phenotypes provides insights into the genetic architecture of cutaneous melanoma susceptibility. Nat. Genet. 52, 494–504 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Olsen, C. M., Thompson, J. F., Pandeya, N. & Whiteman, D. C. Evaluation of sex-specific incidence of melanoma. JAMA Dermatol. 156, 553–560 (2020).

    Article  PubMed  Google Scholar 

  45. Rampen, F. H. & Mulder, J. H. Malignant melanoma: an androgen-dependent tumour? Lancet 1, 562–564 (1980).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Y. et al. Androgen receptor promotes melanoma metastasis via altering the miRNA-539-3p/USP13/MITF/AXL signals. Oncogene 36, 1644–1654 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Ma, M. et al. Sustained androgen receptor signaling is a determinant of melanoma cell growth potential and tumorigenesis. J. Exp. Med. 218, e20201137 (2021). The paper demonstrates that, despite heterogeneous expression, basal AR activity is required for sustained melanoma cell proliferation and tumorigenesis with the AR protein bridging transcription and transcription-coupled DNA repair.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Q. et al. Androgen drives melanoma invasiveness and metastatic spread by inducing tumorigenic fucosylation. Nat. Commun. 15, 1148 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aguirre-Portolés, C. et al. ZIP9 is a druggable determinant of sex differences in melanoma. Cancer Res. 81, 5991–6003 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vellano, C. P. et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 606, 797–803 (2022). The study shows that female patients with melanoma had significantly better responses to BRAF–MEK-targeted therapy than male patients, and in preclinical melanoma models, elevated AR expression impaired treatment efficacy, while AR inhibition improved responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, W. et al. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci. Transl. Med. 11, eaao5253 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gan, X., Liu, Y. & Wang, X. Targeting androgen receptor in glioblastoma. Crit. Rev. Oncol. Hematol. 191, 104142 (2023).

    Article  PubMed  Google Scholar 

  53. Zalcman, N. et al. Androgen receptor: a potential therapeutic target for glioblastoma. Oncotarget 9, 19980–19993 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zalcman, N., Gutreiman, M., Shahar, T., Weller, M. & Lavon, I. Androgen receptor activation in glioblastoma can be achieved by ligand-independent signaling through EGFR — a potential therapeutic target. Int. J. Mol. Sci. 22, 10954 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dalin, M. G., Watson, P. A., Ho, A. L. & Morris, L. G. T. Androgen receptor signaling in salivary gland cancer. Cancers 9, 17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yeoh, C. C. et al. Androgen receptor in salivary gland carcinoma: a review of an old marker as a possible new target. J. Oral. Pathol. Med. 47, 691–695 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Viscuse, P. V., Price, K. A., Garcia, J. J., Schembri-Wismayer, D. J. & Chintakuntlawar, A. V. First line androgen deprivation therapy vs. chemotherapy for patients with androgen receptor positive recurrent or metastatic salivary gland carcinoma — a retrospective study. Front. Oncol. 9, 701 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Matye, D., Leak, J., Woolbright, B. L. & Taylor, J. A. Preclinical models of bladder cancer: BBN and beyond. Nat. Rev. Urol. https://doi.org/10.1038/s41585-024-00885-9 (2024).

    Article  PubMed  Google Scholar 

  59. Hsu, J.-W. et al. Decreased tumorigenesis and mortality from bladder cancer in mice lacking urothelial androgen receptor. Am. J. Pathol. 182, 1811–1820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sfakianos, J. P. et al. Epithelial plasticity can generate multi-lineage phenotypes in human and murine bladder cancers. Nat. Commun. 11, 2540 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lopez-Beltran, A. et al. Molecular classification of bladder urothelial carcinoma using nanostring-based gene expression analysis. Cancers 13, 5500 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Altevogt, P., Sammar, M., Hüser, L. & Kristiansen, G. Novel insights into the function of CD24: a driving force in cancer. Int. J. Cancer 148, 546–559 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, J. et al. Androgen receptor‐regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Rep. 21, e48467 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sottnik, J. L. et al. Androgen receptor regulates CD44 expression in bladder cancer. Cancer Res 81, 2833–2846 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, J. et al. Androgen dihydrotestosterone (DHT) promotes the bladder cancer nuclear AR-negative cell invasion via a newly identified membrane androgen receptor (mAR-SLC39A9)-mediated Gαi protein/MAPK/MMP9 intracellular signaling. Oncogene 39, 574–586 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Kaneko, S. & Li, X. X chromosome protects against bladder cancer in females via a KDM6A-dependent epigenetic mechanism. Sci. Adv. 4, eaar5598 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Qiu, H. et al. KDM6A loss triggers an epigenetic switch that disrupts urothelial differentiation and drives cell proliferation in bladder cancer. Cancer Res 83, 814–829 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hua, C. et al. KDM6 demethylases and their roles in human cancers. Front. Oncol. 11, 779918 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kashiwagi, E. et al. Androgen receptor activity modulates responses to cisplatin treatment in bladder cancer. Oncotarget 7, 49169–49179 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ide, H. et al. FOXO1 inactivation induces cisplatin resistance in bladder cancer. Cancer Sci. 111, 3397–3400 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, F., Langenstroer, P., Zhang, G., Iwamoto, Y. & See, W. A. Androgen dependent regulation of bacillus Calmette-Guerin induced interleukin-6 expression in human transitional carcinoma cell lines. J. Urol. 170, 2009–2013 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Clocchiatti, A. et al. Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation. J. Clin. Invest. 128, 5531–5548 (2018). The study demonstrates that AR is a key negative regulator of stromal fibroblast activation into CAFs by parallel suppression of senescence and CAF effector genes.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Foersch, S. et al. Prognostic relevance of androgen receptor expression in renal cell carcinomas. Oncotarget 8, 78545–78555 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cheng, B. et al. Vascular mimicry induced by m6A mediated IGFL2-AS1/AR axis contributes to pazopanib resistance in clear cell renal cell carcinoma. Cell Death Discov. 9, 121 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. You, B. et al. Androgen receptor promotes renal cell carcinoma (RCC) vasculogenic mimicry (VM) via altering TWIST1 nonsense-mediated decay through lncRNA-TANAR. Oncogene 40, 1674–1689 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang, Q. et al. Androgen receptor increases hematogenous metastasis yet decreases lymphatic metastasis of renal cell carcinoma. Nat. Commun. 8, 918 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Acosta-Lopez, S. et al. The androgen receptor expression and its activity have different relationships with prognosis in hepatocellular carcinoma. Sci. Rep. 10, 22046 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang, L. et al. Sex steroid axes in determining male predominance in hepatocellular carcinoma. Cancer Lett. 555, 216037 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Li, Z., Tuteja, G., Schug, J. & Kaestner, K. H. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 148, 72–83 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu, N. et al. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov. 10, 172 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Feng, H. et al. Cell cycle-related kinase is a direct androgen receptor-regulated gene that drives β-catenin/T cell factor-dependent hepatocarcinogenesis. J. Clin. Invest. 121, 3159–3175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bolis, M. et al. Dynamic prostate cancer transcriptome analysis delineates the trajectory to disease progression. Nat. Commun. 12, 7033 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Song, H. et al. Androgen receptor drives hepatocellular carcinogenesis by activating enhancer of zeste homolog 2-mediated Wnt/β-catenin signaling. EBioMedicine 35, 155–166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Jiang, L. et al. Androgen/androgen receptor axis maintains and promotes cancer cell stemness through direct activation of Nanog transcription in hepatocellular carcinoma. Oncotarget 7, 36814–36828 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jeter, C. R., Yang, T., Wang, J., Chao, H.-P. & Tang, D. G. NANOG in cancer stem cells and tumor development: an update and outstanding questions. Stem Cells 33, 2381–2390 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Tang, J.-J. et al. Androgens drive sexual dimorphism in liver metastasis by promoting hepatic accumulation of neutrophils. Cell Rep. 39, 110987 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Harlos, C., Musto, G., Lambert, P., Ahmed, R. & Pitz, M. W. Androgen pathway manipulation and survival in patients with lung cancer. Horm. Cancer 6, 120–127 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xia, T. et al. Androgen receptor gene methylation related to colorectal cancer risk. Endocr. Connect. 8, 979–987 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Oram, S. W., Liu, X. X., Lee, T.-L., Chan, W.-Y. & Lau, Y.-F. C. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer 6, 154 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Li, Y., Zhang, D. J., Qiu, Y., Kido, T. & Lau, Y.-F. C. The Y-located proto-oncogene TSPY exacerbates and its X-homologue TSPX inhibits transactivation functions of androgen receptor and its constitutively active variants. Hum. Mol. Genet. 26, 901–912 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun, S. et al. UXT is a novel and essential cofactor in the NF-κB transcriptional enhanceosome. J. Cell Biol. 178, 231–244 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen, S., Chen, K., Zhang, Q., Cheng, H. & Zhou, R. Regulation of the transcriptional activation of the androgen receptor by the UXT-binding protein VHL. Biochem. J. 456, 55–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Gupta, A. et al. Androgen receptor activation induces senescence in thyroid cancer cells. Cancers 15, 2198 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. O’Connell, T. J. et al. Androgen activity is associated with PD-L1 downregulation in thyroid cancer. Front. Cell Dev. Biol. 9, 663130 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chou, C.-K. et al. Aberrant expression of androgen receptor associated with high cancer risk and extrathyroidal extension in papillary thyroid carcinoma. Cancers 12, 1109 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chukkalore, D., MacDougall, K., Master, V., Bilen, M. A. & Nazha, B. Adrenocortical carcinomas: molecular pathogenesis, treatment options, and emerging immunotherapy and targeted therapy approaches. Oncologist 29, 738–746 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Berger, A. C. et al. A comprehensive pan-cancer molecular study of gynecologic and breast cancers. Cancer Cell 33, 690–705.e9 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Noel, J. C. et al. Androgen receptor expression in cervical intraepithelial neoplasia and invasive squamous cell carcinoma of the cervix. Int. J. Gynecol. Pathol. 27, 437–441 (2008).

    Article  PubMed  Google Scholar 

  99. Matsumoto, T. et al. Androgen promotes squamous differentiation of atypical cells in cervical intraepithelial neoplasia via an ELF3-dependent pathway. Cancer Med 12, 10816–10828 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kamal, A. M. et al. Androgen receptors are acquired by healthy postmenopausal endometrial epithelium and their subsequent loss in endometrial cancer is associated with poor survival. Br. J. Cancer 114, 688–696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gibson, D. A., Simitsidellis, I., Collins, F. & Saunders, P. T. K. Evidence of androgen action in endometrial and ovarian cancers. Endocr. Relat. Cancer 21, T203–T218 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Mizushima, T. & Miyamoto, H. The role of androgen receptor signaling in ovarian cancer. Cells 8, 176 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun, N.-K., Huang, S.-L., Lu, H.-P., Chang, T.-C. & Chao, C. C.-K. Integrative transcriptomics-based identification of cryptic drivers of taxol-resistance genes in ovarian carcinoma cells: analysis of the androgen receptor. Oncotarget 6, 27065–27082 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chen, N. & Nanda, R. Androgen receptor agonism in advanced oestrogen receptor-positive breast cancer. Lancet Oncol. 25, 269–270 (2024).

    Article  PubMed  Google Scholar 

  105. Collins, L. C. et al. Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod. Pathol. 24, 924–931 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Cha, J. et al. Distribution of breast cancer molecular subtypes within receptor classifications: lessons from the I-SPY2 Trial and FLEX Registry. J. Clin. Oncol. 40, 592–592 (2022).

    Article  Google Scholar 

  107. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) & Davies, C. et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet 378, 771–784 (2011).

    Article  Google Scholar 

  108. Pan, H. et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl. J. Med. 377, 1836–1846 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Aouad, P. et al. Epithelial-mesenchymal plasticity determines estrogen receptor positive breast cancer dormancy and epithelial reconversion drives recurrence. Nat. Commun. 13, 4975 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hickey, T. E. et al. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat. Med. 27, 310–320 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Hosseinzadeh, L. et al. The androgen receptor interacts with GATA3 to transcriptionally regulate a luminal epithelial cell phenotype in breast cancer. Genome Biol. 25, 44 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Scabia, V. et al. Estrogen receptor positive breast cancers have patient specific hormone sensitivities and rely on progesterone receptor. Nat. Commun. 13, 3127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ionescu, S., Nicolescu, A. C., Marincas, M., Madge, O.-L. & Simion, L. An update on the general features of breast cancer in male patients — a literature review. Diagnostics 12, 1554 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Severson, T. M. et al. Characterizing steroid hormone receptor chromatin binding landscapes in male and female breast cancer. Nat. Commun. 9, 482 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Ni, M. et al. Targeting androgen receptor in estrogen receptor-negative breast cancer. Cancer Cell 20, 119–131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chia, K. M., Liu, J., Francis, G. D. & Naderi, A. A feedback loop between androgen receptor and ERK signaling in estrogen receptor-negative breast cancer. Neoplasia 13, 154–166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Naderi, A., Chia, K. M. & Liu, J. Synergy between inhibitors of androgen receptor and MEK has therapeutic implications in estrogen receptor-negative breast cancer. Breast Cancer Res. 13, R36 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Farmer, P. et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24, 4660–4671 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Safarpour, D., Pakneshan, S. & Tavassoli, F. A. Androgen receptor (AR) expression in 400 breast carcinomas: is routine AR assessment justified? Am. J. Cancer Res. 4, 353–368 (2014).

    PubMed  PubMed Central  Google Scholar 

  120. Kim, J.-Y. et al. Genomic characteristics of triple negative apocrine carcinoma: a comparison to triple negative breast cancer. Exp. Mol. Med. 55, 1451–1461 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Choupani, E. et al. Newly developed targeted therapies against the androgen receptor in triple-negative breast cancer: a review. Pharmacol. Rev. 75, 309–327 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Lehmann, B. D. et al. PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 16, 406 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ben-Batalla, I., Vargas-Delgado, M. E., von Amsberg, G., Janning, M. & Loges, S. Influence of androgens on immunity to self and foreign: effects on immunity and cancer. Front. Immunol. 11, 1184 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ozdemir, B. C. & Dotto, G. P. Sex hormones and anticancer immunity. Clin. Cancer Res. 25, 4603–4610 (2019).

    Article  CAS  PubMed  Google Scholar 

  125. Xiao, T. et al. Hallmarks of sex bias in immuno-oncology: mechanisms and therapeutic implications. Nat. Rev. Cancer 24, 338–355 (2024).

    Article  CAS  PubMed  Google Scholar 

  126. Conforti, F. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 19, 737–746 (2018). This meta-analysis discusses sex-related differences in the efficacy of ICIs and underscores the need for more inclusive trials.

    Article  CAS  PubMed  Google Scholar 

  127. Pala, L., De Pas, T. & Conforti, F. Boosting anticancer immunotherapy through androgen receptor blockade. Cancer Cell 40, 455–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Liu, Q. et al. Targeting the androgen receptor to enhance NK cell killing efficacy in bladder cancer by modulating ADAR2/circ_0001005/PD-L1 signaling. Cancer Gene Ther. 29, 1988–2000 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022). This work shows that AR blockade enhances the effectiveness of immune-checkpoint therapy in prostate cancer by preventing CD8+ T cell exhaustion and boosting IFNγ production.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kwon, H. et al. Androgen conspires with the CD8+ T cell exhaustion program and contributes to sex bias in cancer. Sci. Immunol. 7, eabq2630 (2022). This study demonstrates that AR signalling promotes CD8+ T cell exhaustion through the upregulation of TCF1 in a CD8+ T cell-intrinsic manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Chen, Z. et al. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity 51, 840–855.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Escobar, G., Mangani, D. & Anderson, A. C. T cell factor 1: a master regulator of the T cell response in disease. Sci. Immunol. 5, eabb9726 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang, C. et al. Androgen receptor-mediated CD8+ T cell stemness programs drive sex differences in antitumor immunity. Immunity 55, 1268–1283.e9 (2022). This paper implicates AR in sex-biased CD8+ T cell self-renewal versus exhaustion programmes in cancer progression and in responses to cancer immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  135. Lee, J. et al. Sex-biased T-cell exhaustion drives differential immune responses in glioblastoma. Cancer Discov. 13, 2090–2105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Walecki, M. et al. Androgen receptor modulates Foxp3 expression in CD4+CD25+Foxp3+ regulatory T-cells. Mol. Biol. Cell 26, 2845–2857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu, L. et al. Role of ILC2s in solid tumors: facilitate or inhibit? Front. Immunol. 13, 886045 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chi, L. et al. Sexual dimorphism in skin immunity is mediated by an androgen-ILC2-dendritic cell axis. Science 384, eadk6200 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. Laffont, S. et al. Androgen signaling negatively controls group 2 innate lymphoid cells. J. Exp. Med. 214, 1581–1592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tang, M. et al. High dose androgen suppresses natural killer cytotoxicity of castration-resistant prostate cancer cells via altering AR/circFKBP5/miRNA-513a-5p/PD-L1 signals. Cell Death Dis. 13, 746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pinho-Schwermann, M. et al. Androgen receptor signaling blockade enhances NK cell-mediated killing of prostate cancer cells and sensitivity to NK cell checkpoint blockade. Preprint at bioRxiv https://doi.org/10.1101/2023.11.15.567201 (2023).

    Article  Google Scholar 

  142. Becerra-Diaz, M., Song, M. & Heller, N. Androgen and androgen receptors as regulators of monocyte and macrophage biology in the healthy and diseased lung. Front. Immunol. 11, 1698 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cioni, B. et al. Androgen receptor signalling in macrophages promotes TREM-1-mediated prostate cancer cell line migration and invasion. Nat. Commun. 11, 4498 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chuang, K.-H. et al. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J. Exp. Med. 206, 1181–1199 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yu, X. et al. Neutrophils in cancer: dual roles through intercellular interactions. Oncogene 43, 1163–1177 (2024).

    CAS  PubMed  Google Scholar 

  146. Markman, J. L. et al. Loss of testosterone impairs anti-tumor neutrophil function. Nat. Commun. 11, 1613 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Alsamraae, M. et al. Androgen receptor inhibition suppresses anti-tumor neutrophil response against bone metastatic prostate cancer via regulation of TβRI expression. Cancer Lett. 579, 216468 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vancolen, S., Sébire, G. & Robaire, B. Influence of androgens on the innate immune system. Andrology 11, 1237–1244 (2023).

    Article  CAS  PubMed  Google Scholar 

  149. Spencer, J. B., Klein, M., Kumar, A. & Azziz, R. The age-associated decline of androgens in reproductive age and menopausal black and white women. J. Clin. Endocrinol. Metab. 92, 4730–4733 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Kaufman, J. M. & Vermeulen, A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr. Rev. 26, 833–876 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Biffi, G. & Tuveson, D. A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 101, 147–176 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Chen, Y., McAndrews, K. M. & Kalluri, R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 18, 792–804 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Davidson, S. et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat. Rev. Immunol. 21, 704–717 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Lavie, D., Ben-Shmuel, A., Erez, N. & Scherz-Shouval, R. Cancer-associated fibroblasts in the single-cell era. Nat. Cancer 3, 793–807 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Procopio, M. G. et al. Combined CSL and p53 downregulation promotes cancer-associated fibroblast activation. Nat. Cell Biol. 17, 1193–1204 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bordignon, P. et al. Dualism of FGF and TGF-β signaling in heterogeneous cancer-associated fibroblast activation with ETV1 as a critical determinant. Cell Rep. 28, 2358–2372.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Capolupo, L. et al. Sphingolipids control dermal fibroblast heterogeneity. Science 376, eabh1623 (2022).

    Article  CAS  PubMed  Google Scholar 

  159. Lan, C. et al. Cancer-associated fibroblast senescence and its relation with tumour-infiltrating lymphocytes and PD-L1 expressions in intrahepatic cholangiocarcinoma. Br. J. Cancer 126, 219–227 (2022).

    Article  CAS  PubMed  Google Scholar 

  160. Wang, T. et al. Senescent carcinoma-associated fibroblasts upregulate IL8 to enhance prometastatic phenotypes. Mol. Cancer Res. 15, 3–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Belle, J. I. et al. Senescence defines a distinct subset of myofibroblasts that orchestrates immunosuppression in pancreatic cancer. Cancer Discov. 14, 1324–1355 (2024).

    Article  PubMed  Google Scholar 

  162. Fan, G. et al. TSPAN8+ myofibroblastic cancer-associated fibroblasts promote chemoresistance in patients with breast cancer. Sci. Transl. Med. 16, eadj5705 (2024).

    Article  CAS  PubMed  Google Scholar 

  163. Ye, J. et al. Senescent CAFs mediate immunosuppression and drive breast cancer progression. Cancer Discov. 14, 1302–1323 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Erez, N., Truitt, M., Olson, P., Arron, S. T. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17, 135–147 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Fitsiou, E., Pulido, T., Campisi, J., Alimirah, F. & Demaria, M. Cellular senescence and the senescence-associated secretory phenotype as drivers of skin photoaging. J. Invest. Dermatol. 141, 1119–1126 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Bachelor, M. A. & Bowden, G. T. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin. Cancer Biol. 14, 131–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Mazzeo, L. et al. ANKRD1 is a mesenchymal-specific driver of cancer-associated fibroblast activation, bridging androgen receptor loss to AP-1 activation. Nat. Commun. 15, 1038 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Karoutas, A. & Akhtar, A. Functional mechanisms and abnormalities of the nuclear lamina. Nat. Cell Biol. 23, 116–126 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Ghosh, S. et al. Nuclear lamin A/C phosphorylation by loss of androgen receptor leads to cancer-associated fibroblast activation. Nat. Commun. 15, 7984 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Liao, C.-P. et al. Androgen receptor in cancer-associated fibroblasts influences stemness in cancer cells. Endocr. Relat. Cancer 24, 157–170 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Cioni, B. et al. Loss of androgen receptor signaling in prostate cancer-associated fibroblasts (CAFs) promotes CCL2- and CXCL8-mediated cancer cell migration. Mol. Oncol. 12, 1308–1323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Chen, L. et al. LMO2 upregulation due to AR deactivation in cancer-associated fibroblasts induces non-cell-autonomous growth of prostate cancer after androgen deprivation. Cancer Lett. 503, 138–150 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. De Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article  PubMed  Google Scholar 

  175. Eisermann, K. & Fraizer, G. The androgen receptor and VEGF: mechanisms of androgen-regulated angiogenesis in prostate cancer. Cancers 9, 32 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Torres-Estay, V. et al. Androgen receptor in human endothelial cells. J. Endocrinol. 224, R131–R137 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Godoy, A. et al. Androgen receptor is causally involved in the homeostasis of the human prostate endothelial cell. Endocrinology 149, 2959–2969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Godoy, A. et al. Androgen deprivation induces rapid involution and recovery of human prostate vasculature. Am. J. Physiol. Endocrinol. Metab. 300, E263–E275 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Rizk, J., Sahu, R. & Duteil, D. An overview on androgen-mediated actions in skeletal muscle and adipose tissue. Steroids 199, 109306 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. Bouche, C. & Quail, D. F. Fueling the tumor microenvironment with cancer-associated adipocytes. Cancer Res 83, 1170–1172 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Alvarez-Artime, A. et al. Castration promotes the browning of the prostate tumor microenvironment. Cell Commun. Signal. 21, 267 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Doron, H., Pukrop, T. & Erez, N. A blazing landscape: neuroinflammation shapes brain metastasis. Cancer Res 79, 423–436 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gatson, J. W. & Singh, M. Activation of a membrane-associated androgen receptor promotes cell death in primary cortical astrocytes. Endocrinology 148, 2458–2464 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Cioffi, G. et al. Sex differences in odds of brain metastasis and outcomes by brain metastasis status after advanced melanoma diagnosis. Cancers 16, 1771 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Russo, S., Scotto Di Carlo, F. & Gianfrancesco, F. The osteoclast traces the route to bone tumors and metastases. Front. Cell Dev. Biol. 10, 886305 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Farach-Carson, M. C., Lin, S.-H., Nalty, T. & Satcher, R. L. Sex differences and bone metastases of breast, lung, and prostate cancers: do bone homing cancers favor feminized bone marrow? Front. Oncol. 7, 163 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Kawano, H. et al. Suppressive function of androgen receptor in bone resorption. Proc. Natl Acad. Sci. USA 100, 9416–9421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Pederson, L. et al. Androgens regulate bone resorption activity of isolated osteoclasts in vitro. Proc. Natl Acad. Sci. USA 96, 505–510 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chen, J.-F., Lin, P.-W., Tsai, Y.-R., Yang, Y.-C. & Kang, H.-Y. Androgens and androgen receptor actions on bone health and disease: from androgen deficiency to androgen therapy. Cells 8, 1318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Brown, J. E. et al. Guidance for the assessment and management of prostate cancer treatment-induced bone loss. A consensus position statement from an expert group. J. Bone Oncol. 25, 100311 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article  PubMed  Google Scholar 

  192. Culig, Z. et al. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br. J. Cancer 81, 242–251 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Loddick, S. A. et al. AZD3514: a small molecule that modulates androgen receptor signaling and function in vitro and in vivo. Mol. Cancer Ther. 12, 1715–1727 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Neklesa, T. et al. ARV-110: an oral androgen receptor PROTAC degrader for prostate cancer. J. Clin. Oncol. 37, 259–259 (2019).

    Article  Google Scholar 

  195. Gao, X. et al. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 40, 17–17 (2022).

    Article  Google Scholar 

  196. Chen, Q.-H., Munoz, E. & Ashong, D. Insight into recent advances in degrading androgen receptor for castration-resistant prostate cancer. Cancers 16, 663 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Myung, J.-K. et al. An androgen receptor N-terminal domain antagonist for treating prostate cancer. J. Clin. Invest. 123, 2948–2960 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Maurice-Dror, C. et al. A phase 1 study to assess the safety, pharmacokinetics, and anti-tumor activity of the androgen receptor N-terminal domain inhibitor epi-506 in patients with metastatic castration-resistant prostate cancer. Invest. New Drugs 40, 322–329 (2022).

    Article  CAS  PubMed  Google Scholar 

  199. Chen, Y. & Lan, T. N-terminal domain of androgen receptor is a major therapeutic barrier and potential pharmacological target for treating castration resistant prostate cancer: a comprehensive review. Front. Pharmacol. 15, 1451957 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bhasin, S. et al. Drug Insight: testosterone and selective androgen receptor modulators as anabolic therapies for chronic illness and aging. Nat. Clin. Pract. Endocrinol. Metab. 2, 146–159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. US National Library of Medicine. ClinicialTrials.gov https://clinicaltrials.gov/study/NCT02689427 (2023).

  202. Lim, B. et al. Phase 2 study of neoadjuvant enzalutamide and paclitaxel for luminal androgen receptor-enriched TNBC: Trial results and insights into “ARness”. Cell Rep. Med. 5, 101595 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. US National Library of Medicine. ClinicialTrials.gov https://www.clinicaltrials.gov/study/NCT02007512 (2024).

  204. Krop, I. et al. A randomized placebo controlled phase ii trial evaluating exemestane with or without enzalutamide in patients with hormone receptor-positive breast cancer. Clin. Cancer Res. 26, 6149–6157 (2020).

    Article  CAS  PubMed  Google Scholar 

  205. Palmieri, C. et al. Activity and safety of enobosarm, a novel, oral, selective androgen receptor modulator, in androgen receptor-positive, oestrogen receptor-positive, and HER2-negative advanced breast cancer (Study G200802): a randomised, open-label, multicentre, multinational, parallel design, phase 2 trial. Lancet Oncol. 25, 317–325 (2024). This phase II trial demonstrates that enobosarm, a selective AR modulator, shows anti-tumour activity and clinical benefit in women in postmenopause with ER-positive, HER2-negative and AR-positive advanced breast cancer, supporting further investigation of AR activation as a therapeutic strategy.

    Article  CAS  PubMed  Google Scholar 

  206. Conforti, F. et al. Sex-based heterogeneity in response to lung cancer immunotherapy: a systematic review and meta-analysis. J. Natl Cancer Inst. 111, 772 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Powles, T. et al. Atezolizumab with enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer: a randomized phase 3 trial. Nat. Med. 28, 144–153 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Venkatachalam, S., McFarland, T. R., Agarwal, N. & Swami, U. Immune checkpoint inhibitors in prostate cancer. Cancers 13, 2187 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. US National Library of Medicine. ClinicialTrials.gov https://www.clinicaltrials.gov/study/NCT02971761 (2022).

  210. Yuan, Y. et al. A phase II clinical trial of pembrolizumab and enobosarm in patients with androgen receptor-positive metastatic triple-negative breast cancer. Oncologist 26, 99–e217 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. US National Library of Medicine. ClinicialTrials.gov https://clinicaltrials.gov/study/NCT03650894 (2024).

  212. US National Library of Medicine. ClinicialTrials.gov https://www.clinicaltrials.gov/study/NCT03942653 (2024).

  213. Iwashyna, T. J. & McPeake, J. Choosing outcomes for clinical trials: a pragmatic perspective. Curr. Opin. Crit. Care 24, 428–433 (2018).

    Article  PubMed  Google Scholar 

  214. Kensler, K. H. et al. Prognostic and predictive value of androgen receptor expression in postmenopausal women with estrogen receptor-positive breast cancer: results from the Breast International Group Trial 1–98. Breast Cancer Res. 21, 30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Hirko, K. A. et al. The impact of race and ethnicity in breast cancer — disparities and implications for precision oncology. BMC Med. 20, 72 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Siu, D. H. W. et al. Framework for the use of external controls to evaluate treatment outcomes in precision oncology trials. JCO Precis. Oncol. 8, e2300317 (2024).

    Article  PubMed  Google Scholar 

  217. Fushimi, C. et al. A prospective phase II study of combined androgen blockade in patients with androgen receptor-positive metastatic or locally advanced unresectable salivary gland carcinoma. Ann. Oncol. 29, 979–984 (2018).

    Article  CAS  PubMed  Google Scholar 

  218. Liu, H.-H. et al. Evolving personalized therapy for castration-resistant prostate cancer. BioMedicine 4, 2 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Ozdemir, B. C. & Dotto, G. P. Racial differences in cancer susceptibility and survival: more than the color of the skin? Trends Cancer 3, 181–197 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Zavala, V. A. et al. Cancer health disparities in racial/ethnic minorities in the United States. Br. J. Cancer 124, 315–332 (2021).

    Article  PubMed  Google Scholar 

  221. Wang, B.-D. et al. Androgen receptor-target genes in African American prostate cancer disparities. Prostate Cancer 2013, 763569 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Ellis, L. & Nyborg, H. Racial/ethnic variations in male testosterone levels: a probable contributor to group differences in health. Steroids 57, 72–75 (1992).

    Article  CAS  PubMed  Google Scholar 

  223. Gaston, K. E., Kim, D., Singh, S., Ford, O. H. & Mohler, J. L. Racial differences in androgen receptor protein expression in men with clinically localized prostate cancer. J. Urol. 170, 990–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  224. Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T. & Chakraborty, R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12, 241–253 (1992).

    Article  CAS  PubMed  Google Scholar 

  225. Sartor, O., Zheng, Q. & Eastham, J. A. Androgen receptor gene CAG repeat length varies in a race-specific fashion in men without prostate cancer. Urology 53, 378–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  226. Giovannucci, E. et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc. Natl Acad. Sci. USA 94, 3320–3323 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zhang, B. et al. Harnessing artificial intelligence to improve clinical trial design. Commun. Med. 3, 191 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Shamseddin, M. et al. Contraceptive progestins with androgenic properties stimulate breast epithelial cell proliferation. EMBO Mol. Med. 13, e14314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Berner, A. M. Improving understanding of cancer in the gender diverse population. Nat. Rev. Cancer 21, 537–538 (2021).

    Article  CAS  PubMed  Google Scholar 

  230. Vera-Badillo, F. E. et al. Androgen receptor expression and outcomes in early breast cancer: a systematic review and meta-analysis. J. Natl Cancer Inst. 106, djt319 (2014).

    Article  PubMed  Google Scholar 

  231. Wang, X. et al. The prognostic value of androgen receptor (AR) in HER2-enriched metastatic breast cancer. Endocr. Relat. Cancer 27, 199–208 (2020).

    Article  PubMed  Google Scholar 

  232. Bozovic-Spasojevic, I. et al. The prognostic role of androgen receptor in patients with early-stage breast cancer: a meta-analysis of clinical and gene expression data. Clin. Cancer Res. 23, 2702–2712 (2017).

    Article  CAS  PubMed  Google Scholar 

  233. Choi, J. E., Kang, S. H., Lee, S. J. & Bae, Y. K. Androgen receptor expression predicts decreased survival in early stage triple-negative breast cancer. Ann. Surg. Oncol. 22, 82–89 (2015).

    Article  PubMed  Google Scholar 

  234. Shi, Z. et al. Evaluation of predictive and prognostic value of androgen receptor expression in breast cancer subtypes treated with neoadjuvant chemotherapy. Discov. Oncol. 14, 49 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Wang, C. et al. Prognostic value of androgen receptor in triple negative breast cancer: a meta-analysis. Oncotarget 7, 46482–46491 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Xu, M. et al. Prognostic significance of androgen receptor expression in triple negative breast cancer: a systematic review and meta-analysis. Clin. Breast Cancer 20, e385–e396 (2020).

    Article  CAS  PubMed  Google Scholar 

  237. Boon, E. et al. A clinicopathological study and prognostic factor analysis of 177 salivary duct carcinoma patients from The Netherlands. Int. J. Cancer 143, 758–766 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Xu, B., Dogan, S., Haroon Al Rasheed, M. R., Ghossein, R. & Katabi, N. Androgen receptor immunohistochemistry in salivary duct carcinoma: a retrospective study of 188 cases focusing on tumoral heterogeneity and temporal concordance. Hum. Pathol. 93, 30–36 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Atef, A., El-Rashidy, M. A., Elzayat, S. & Kabel, A. M. The prognostic value of sex hormone receptors expression in laryngeal carcinoma. Tissue Cell 57, 84–89 (2019).

    Article  CAS  PubMed  Google Scholar 

  240. Fei, M., Zhang, J., Zhou, J., Xu, Y. & Wang, J. Sex-related hormone receptor in laryngeal squamous cell carcinoma: correlation with androgen estrogen-ɑ and prolactin receptor expression and influence of prognosis. Acta Otolaryngol. 138, 66–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  241. R, S. et al. Expression of sex hormones in oral squamous cell carcinoma: a systematic review on immunohistochemical studies. Cureus 14, e25384 (2022).

    PubMed  PubMed Central  Google Scholar 

  242. Adnan, Y. et al. Hormone receptors AR, ER, PR and growth factor receptor Her-2 expression in oral squamous cell carcinoma: correlation with overall survival, disease-free survival and 10-year survival in a high-risk population. PLoS One 17, e0267300 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Gan, L. et al. Expression profile and prognostic role of sex hormone receptors in gastric cancer. BMC Cancer 12, 566 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Tang, W. et al. Expression of estrogen receptors and androgen receptor and their clinical significance in gastric cancer. Oncotarget 8, 40765–40777 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Albasri, A. M. & Elkablawy, M. A. Clinicopathological and prognostic significance of androgen receptor overexpression in colorectal cancer. Experience from Al-Madinah Al-Munawarah, Saudi Arabia. Saudi Med. J. 40, 893–900 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Jönsson, J.-M. et al. Sex steroid hormone receptor expression affects ovarian cancer survival. Transl. Oncol. 8, 424–433 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  247. van Kruchten, M. et al. Hormone receptors as a marker of poor survival in epithelial ovarian cancer. Gynecol. Oncol. 138, 634–639 (2015).

    Article  PubMed  Google Scholar 

  248. Wu, X. et al. The clinicopathological significance and prognostic value of androgen receptor in endometrial carcinoma: a meta-analysis. Front. Oncol. 12, 905809 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Zhao, H., Leppert, J. T. & Peehl, D. M. A protective role for androgen receptor in clear cell renal cell carcinoma based on mining TCGA data. PLoS One 11, e0146505 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Zhu, G. et al. The expression and evaluation of androgen receptor in human renal cell carcinoma. Urology 83, 510.e19-24 (2014).

    Article  PubMed  Google Scholar 

  251. Szabados, B. et al. Androgen receptor expression is a predictor of poor outcome in urothelial carcinoma. Front. Urol. 2, https://doi.org/10.3389/fruro.2022.863784 (2022).

  252. Tripathi, A. & Gupta, S. Androgen receptor in bladder cancer: a promising therapeutic target. Asian J. Urol. 7, 284–290 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Vizoso, F. J. et al. Liver expression of steroid hormones and Apolipoprotein D receptors in hepatocellular carcinoma. World J. Gastroenterol. 13, 3221–3227 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Zhang, H. et al. Significance and mechanism of androgen receptor overexpression and androgen receptor/mechanistic target of rapamycin cross-talk in hepatocellular carcinoma. Hepatology 67, 2271–2286 (2018).

    Article  CAS  PubMed  Google Scholar 

  255. Grant, L. et al. Androgen receptor and Ki67 expression and survival outcomes in non-small cell lung cancer. Horm. Cancer 9, 288–294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Zhao, N. et al. Androgen receptor, although not a specific marker for, is a novel target to suppress glioma stem cells as a therapeutic strategy for glioblastoma. Front. Oncol. 11, 616625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Simińska, D. et al. Androgen receptor expression in the various regions of resected glioblastoma multiforme tumors and in an in vitro model. Int. J. Mol. Sci. 23, 13004 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Park, H. S. et al. Expression of DBC1 and androgen receptor predict poor prognosis in diffuse large B cell lymphoma. Transl. Oncol. 6, 370–381 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Mostaghel, E. A. et al. Androgen receptor expression in mantle cell lymphoma: potential novel therapeutic implications. Exp. Hematol. 49, 34–38.e2 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Magri, F. et al. Expression of estrogen and androgen receptors in differentiated thyroid cancer: an additional criterion to assess the patient’s risk. Endocr. Relat. Cancer 19, 463–471 (2012).

    Article  CAS  PubMed  Google Scholar 

  261. Xue, G. et al. A logic-incorporated gene regulatory network deciphers principles in cell fate decisions. eLife 12, RP88742 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Paczkó, M. et al. A neural network-based model framework for cell-fate decisions and development. Commun. Biol. 7, 323 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Qi, D. & Majda, A. J. Using machine learning to predict extreme events in complex systems. Proc. Natl Acad. Sci. 117, 52–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  264. Snow, O., Lallous, N., Ester, M. & Cherkasov, A. Deep learning modeling of androgen receptor responses to prostate cancer therapies. Int. J. Mol. Sci. 21, 5847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. de Jong, A. C. et al. Predicting response to enzalutamide and abiraterone in metastatic prostate cancer using whole-omics machine learning. Nat. Commun. 14, 1968 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Smith, A. M. Decoding immune kinetics: unveiling secrets using custom-built mathematical models. Nat. Methods 21, 744–747 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Wan, X. et al. Integrating spatial and single-cell transcriptomics data using deep generative models with SpatialScope. Nat. Commun. 14, 7848 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Yankeelov, T. E. et al. Designing clinical trials for patients who are not average. iScience 27, 108589 (2024).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to Z. Li, C. Brisken, W. Zwart and G. Tolstonog for critical reading of the manuscript and insightful suggestions. Research in the laboratory of G.B.D. is supported by NIH grants R01AR078374 and R01CA269356 (the contents do not necessarily represent the official views of the NIH).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data, contributed substantially to discussion of the content, and participated in the writing of the article and reviewing it before submission.

Corresponding author

Correspondence to G. Paolo Dotto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Dong Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

SEER Program: https://seer.cancer.gov/statfacts/html/breast-subtypes.html

Supplementary information

Glossary

Androgen deprivation therapy

(ADT). A treatment that reduces androgen levels to slow the growth of androgen-dependent cancers such as prostate cancer.

Anitens

A class of small-molecule inhibitors that target the N-terminal domain of the androgen receptor (AR), currently being tested in the treatment for prostate cancer.

Bacillus Calmette–Guérin

A live-attenuated strain of Mycobacterium bovis used as a vaccine against tuberculosis and in the treatment of non-muscle-invasive bladder cancer.

Dimensionality reduction

Techniques that reduce the number of input variables in a data set while retaining essential information, often to simplify models or improve visualization.

Endocrine therapy

Treatment that targets hormone pathways to inhibit the growth of hormone-sensitive cancers such as breast or prostate cancer.

Four core genotypes model

A mouse model used to study the effects of sex chromosomes and gonadal hormones independently of one another.

Glial cells

Supportive cells in the nervous system that maintain homeostasis, form myelin, and provide protection and support to neurons.

Group 2 innate lymphoid cells

Immune cells that lack antigen-specific receptors and play a role in innate immunity, including in allergic responses and cancer.

Immediate-early effects

Rapid cellular responses to stimuli that do not require new protein synthesis, often occurring within minutes of activation.

Leydig cells

Cells in the testes that produce testosterone in response to luteinizing hormone.

Linear support vector classifiers

A classification algorithm that finds the optimal hyperplane separating data into different classes in a high-dimensional space.

Pioneer factors

Transcription factors that access condensed chromatin to enable gene expression during cell differentiation or reprogramming.

Primary sex characteristics

Biological traits directly involved in reproduction such as the testes and ovaries.

Proteolysis-targeting chimaeras

Bifunctional molecules designed to target specific proteins for degradation via the ubiquitin–proteasome system.

Recurrent neural networks

A type of neural network designed to recognize patterns in sequences of data by using internal memory and feedback loops to process inputs over time.

Secondary sex characteristics

Physical traits that develop during puberty but are not directly involved in reproduction (such as facial hair and breast development).

Selective AR modulators

Compounds that selectively stimulate or inhibit ARs in different tissues to provide anabolic effects with reduced side effects.

Senescence

A state of irreversible cell cycle arrest that acts as a cancer-protective mechanism but can also promote tumorigenesis through pro-inflammatory secretions.

Senescence-associated secretory phenotype

(SASP). A pro-inflammatory and tissue-remodelling secretion profile produced by senescent cells that can influence cancer progression.

Supervised learning

A machine learning approach where a model is trained on labelled data to learn a mapping from inputs to outputs.

Theca cells

Ovarian cells that produce androgens, which are converted to oestrogens by granulosa cells during follicle development.

Tumour-associated macrophages

(TAMs). Macrophages present in the tumour microenvironment that can promote tumour growth, immune evasion and metastasis.

Zona reticularis cells

Cells in the adrenal cortex that primarily secrete androgens like dehydroepiandrosterone.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dotto, G.P., Buckinx, A., Özdemir, B.C. et al. Androgen receptor signalling in non-prostatic malignancies: challenges and opportunities. Nat Rev Cancer 25, 93–108 (2025). https://doi.org/10.1038/s41568-024-00772-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-024-00772-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer