Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic and fragmentomic landscapes of cell-free DNA for early cancer detection

Abstract

Genomic analyses of cell-free DNA (cfDNA) in plasma are enabling noninvasive blood-based biomarker approaches to cancer detection and disease monitoring. Current approaches for identification of circulating tumour DNA typically use targeted tumour-specific mutations or methylation analyses. An emerging approach is based on the recognition of altered genome-wide cfDNA fragmentation in patients with cancer. Recent studies have revealed a multitude of characteristics that can affect the compendium of cfDNA fragments across the genome, collectively called the ‘cfDNA fragmentome’. These changes result from genomic, epigenomic, transcriptomic and chromatin states of an individual and affect the size, position, coverage, mutation, structural and methylation characteristics of cfDNA. Identifying and monitoring these changes has the potential to improve early detection of cancer, especially using highly sensitive multi-feature machine learning approaches that would be amenable to broad use in populations at increased risk. This Review highlights the rapidly evolving field of genome-wide analyses of cfDNA characteristics, their comparison to existing cfDNA methods, and recent related innovations at the intersection of large-scale sequencing and artificial intelligence. As the breadth of clinical applications of cfDNA fragmentome methods have enormous public health implications for cancer screening and personalized approaches for clinical management of patients with cancer, we outline the challenges and opportunities ahead.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: cfDNA features and analysis for early detection of cancer.
Fig. 2: Differences in genome-wide cfDNA characteristics between individuals with and without cancer.

Similar content being viewed by others

References

  1. Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    Article  PubMed  Google Scholar 

  2. Papanicolaou, G. N. & Traut, H. F. The diagnostic value of vaginal smears in carcinoma of the uterus. Am. J. Obstet. Gynecol. 42, 193–206 (1941).

    Article  Google Scholar 

  3. National Cancer Institute. Cervical cancer screening (PDQ®)–health professional version; https://www.cancer.gov/types/cervical/hp/cervical-screening-pdq (accessed 14 May 2024).

  4. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).

    Article  Google Scholar 

  5. de Koning, H. J. et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N. Engl. J. Med. 382, 503–513 (2020).

    Article  PubMed  Google Scholar 

  6. Mandel, J. S. et al. Reducing mortality from colorectal cancer by screening for fecal occult blood. N. Engl. J. Med. 328, 1365–1371 (1993).

    Article  CAS  PubMed  Google Scholar 

  7. Reiko, N. et al. Long-term colorectal-cancer incidence and mortality after lower endoscopy. N. Engl. J. Med. 369, 1095–1105 (2013).

    Article  Google Scholar 

  8. Sankaranarayanan, R. et al. HPV screening for cervical cancer in rural India. N. Engl. J. Med. 360, 1385–1394 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Tabár, L. et al. Reduction in mortality from breast cancer after mass screening with mammography. Randomised trial from the Breast Cancer Screening Working Group of the Swedish National Board of Health and Welfare. Lancet 325, 829–832 (1985).

    Article  Google Scholar 

  10. Alexander, F. et al. 14 years of follow-up from the Edinburgh randomised trial of breast-cancer screening. Lancet 353, 1903–1908 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Division of Cancer Prevention and Control. Cancer screening tests; https://www.cdc.gov/cancer/dcpc/prevention/screening.htm (2024).

  12. United States Preventive Services Taskforce. A & B recommendations; https://www.uspreventiveservicestaskforce.org/uspstf/recommendation-topics/uspstf-a-and-b-recommendations (2024).

  13. Hamilton, W., Walter, F. M., Rubin, G. & Neal, R. D. Improving early diagnosis of symptomatic cancer. Nat. Rev. Clin. Oncol. 13, 740–749 (2016).

    Article  PubMed  Google Scholar 

  14. National Cancer Institute. Cancer trends progress report: early detection (NCI, 2024).

  15. National Lung Screening Trial Research Team. Results of initial low-dose computed tomographic screening for lung cancer. N. Engl. J. Med. 368, 1980–1991 (2013).

    Article  Google Scholar 

  16. American Cancer Society. Limitations of mammograms; https://www.cancer.org/cancer/types/breast-cancer/screening-tests-and-early-detection/mammograms/limitations-of-mammograms.html (2022).

  17. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  PubMed  Google Scholar 

  18. Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang, K. et al. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet. 45, 1113–1120 (2013).

    Article  CAS  Google Scholar 

  20. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).

    Article  CAS  Google Scholar 

  21. Saghafinia, S., Mina, M., Riggi, N., Hanahan, D. & Ciriello, G. Pan-cancer landscape of aberrant DNA methylation across human tumors. Cell Rep. 25, 1066–1080.e8 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Baylin, S. B. & Jones, P. A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol. 8, a019505 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Husain, H. & Velculescu, V. E. Cancer DNA in the circulation: the liquid biopsy. JAMA 318, 1272–1274 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hu, Z., Chen, H., Long, Y., Li, P. & Gu, Y. The main sources of circulating cell-free DNA: apoptosis, necrosis and active secretion. Crit. Rev. Oncol. Hematol. 157, 103166 (2021).

    Article  PubMed  Google Scholar 

  25. Tivey, A., Church, M., Rothwell, D., Dive, C. & Cook, N. Circulating tumour DNA — looking beyond the blood. Nat. Rev. Clin. Oncol. 19, 600–612 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thierry, A. R. Circulating DNA fragmentomics and cancer screening. Cell Genom. 3, 100242 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Loyfer, N. et al. A DNA methylation atlas of normal human cell types. Nature 613, 355–364 (2023). This study has determined methylation landscapes across a variety of human cell types and has used these to estimate the proportion of cfDNA that is derived from different cell types in healthy individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leon, S. A., Shapiro, B., Sklaroff, D. M. & Yaros, M. J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 37, 646–650 (1977).

    CAS  PubMed  Google Scholar 

  29. Wan, J. C. M. et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Mandel, P. & Métais, P. Nuclear acids in human blood plasma. C. R. Seances Soc. Biol. Fil. 142, 241–243 (1948).

    CAS  PubMed  Google Scholar 

  31. Sorenson, G. D. et al. Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol. Biomark. Prev. 3, 67–71 (1994).

    CAS  Google Scholar 

  32. Vasyukhin, V. et al. in Challenges of Modern Medicine Vol. 5 (eds Verna, R. & Shamoo, A.) 141–150 (Biotechnology Today, 1994).

  33. Vasioukhin, V. et al. Point mutations of the N‐ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br. J. Haematol. 86, 774–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Forshew, T. et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci. Transl. Med. 4, 136ra68 (2012).

    Article  PubMed  Google Scholar 

  35. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra24 (2014). This large-scale study demonstrates that ctDNA is detectable in patients with a range of cancer types in both advanced and early-stage disease using tumour-informed approaches.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Newman, A. M. et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat. Biotechnol. 34, 547–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Phallen, J. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 9, eaan2415 (2017). This systematic analysis shows that direct detection of sequence alterations in circulating DNA can be used to detect individuals with early-stage cancers.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cohen, J. D. et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science 359, 926–930 (2018). This study describes the CancerSEEK blood test for initial evaluation of the detection of eight common cancer types using mutations in targeted regions and levels of circulating proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chabon, J. J. et al. Integrating genomic features for non-invasive early lung cancer detection. Nature 580, 245–251 (2020). This study introduces an approach integrating somatic mutations in targeted regions with genome-wide CNVs for noninvasive detection of lung cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lennon, A. M. et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention. Science 369, eabb9601 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu, J. et al. Biological background of the genomic variations of cf-DNA in healthy individuals. Ann. Oncol. 30, 464–470 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Razavi, P. et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat. Med. 25, 1928–1937 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Leal, A. et al. White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer. Nat. Commun. 11, 525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Heitzer, E., Haque, I. S., Roberts, C. E. S. & Speicher, M. R. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat. Rev. Genet. 20, 71–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Shen, S. Y. et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 563, 579–583 (2018). This study provides description of the genome-wide methylation-based cfMeDIP-seq method and its application for the detection of multiple cancer types.

    Article  CAS  PubMed  Google Scholar 

  47. Cristiano, S. et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature 570, 385–389 (2019). This study demonstrates associations between cfDNA fragmentation profiles and large-scale chromatin organization and use of machine learning to evaluate genome-wide fragmentation profiles for early cancer detection of multiple cancer types and for determining their tissue of origin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leary, R. J. et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci. Transl. Med. 4, 162ra154 (2012). This whole-genome analysis of cfDNA demonstrates that chromosomal gains and losses and structural rearrangements can be directly detected in the cfDNA of patients with cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang, T.-L. et al. Digital karyotyping. Proc. Natl Acad. Sci. USA 99, 16156–16161 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Leary, R. J. et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci. Transl. Med. 2, 20ra14 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chan, K. A. et al. Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clin. Chem. 59, 211–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Chan, K. C. A. et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc. Natl Acad. Sci. USA 110, 18761–18768 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Heitzer, E. et al. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med. 5, 30 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kopinski, P. K., Singh, L. N., Zhang, S., Lott, M. T. & Wallace, D. C. Mitochondrial DNA variation and cancer. Nat. Rev. Cancer 21, 431–445 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, P. et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl Acad. Sci. USA 112, E1317–E1325 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van der Pol, Y. et al. The landscape of cell-free mitochondrial DNA in liquid biopsy for cancer detection. Genome Biol. 24, 229 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Adalsteinsson, V. A. et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat. Commun. 8, 1324 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. van ’t Erve, I. et al. Cancer treatment monitoring using cell-free DNA fragmentomes. Nat. Commun. 15, 8801 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wan, J. C. M. et al. Genome-wide mutational signatures in low-coverage whole genome sequencing of cell-free DNA. Nat. Commun. 13, 4953 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bruhm, D. C. et al. Single-molecule genome-wide mutation profiles of cell-free DNA for non-invasive detection of cancer. Nat. Genet. 55, 1301–1310 (2023). This study demonstrates that mutational signatures in cfDNA are altered in specific regions genome-wide in patients with cancer and can be used for early cancer detection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bae, M. et al. Integrative modeling of tumor genomes and epigenomes for enhanced cancer diagnosis by cell-free DNA. Nat. Commun. 14, 2017 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abelson, S. et al. Integration of intra-sample contextual error modeling for improved detection of somatic mutations from deep sequencing. Sci. Adv. 6, eabe3722 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ma, X. et al. Analysis of error profiles in deep next-generation sequencing data. Genome Biol. 20, 50 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rodriguez-Martin, B. et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 52, 306–319 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee, E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967–971 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Annapragada, A. et al. Genome-wide repeat landscapes in cancer and cell-free DNA. Sci. Transl. Med. 16, eadj9283 (2024). This study describes a genome-wide cfDNA approach for quantifying repetitive elements and fragment coverage at sites of histone modifications for the detection of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Douville, C. et al. Detection of aneuploidy in patients with cancer through amplification of long interspersed nucleotide elements (LINEs). Proc. Natl Acad. Sci. USA 115, 1871–1876 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Georgiadis, A. et al. Noninvasive detection of microsatellite instability and high tumor mutation burden in cancer patients treated with PD-1 blockade. Clin. Cancer Res. 25, 7024–7034 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Willis, J. et al. Validation of microsatellite instability detection using a comprehensive plasma-based genotyping panel. Clin. Cancer Res. 25, 7035–7045 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. 21, 597–614 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Esteller, M. et al. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res. 59, 67–70 (1999).

    CAS  PubMed  Google Scholar 

  73. Xu, R. et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 16, 1155–1161 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, X. et al. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test. Nat. Commun. 11, 3475 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu, M. C. et al. Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 31, 745–759 (2020). This study has tested a targeted methylation assay for multi-cancer detection and tissue of origin in thousands of participants.

    Article  CAS  PubMed  Google Scholar 

  76. Liang, N. et al. Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning. Nat. Biomed. Eng. 5, 586–599 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Nguyen, V. T. C. et al. Multimodal analysis of methylomics and fragmentomics in plasma cell-free DNA for multi-cancer early detection and localization. eLife 12, RP89083 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schrag, D. et al. Blood-based tests for multicancer early detection (PATHFINDER): a prospective cohort study. Lancet 402, 1251–1260 (2023). This study describes the results from the PATHFINDER clinical trial involving >6,000 participants evaluating a targeted methylation assay for multi-cancer detection.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jamshidi, A. et al. Evaluation of cell-free DNA approaches for multi-cancer early detection. Cancer Cell 40, 1537–1549.e12 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Grunau, C., Clark, S. J. & Rosenthal, A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 29, E65-5 (2001).

    Article  PubMed  Google Scholar 

  82. Weber, M. et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat. Genet. 37, 853–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Nassiri, F. et al. Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes. Nat. Med. 26, 1044–1047 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Siejka-Zielińska, P. et al. Cell-free DNA TAPS provides multimodal information for early cancer detection. Sci. Adv. 7, eabh0534 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Liu, Y. et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution. Nat. Biotechnol. 37, 424–429 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Vaisvila, R. et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 31, 1280–1289 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kim, S. Y. et al. Cancer signature ensemble integrating cfDNA methylation, copy number, and fragmentation facilitates multi-cancer early detection. Exp. Mol. Med. 55, 2445–2460 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Katsman, E. et al. Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from nanopore sequencing. Genome Biol. 23, 158 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lau, B. T. et al. Single-molecule methylation profiles of cell-free DNA in cancer with nanopore sequencing. Genome Med. 15, 33 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Choy, L. Y. L. et al. Single-molecule sequencing enables long cell-free DNA detection and direct methylation analysis for cancer patients. Clin. Chem. 68, 1151–1163 (2022).

    Article  PubMed  Google Scholar 

  91. van der Pol, Y. et al. Real‐time analysis of the cancer genome and fragmentome from plasma and urine cell‐free DNA using nanopore sequencing. EMBO Mol. Med. 15, e17282 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Martignano, F. et al. Nanopore sequencing from liquid biopsy: analysis of copy number variations from cell-free DNA of lung cancer patients. Mol. Cancer 20, 32 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mouliere, F. et al. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci. Transl. Med. 10, eaat4921 (2018). This analysis of bulk cfDNA fragment sizes demonstrates a general shortening of ctDNA across many cancer types and development of a classifier for cancer detection.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jiang, P. et al. Plasma DNA end-motif profiling as a fragmentomic marker in cancer, pregnancy, and transplantation. Cancer Discov. 10, 664–673 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Jiang, P. et al. Detection and characterization of jagged ends of double-stranded DNA in plasma. Genome Res. 30, 1144–1153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cheng, T. H. et al. Noninvasive detection of bladder cancer by shallow-depth genome-wide bisulfite sequencing of urinary cell-free DNA for methylation and copy number profiling. Clin. Chem. 65, 927–936 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Stroun, M., Anker, P., Lyautey, J., Lederrey, C. & Maurice, P. A. Isolation and characterization of DNA from the plasma of cancer patients. Eur. J. Cancer Clin. Oncol. 23, 707–712 (1987).

    Article  CAS  PubMed  Google Scholar 

  98. Jahr, S. et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61, 1659–1665 (2001).

    CAS  PubMed  Google Scholar 

  99. Dennin, R. H. DNA of free and complexed origin in human plasma: concentration and length distribution. Klin. Wochenschr. 57, 451–456 (1979).

    Article  CAS  PubMed  Google Scholar 

  100. Giacona, M. B. et al. Cell-free DNA in human blood plasma. Pancreas 17, 89–97 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Diehl, F. et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl Acad. Sci. USA 102, 16368–16373 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Thierry, A. R. et al. Origin and quantification of circulating DNA in mice with human colorectal cancer xenografts. Nucleic Acids Res. 38, 6159–6175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mouliere, F. et al. High fragmentation characterizes tumour-derived circulating DNA. PLoS ONE 6, e23418 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Underhill, H. R. et al. Fragment length of circulating tumor DNA. PLoS Genet. 12, e1006162 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sanchez, C. et al. Circulating nuclear DNA structural features, origins, and complete size profile revealed by fragmentomics. JCI Insight 6, e144561 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mouliere, F. et al. Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl. Oncol. 6, 319–328 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Noë, M. et al. DNA methylation and gene expression as determinants of genome-wide cell-free DNA fragmentation. Nat. Commun. 15, 6690 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jones, P. A. & Baylin, S. B. The fundamental role of epigenetic events in cancer. Nat. Rev. Genet. 3, 415–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Serpas, L. et al. Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. Proc. Natl Acad. Sci. USA 116, 641–649 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Parpart-Li, S. et al. The effect of preservative and temperature on the analysis of circulating tumor DNA. Clin. Cancer Res. 23, 2471–2477 (2017).

    Article  CAS  PubMed  Google Scholar 

  111. Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell 164, 57–68 (2016). This study demonstrates an association between nucleosome and transcription factor positioning and cfDNA fragments, providing evidence that nucleosomal patterns could inform the tissue of origin of cfDNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ulz, P. et al. Inferring expressed genes by whole-genome sequencing of plasma DNA. Nat. Genet. 48, 1273–1278 (2016). This study demonstrates an association between focal cfDNA fragment coverage and gene expression.

    Article  CAS  PubMed  Google Scholar 

  113. Ulz, P. et al. Inference of transcription factor binding from cell-free DNA enables tumor subtype prediction and early detection. Nat. Commun. 10, 4666 (2019). This large study provides an analysis of the suitability of cfDNA fragment coverage patterns around transcription factor binding sites for cancer detection and subtype prediction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Peneder, P. et al. Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden. Nat. Commun. 12, 3230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mathios, D. et al. Detection and characterization of lung cancer using cell-free DNA fragmentomes. Nat. Commun. 12, 5060 (2021). This proof-of-concept study demonstrates the high performance of a cfDNA fragmentation-based assay for the detection of lung cancer and for noninvasive identification of lung cancer subtypes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Doebley, A.-L. et al. A framework for clinical cancer subtyping from nucleosome profiling of cell-free DNA. Nat. Commun. 13, 7475 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rao, S. et al. Transcription factor–nucleosome dynamics from plasma cfDNA identifies ER-driven states in breast cancer. Sci. Adv. 8, eabm4358 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Foda, Z. H. et al. Detecting liver cancer using cell-free DNA fragmentomes. Cancer Discov. 13, 616–631 (2023).

    Article  CAS  PubMed  Google Scholar 

  119. Esfahani, M. S. et al. Inferring gene expression from cell-free DNA fragmentation profiles. Nat. Biotechnol. 40, 585–597 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhu, G. et al. Tissue-specific cell-free DNA degradation quantifies circulating tumor DNA burden. Nat. Commun. 12, 2229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jiang, P. et al. Preferred end coordinates and somatic variants as signatures of circulating tumor DNA associated with hepatocellular carcinoma. Proc. Natl Acad. Sci. USA 115, E10925–E10933 (2018). This study shows that certain fragment end locations are overrepresented in cfDNA from individuals with hepatocellular carcinoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Budhraja, K. K. et al. Genome-wide analysis of aberrant position and sequence of plasma DNA fragment ends in patients with cancer. Sci. Transl. Med. 15, eabm6863 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. An, Y. et al. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat. Commun. 14, 287 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Benjamini, Y. & Speed, T. P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 40, e72 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou, Q. et al. Epigenetic analysis of cell-free DNA by fragmentomic profiling. Proc. Natl Acad. Sci. USA 119, e2209852119 (2022). This study describes an association between cfDNA fragmentation and DNA methylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, Y. et al. FinaleMe: predicting DNA methylation by the fragmentation patterns of plasma cell-free DNA. Nat. Commun. 15, 2790 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Medina, J. E. et al. Early detection of ovarian cancer using cell-free DNA fragmentomes and protein biomarkers. Cancer Discov. 15, 105–118 (2024).

    PubMed Central  Google Scholar 

  128. Mazzone, P. J. et al. Clinical validation of a cell-free DNA fragmentome assay for augmentation of lung cancer early detection. Cancer Discov. 14, 2224–2242 (2024). This prospective case–control study clinically validates a cfDNA fragmentation-based assay for the detection of lung cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zhang, X. et al. Ultrasensitive and affordable assay for early detection of primary liver cancer using plasma cell‐free DNA fragmentomics. Hepatology 76, 317–329 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Wang, S. et al. Multidimensional cell-free DNA fragmentomic assay for detection of early-stage lung cancer. Am. J. Respir. Crit. Care Med. 207, 1203–1213 (2022).

    Article  PubMed Central  Google Scholar 

  131. Liu, J. et al. Multimodal analysis of cfDNA methylomes for early detecting esophageal squamous cell carcinoma and precancerous lesions. Nat. Commun. 15, 3700 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Leal, A. I. C. et al. Cell-free DNA fragmentomes in the diagnostic evaluation of patients with symptoms suggestive of lung cancer. CHEST 164, 1019–1027 (2023).

    Article  CAS  PubMed  Google Scholar 

  133. Chung, D. C. et al. A cell-free DNA blood-based test for colorectal cancer screening. N. Engl. J. Med. 390, 973–983 (2024). This study describes a clinical trial evaluating a cfDNA blood-based test for the detection of colorectal cancer in an average-risk screening population.

    Article  CAS  PubMed  Google Scholar 

  134. Allen, C. K. C. et al. Analysis of plasma Epstein–Barr virus DNA to screen for nasopharyngeal cancer. N. Engl. J. Med. 377, 513–522 (2017). This large prospective cohort study demonstrates high performance for the detection of nasopharyngeal carcinoma through assessment of cell-free Epstein–Barr virus DNA.

    Article  Google Scholar 

  135. Garber, J. E. & Offit, K. Hereditary cancer predisposition syndromes. J. Clin. Oncol. 23, 276–292 (2005).

    Article  PubMed  Google Scholar 

  136. Wong, D. et al. Early cancer detection in Li–Fraumeni syndrome with cell-free DNA. Cancer Discov. 14, 104–119 (2023). This proof-of-concept study involves a multimodal liquid biopsy assay for earlier detection of cancer in patients with a cancer predisposition syndrome.

    Article  PubMed Central  Google Scholar 

  137. Liu, D., Yehia, L., Dhawan, A., Ni, Y. & Eng, C. Cell-free DNA fragmentomics and second malignant neoplasm risk in patients with PTEN hamartoma tumor syndrome. Cell Rep. Med. 5, 101384 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Welch, H. G. & Albertsen, P. C. Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986–2005. J. Natl Cancer Inst. 101, 1325–1329 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Potosky, A. L. et al. Health outcomes after prostatectomy or radiotherapy for prostate cancer: results from the prostate cancer outcomes study. J. Natl Cancer Inst. 92, 1582–1592 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Zhou, X. et al. CRAG: de novo characterization of cell-free DNA fragmentation hotspots in plasma whole-genome sequencing. Genome Med. 14, 138 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Stanley, K. E. et al. Cell type signatures in cell-free DNA fragmentation profiles reveal disease biology. Nat. Commun. 15, 2220 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Menon, U. et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet 397, 2182–2193 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Che, H. et al. Genomic origin, fragmentomics, and transcriptional correlation of long cell-free DNA molecules in human plasma. Genome Res. 34, 189–200 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bae, J. H. et al. Single duplex DNA sequencing with CODEC detects mutations with high sensitivity. Nat. Genet. 55, 871–879 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Füllgrabe, J. et al. Simultaneous sequencing of genetic and epigenetic bases in DNA. Nat. Biotechnol. 41, 1457–1464 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wang, Y. et al. Detection of rare mutations, copy number alterations, and methylation in the same template DNA molecules. Proc. Natl Acad. Sci. USA 120, e2220704120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Martin-Alonso, C. et al. Priming agents transiently reduce the clearance of cell-free DNA to improve liquid biopsies. Science 383, eadf2341 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yang, X., Kar, S., Antoniou, A. C. & Pharoah, P. D. P. Polygenic scores in cancer. Nat. Rev. Cancer 23, 619–630 (2023).

    Article  PubMed  Google Scholar 

  149. Kim, E. S. et al. Potential utility of risk stratification for multicancer screening with liquid biopsy tests. npj Precis. Oncol. 7, 39 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ebell, M. H., Thai, T. N. & Royalty, K. J. Cancer screening recommendations: an international comparison of high income countries. Public Health Rev. 39, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Adams, S. J. et al. Lung cancer screening. Lancet 401, 390–408 (2023).

    Article  PubMed  Google Scholar 

  152. Frenette, C. T., Isaacson, A. J., Bargellini, I., Saab, S. & Singal, A. G. A practical guideline for hepatocellular carcinoma screening in patients at risk. Mayo Clin. Proc. Innov. Qual. Outcomes 3, 302–310 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Leung, W. K. et al. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol. 9, 279–287 (2008).

    Article  PubMed  Google Scholar 

  154. Xia, C. et al. Cancer screening in China: a steep road from evidence to implementation. Lancet Public Health 8, e996–e1005 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  155. American Cancer Society. History of ACS recommendations for the early detection of cancer in people without symptoms; https://www.cancer.org/health-care-professionals/american-cancer-society-prevention-early-detection-guidelines/overview/chronological-history-of-acs-recommendations.html (2021).

  156. Canto, M. I. et al. International Cancer of the Pancreas Screening (CAPS) Consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut 62, 339 (2013).

    Article  PubMed  Google Scholar 

  157. Douville, C. et al. Assessing aneuploidy with repetitive element sequencing. Proc. Natl Acad. Sci. USA 117, 4858–4863 (2020). This study describes an approach involving amplification of repetitive sequences in cfDNA and assessment of aneuploidy for the detection of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Douville, C. et al. Machine learning to detect the SINEs of cancer. Sci. Transl. Med. 16, eadi3883 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Helzer, K. T. et al. Fragmentomic analysis of circulating tumor DNA-targeted cancer panels. Ann. Oncol. 34, 813–825 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04825834 (2024).

  161. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04241796 (2022).

  162. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/study/NCT04136002 (2024).

  163. Cescon, D. W., Bratman, S. V., Chan, S. M. & Siu, L. L. Circulating tumor DNA and liquid biopsy in oncology. Nat. Cancer 1, 276–290 (2020).

    Article  CAS  PubMed  Google Scholar 

  164. Clark, T. A. et al. Analytical validation of a hybrid capture-based next-generation sequencing clinical assay for genomic profiling of cell-free circulating tumor DNA. J. Mol. Diagn. 20, 686–702 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Phallen, J. et al. Early noninvasive detection of response to targeted therapy in non-small cell lung cancer. Cancer Res. 79, 1204–1213 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Anagnostou, V. et al. Dynamics of tumor and immune responses during immune checkpoint blockade in non-small cell lung cancer. Cancer Res. 79, 1214–1225 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Thompson, J. C., Scholes, D. G., Carpenter, E. L. & Aggarwal, C. Molecular response assessment using circulating tumor DNA (ctDNA) in advanced solid tumors. Br. J. Cancer 129, 1893–1902 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Moding, E. J., Nabet, B. Y., Alizadeh, A. A. & Diehn, M. Detecting liquid remnants of solid tumors: circulating tumor DNA minimal residual disease. Cancer Discov. 11, 2968–2986 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zviran, A. et al. Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring. Nat. Med. 26, 1114–1124 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the members of their laboratories for the critical review of the manuscript. This work was supported in part by the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, SU2C in-Time Lung Cancer Interception Dream Team Grant, Stand Up to Cancer-Dutch Cancer Society International Translational Cancer Research Dream Team Grant (SU2C-AACR-DT1415), the Gray Foundation, The Honorable Tina Brozman Foundation, the Commonwealth Foundation, the Mark Foundation for Cancer Research, the Cole Foundation, a research grant from Delfi Diagnostics, and US National Institutes of Health grants CA121113, CA006973, CA233259, CA062924 and CA271896. Stand Up To Cancer is a programme of the Entertainment Industry Foundation administered by the American Association for Cancer Research. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to the discussion of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Victor E. Velculescu.

Ethics declarations

Competing interests

D.C.B., Z.H.F, J.P. and R.B.S. are inventors on patent applications submitted by Johns Hopkins University related to cell-free DNA analyses. J.P. and R.B.S. are founders of Delfi Diagnostics, and R.B.S is a consultant for this organization. V.E.V. is a founder of Delfi Diagnostics, serves on the board of directors, and owns Delfi Diagnostics stock, which is subject to certain restrictions under university policy. Additionally, Johns Hopkins University owns equity in Delfi Diagnostics. V.E.V. divested his equity in Personal Genome Diagnostics (PGDx) to LabCorp in February 2022. V.E.V. is an inventor on patent applications submitted by Johns Hopkins University related to cancer genomic and cell-free DNA analyses that have been licensed to one or more entities, including Delfi Diagnostics, LabCorp, Qiagen, Sysmex, Agios, Genzyme, Esoterix, Ventana and ManaT Bio. Under the terms of these license agreements, the University and inventors are entitled to fees and royalty distributions. V.E.V. is an adviser to Viron Therapeutics and Epitope. These arrangements have been reviewed and approved by the Johns Hopkins University in accordance with its conflict-of-interest policies.

Peer review

Peer review information

Nature Reviews Cancer thanks Klaus Pantel, Trevor Pugh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Apoptosis

A form of programmed cell death that can be initiated by either extracellular or intracellular mediators in response to a predefined developmental programme or in response to cellular stress.

Cancer screening

Population-scale testing of asymptomatic individuals for cancer.

Cell-free DNA

(cfDNA). DNA fragments that are not contained within cells, which can be produced through apoptosis, necrosis and active secretion.

cfDNA fragmentome

The genome-wide compendium of cfDNA fragments in the circulation, providing an integrated view of the chromatin, genome, epigenome and transcriptome states of normal and cancer cells of an individual.

Chromatin

A complex of DNA and proteins that can exist as open, ‘active’ chromatin termed euchromatin, or as heterochromatin, which refers to closed ‘inactive’ chromatin.

Circulating tumour DNA

(ctDNA). cfDNA fragments from tumour cells released into the bloodstream.

Classifiers

Algorithms that assign an entity to one or more groups.

Clonal haematopoiesis of indeterminate potential

(CHIP). A genetically distinct population of blood cells caused by somatic mutations in blood cell progenitors.

Diagnostic odyssey

When the process to diagnose a disease is long and difficult, often requiring multiple tests and procedures.

False-negative rate

The probability that an individual with cancer will test negative, which is equivalent to 1-sensitivity.

False-positive rate

The probability that an individual without cancer will test positive, which is equivalent to 1-specificity.

Germline variants

Genetic variants that were already present in the germline leading to its presence in all cells throughout the body.

Li–Fraumeni syndrome

A rare disorder resulting from pathogenic germline variants in the TP53 gene that greatly increases the risk of developing cancer.

Lymphoblastoid cells

Immortalized B lymphocytes generated by infection with Epstein–Barr virus.

Massively parallel sequencing

Often referred to as next-generation sequencing (NGS), this laboratory approach is used to determine the sequence of a large number of DNA fragments simultaneously.

Microsatellites

Short stretches of DNA wherein one to several nucleotides are repeated multiple times.

Necrosis

A form of cell death distinct from apoptosis; necrosis can be induced by irreversible cell injury and is characterized by breakdown in the plasma membrane and release of intracellular contents.

Negative predictive value

(NPV). The probability that an individual with a negative screening test does not have cancer.

Nucleosomes

Segments of DNA wrapped around histone proteins; a mononucleosome refers to a single nucleosome, whereas a di-nucleosome or tri-nucleosome refers to two or three nucleosomes.

Pack-year

A quantification of the smoking history of an individual determined by multiplying the number of packs of cigarettes smoked per day by the number of years of smoking.

Polygenic risk scores

(PRS). Scores derived from multiple genetic variants related to the risk of an outcome.

Polymorphisms

Variations in DNA sequence at specific positions in the genome that contribute to genetic variation and might alter the structure, function or expression of the gene product.

Positive predictive value

(PPV). The probability that an individual with a positive screening test has cancer.

Pre-analytical factors

Factors that occur before sample analysis in the laboratory that may influence test results, such as how samples are collected and stored, which have been shown to influence ctDNA levels.

PTEN hamartoma tumour syndrome

A rare genetic condition caused by germline mutations in the PTEN gene with multiple health implications including an increased risk of developing certain types of cancer.

Repetitive elements

Sequences of DNA that are repeated multiple times in the genome.

Sensitivity

The probability that an individual with cancer will test positive, which can be estimated directly from a case–control study as the proportion of cancers that test positive out of all cancers in the study (also known as the true-positive rate).

Specificity

The probability that an individual without cancer will test negative, which can be estimated directly from a case–control study as the proportion of individuals without cancer that test negative out of all individuals without cancer in the study (also known as the true-negative rate).

Stage-shifting

Detecting cancers at an earlier stage of the disease owing to screening.

Structural variants

Large genomic rearrangements that are typically ≥50 bp.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruhm, D.C., Vulpescu, N.A., Foda, Z.H. et al. Genomic and fragmentomic landscapes of cell-free DNA for early cancer detection. Nat Rev Cancer 25, 341–358 (2025). https://doi.org/10.1038/s41568-025-00795-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00795-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer