Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted protein degradation for cancer therapy

Abstract

Targeted protein degradation (TPD) aims at reprogramming the target specificity of the ubiquitin–proteasome system, the major cellular protein disposal machinery, to induce selective ubiquitination and degradation of therapeutically relevant proteins. Since its conception over 20 years ago, TPD has gained a lot of attention mainly due to improvements in the design of bifunctional proteolysis targeting chimeras (PROTACs) and understanding the mechanisms underlying molecular glue degraders. Today, PROTACs are on the verge of a first clinical approval and recent structural and mechanistic insights combined with technological leaps promise to unlock the rational design of protein degraders, following the lead of lenalidomide and related clinically approved analogues. At the same time, the TPD universe is expanding at a record speed with the discovery of novel modalities beyond molecular glue degraders and PROTACs. Here we review the recent progress in the field, focusing on newly discovered degrader modalities, the current state of clinical degrader candidates for cancer therapy and upcoming design approaches.

Key points

  • Protein degradation by the ubiquitin–proteasome system is highly regulated at multiple levels by endogenous cellular mechanisms and external stimuli.

  • Pharmaceutical interventions exploit and mimic these mechanisms by reprogramming E3 ubiquitin ligases and the proteasome to enhance, reduce or alter the degradation of selected proteins.

  • Proteolysis targeting chimeras use dedicated ligands that individually bind a target protein and an E3 ligase to induce their proximity, ubiquitin transfer and effective protein degradation.

  • Molecular glue degraders enhance pre-existing surface complementarities between an E3 ligase and a target protein to induce the formation of a stable ternary complex, ubiquitination and degradation.

  • Novel degradation strategies such as intramolecular bivalent glues or template-assisted covalent degradation tails expand the targeted protein degradation universe and blur the lines between established modalities.

  • The success of targeted protein degradation paves the way for other proximity-induced modalities, such as protein delocalization or transcriptional and epigenetic rewiring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The UPS system.
Fig. 2: Targeted protein degradation via PROTACs and molecular glue degraders.
Fig. 3: Alternative and emerging degrader modalities.
Fig. 4: Clinical benefits of degrader strategies versus occupancy-based modalities.

Similar content being viewed by others

References

  1. Kwon, Y. T. & Ciechanover, A. The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci. 42, 873–886 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, L. E., Gu, J., Schau, M. & Bunn, H. F. Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin–proteasome pathway. Proc. Natl Acad. Sci. USA 95, 7987–7992 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kaelin, W. G. Jr. Treatment of kidney cancer: insights provided by the VHL tumor-suppressor protein. Cancer 115, 2262–2272 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Li, W. et al. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 3, e1487 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jevtic, P., Haakonsen, D. L. & Rape, M. An E3 ligase guide to the galaxy of small-molecule-induced protein degradation. Cell Chem. Biol. 28, 1000–1013 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Harper, J. W. & Schulman, B. A. Cullin-RING ubiquitin ligase regulatory circuits: a quarter century beyond the F-box hypothesis. Annu. Rev. Biochem. 90, 403–429 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reitsma, J. M. et al. Composition and regulation of the cellular repertoire of SCF ubiquitin ligases. Cell 171, 1326–1339.e1314 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koren, I. et al. The eukaryotic proteome is shaped by E3 ubiquitin ligases targeting C-terminal degrons. Cell 173, 1622–1635.e1614 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Timms, R. T. et al. A glycine-specific N-degron pathway mediates the quality control of protein N-myristoylation. Science 365, eaaw4912 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng, N. & Shabek, N. Ubiquitin ligases: structure, function, and regulation. Annu. Rev. Biochem. 86, 129–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Ichikawa, S. et al. The E3 ligase adapter cereblon targets the C-terminal cyclic imide degron. Nature 610, 775–782 (2022). This study resolves the nature and origin of naturally occurring C-terminal degrons recognized by CRBN that are mimicked by IMiDs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Muhar, M. F. et al. C-terminal amides mark proteins for degradation via SCF-FBXO31. Nature 638, 519–527 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dietz, L. et al. Structural basis for SMAC-mediated antagonism of caspase inhibition by the giant ubiquitin ligase BIRC6. Science 379, 1112–1117 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Ehrmann, J. F. et al. Structural basis for regulation of apoptosis and autophagy by the BIRC6/SMAC complex. Science 379, 1117–1123 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Hunkeler, M., Jin, C. Y. & Fischer, E. S. Structures of BIRC6-client complexes provide a mechanism of SMAC-mediated release of caspases. Science 379, 1105–1111 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Meszaros, B., Kumar, M., Gibson, T. J., Uyar, B. & Dosztanyi, Z. Degrons in cancer. Sci. Signal 10, eaak9982 (2017).

    Article  PubMed  Google Scholar 

  19. Xie, X. et al. Converging mechanism of UM171 and KBTBD4 neomorphic cancer mutations. Nature 639, 241–249 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, Z. et al. Disease-associated KBTBD4 mutations in medulloblastoma elicit neomorphic ubiquitylation activity to promote CoREST degradation. Cell Death Differ. 29, 1955–1969 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao, S. et al. Recognition of BACH1 quaternary structure degrons by two F-box proteins under oxidative stress. Cell 187, 7568–7584.e7522 (2024).

    Article  CAS  PubMed  Google Scholar 

  22. Goretzki, B. et al. Dual BACH1 regulation by complementary SCF-type E3 ligases. Cell 187, 7585–7602.e7525 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Mena, E. L. et al. Structural basis for dimerization quality control. Nature 586, 452–456 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mena, E. L. et al. Dimerization quality control ensures neuronal development and survival. Science 362, eaap8236 (2018).

    Article  PubMed  Google Scholar 

  25. Lignitto, L. et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of bach1. Cell 178, 316–329.e318 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345.e322 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Mittal, P. & Roberts, C. W. M. The SWI/SNF complex in cancer — biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 17, 435–448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Radko-Juettner, S. et al. Targeting DCAF5 suppresses SMARCB1-mutant cancer by stabilizing SWI/SNF. Nature 628, 442–449 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Manasanch, E. E. & Orlowski, R. Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 14, 417–433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soucy, T. A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Fu, D. J. & Wang, T. Targeting NEDD8-activating enzyme for cancer therapy: developments, clinical trials, challenges and future research directions. J. Hematol. Oncol. 16, 87 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Georgiopoulos, G. et al. Cardiovascular toxicity of proteasome inhibitors: underlying mechanisms and management strategies: JACC: cardiooncology state-of-the-art review. JACC CardioOncol 5, 1–21 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Buckley, D. L. et al. Targeting the von Hippel–Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc. 134, 4465–4468 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Frost, J. et al. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition. Nat. Commun. 7, 13312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crisman, E. et al. KEAP1–NRF2 protein–protein interaction inhibitors: design, pharmacological properties and therapeutic potential. Med. Res. Rev. 43, 237–287 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Kimani, S. W. et al. The co-crystal structure of Cbl-b and a small-molecule inhibitor reveals the mechanism of Cbl-b inhibition. Commun. Biol. 6, 1272 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gollner, A. et al. Discovery and characterization of brigimadlin, a novel and highly potent MDM2–p53 antagonist suitable for intermittent dose schedules. Mol. Cancer Ther. 23, 1689–1702 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Chauhan, D. et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22, 345–358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schauer, N. J. et al. Selective USP7 inhibition elicits cancer cell killing through a p53-dependent mechanism. Sci. Rep. 10, 5324 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Manford, A. G. et al. Structural basis and regulation of the reductive stress response. Cell 184, 5375–5390.e5316 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mo, X. et al. Systematic discovery of mutation-directed neo-protein–protein interactions in cancer. Cell 185, 1974–1985.e1912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schreiber, S. L. Molecular glues and bifunctional compounds: therapeutic modalities based on induced proximity. Cell Chem. Biol. 31, 1050–1063 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Bekes, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov. 21, 181–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ishida, T. & Ciulli, A. E3 ligase ligands for PROTACs: how they were found and how to discover new ones. SLAS Discov. 26, 484–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Donovan, K. A. et al. Mapping the degradable kinome provides a resource for expedited degrader development. Cell 183, 1714–1731.e1710 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shemorry, A. et al. Engineering ERα degraders with pleiotropic ubiquitin ligase ligands maximizes therapeutic efficacy by co-opting distinct effector ligases. Preprint at bioRxiv https://doi.org/10.1101/2024.06.09.595178v1 (2024).

  50. Vicente, A. T. S. & Salvador, J. A. R. MDM2-based proteolysis-targeting chimeras (PROTACs): an innovative drug strategy for cancer treatment. Int. J. Mol. Sci. 23, 11068 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, C. et al. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J. Enzym. Inhib. Med. Chem. 37, 1437–1453 (2022).

    Article  CAS  Google Scholar 

  52. Shah Zaib Saleem, R., Schwalm, M. P. & Knapp, S. Expanding the ligand spaces for E3 ligases for the design of protein degraders. Bioorg. Med. Chem. 105, 117718 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Du, G. et al. Exploring the target scope of KEAP1 E3 ligase-based PROTACs. Cell Chem. Biol. 29, 1470–1481.e1431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schroder, M. et al. DCAF1-based PROTACs with activity against clinically validated targets overcoming intrinsic- and acquired-degrader resistance. Nat. Commun. 15, 275 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xue, G. et al. Discovery of a drug-like, natural product-inspired DCAF11 ligand chemotype. Nat. Commun. 14, 7908 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hickey, C. M. et al. Co-opting the E3 ligase KLHDC2 for targeted protein degradation by small molecules. Nat. Struct. Mol. Biol. 31, 311–322 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Ramachandran, S. et al. Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2. Nat. Commun. 14, 6345 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rui, H., Ashton, K. S., Min, J., Wang, C. & Potts, P. R. Protein–protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction. RSC Chem. Biol. 4, 192–215 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kozicka, Z. & Thoma, N. H. Haven’t got a glue: protein surface variation for the design of molecular glue degraders. Cell Chem. Biol. 28, 1032–1047 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Cao, S. et al. Defining molecular glues with a dual-nanobody cannabidiol sensor. Nat. Commun. 13, 815 (2022). This paper measures pre-existing intrinsic protein–protein affinities and defines them as unifying features of molecular glues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsia, O. et al. Targeted protein degradation via intramolecular bivalent glues. Nature 627, 204–211 (2024). This paper presents intramolecular bivalent glueing as a new TPD modality directing the intramolecular arrangement of protein domains into a conformation that enhances intrinsic affinities between a target and an E3 ligase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mayor-Ruiz, C. et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16, 1199–1207 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Matyskiela, M. E. et al. A cereblon modulator (CC-220) with improved degradation of ikaros and aiolos. J. Med. Chem. 61, 535–542 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    Article  PubMed  Google Scholar 

  65. Lu, P. et al. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 187, 7126–7142.e7120 (2024).

    Article  CAS  PubMed  Google Scholar 

  66. Tutter, A. et al. A small molecule VHL molecular glue degrader for cysteine dioxygenase 1. Preprint at bioRxiv https://doi.org/10.1101/2024.01.25.576086v1 (2024).

  67. Yeo, M. J. R. et al. UM171 glues asymmetric CRL3–HDAC1/2 assembly to degrade CoREST corepressors. Nature 639, 232–240 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamamoto, J., Ito, T., Yamaguchi, Y. & Handa, H. Discovery of CRBN as a target of thalidomide: a breakthrough for progress in the development of protein degraders. Chem. Soc. Rev. 51, 6234–6250 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Oleinikovas, V., Gainza, P., Ryckmans, T., Fasching, B. & Thoma, N. H. From thalidomide to rational molecular glue design for targeted protein degradation. Annu. Rev. Pharmacol. Toxicol. 64, 291–312 (2024).

    Article  CAS  PubMed  Google Scholar 

  70. Ting, P. Y. et al. A molecular glue degrader of the WIZ transcription factor for fetal hemoglobin induction. Science 385, 91–99 (2024).

    Article  CAS  PubMed  Google Scholar 

  71. Hansen, J. D. et al. Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma. J. Med. Chem. 63, 6648–6676 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Watson, E. R. et al. Molecular glue CELMoD compounds are regulators of cereblon conformation. Science 378, 549–553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Uehara, T. et al. Selective degradation of splicing factor CAPERα by anticancer sulfonamides. Nat. Chem. Biol. 13, 675–680 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Bewersdorf, J. P. et al. E7820, an anti-cancer sulfonamide, degrades RBM39 in patients with splicing factor mutant myeloid malignancies: a phase II clinical trial. Leukemia 37, 2512–2516 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smith, B. E. et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 10, 131 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Dixon, T. et al. Predicting the structural basis of targeted protein degradation by integrating molecular dynamics simulations with structural mass spectrometry. Nat. Commun. 13, 5884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Crowe, C. et al. Mechanism of degrader-targeted protein ubiquitinability. Sci. Adv. 10, eado6492 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liwocha, J. et al. Mechanism of millisecond Lys48-linked poly-ubiquitin chain formation by cullin-RING ligases. Nat. Struct. Mol. Biol. 31, 378–389 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Imaide, S. et al. Trivalent PROTACs enhance protein degradation via combined avidity and cooperativity. Nat. Chem. Biol. 17, 1157–1167 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wurz, R. P. et al. Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation. Nat. Commun. 14, 4177 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bondeson, D. P. et al. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 25, 78–87.e75 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Testa, A. et al. 3-Fluoro-4-hydroxyprolines: synthesis, conformational analysis, and stereoselective recognition by the VHL E3 ubiquitin ligase for targeted protein degradation. J. Am. Chem. Soc. 140, 9299–9313 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Farnaby, W. et al. BAF complex vulnerabilities in cancer demonstrated via structure-based PROTAC design. Nat. Chem. Biol. 15, 672–680 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yu, X. et al. A selective WDR5 degrader inhibits acute myeloid leukemia in patient-derived mouse models. Sci. Transl. Med. 13, eabj1578 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Popow, J. et al. Targeting cancer with small-molecule pan-KRAS degraders. Science 385, 1338–1347 (2024). This study describes the structure-based design of pan-KRAS PROTAC ACBI3, which potently degrades 13 of the 17 most prevalent KRAS variants, representing a major advance from and complementation to clinically approved KRAS-G12C inhibitors.

    Article  CAS  PubMed  Google Scholar 

  87. Gough, S. M. et al. Oral estrogen receptor PROTAC vepdegestrant (ARV-471) is highly efficacious as monotherapy and in combination with CDK4/6 or PI3K/mTOR pathway inhibitors in preclinical ER+ breast cancer models. Clin. Cancer Res. 30, 3549–3563 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roy, M. J. et al. SPR-measured dissociation kinetics of PROTAC ternary complexes influence target degradation rate. ACS Chem. Biol. 14, 361–368 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nowak, R. P. et al. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol. 14, 706–714 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zorba, A. et al. Delineating the role of cooperativity in the design of potent PROTACs for BTK. Proc. Natl Acad. Sci. USA 115, E7285–E7292 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Slabicki, M. et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585, 293–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Bussiere, D. E. et al. Structural basis of indisulam-mediated RBM39 recruitment to DCAF15 E3 ligase complex. Nat. Chem. Biol. 16, 15–23 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Du, X. et al. Structural basis and kinetic pathway of RBM39 recruitment to DCAF15 by a sulfonamide molecular glue E7820. Structure 27, 1625–1633.e1623 (2019).

    Article  CAS  PubMed  Google Scholar 

  95. Kozicka, Z. et al. Design principles for cyclin K molecular glue degraders. Nat. Chem. Biol. 20, 93–102 (2024). By systematically studying a panel of cyclin K degraders, this study identifies the structure–activity features underlying this diverse class of degraders, laying the foundation for the rational design of cyclin K molecular glues.

    Article  CAS  PubMed  Google Scholar 

  96. Bai, L. et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 36, 498–511.e417 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lv, L. et al. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife 9, e5994 (2020).

    Article  Google Scholar 

  98. Dieter, S. M. et al. Degradation of CCNK/CDK12 is a druggable vulnerability of colorectal cancer. Cell Rep. 36, 109394 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Jorda, R. et al. 3,5,7-Substituted pyrazolo[4,3-d]pyrimidine inhibitors of cyclin-dependent kinases and cyclin K degraders. J. Med. Chem. 65, 8881–8896 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Sano, O. et al. Novel quinazolin-4(3H)-one based cyclin K degraders regulate alternative polyadenylation activity. Biochem. Biophys. Res. Commun. 676, 6–12 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Thomas, K. L. et al. Degradation by design: new cyclin k degraders from old CDK inhibitors. ACS Chem. Biol. 19, 173–184 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yamamoto, J. et al. ARID2 is a pomalidomide-dependent CRL4(CRBN) substrate in multiple myeloma cells. Nat. Chem. Biol. 16, 1208–1217 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Ohba, K. et al. Sulfonamide or sulfinamide compound having effect of inducing BRD4 protein degradation and pharmaceutical use thereof. World Patent WO/2021/157684 (2021).

  104. Parker, G. S. et al. Discovery of monovalent direct degraders of BRD4 that act via the recruitment of DCAF11. Mol. Cancer Ther. 23, 1446–1458 (2024).

    Article  CAS  PubMed Central  Google Scholar 

  105. Chothia, C., Gough, J., Vogel, C. & Teichmann, S. A. Evolution of the protein repertoire. Science 300, 1701–1703 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Tanaka, M. et al. Design and characterization of bivalent BET inhibitors. Nat. Chem. Biol. 12, 1089–1096 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Waring, M. J. et al. Potent and selective bivalent inhibitors of BET bromodomains. Nat. Chem. Biol. 12, 1097–1104 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Ren, C. et al. Spatially constrained tandem bromodomain inhibition bolsters sustained repression of BRD4 transcriptional activity for TNBC cell growth. Proc. Natl Acad. Sci. USA 115, 7949–7954 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Shergalis, A. G. et al. CRISPR screen reveals BRD2/4 molecular glue-like degrader via recruitment of DCAF16. ACS Chem. Biol. 18, 331–339 (2023).

    Article  CAS  PubMed  Google Scholar 

  110. Li, Y. D. et al. Template-assisted covalent modification underlies activity of covalent molecular glues. Nat. Chem. Biol. 20, 1640–1649 (2024). This study defines ‘template-assisted covalency’ as a new TPD modality, whereby surface complementarity between a target protein and an E3 ligase guides an electrophilic target ligand to specifically react in trans with the E3 ligase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sarott, R. C. et al. Chemical specification of E3 ubiquitin ligase engagement by cysteine-reactive chemistry. J. Am. Chem. Soc. 145, 21937–21944 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Tin, G. et al. Discovery of a DCAF11-dependent cyanoacrylamide-containing covalent degrader of BET-proteins. Bioorg. Med. Chem. Lett. 107, 129779 (2024).

    Article  CAS  PubMed  Google Scholar 

  113. Wang, Y. et al. Alkenyl oxindole is a novel PROTAC moiety that recruits the CRL4DCAF11 E3 ubiquitin ligase complex for targeted protein degradation. PLoS Biol. 22, e3002550 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hassan, M. M. et al. Exploration of the tunability of BRD4 degradation by DCAF16 trans-labelling covalent glues. Eur. J. Med. Chem. 279, 116904 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, X., Crowley, V. M., Wucherpfennig, T. G., Dix, M. M. & Cravatt, B. F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737–746 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Toriki, E. S. et al. Rational chemical design of molecular glue degraders. ACS Cent. Sci. 9, 915–926 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lim, M. et al. DCAF16-based covalent handle for the rational design of monovalent degraders. ACS Cent. Sci. 10, 1318–1331 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhuang, Z. et al. Discovery of electrophilic degraders that exploit SNAr chemistry. Preprint at bioRxiv https://doi.org/10.1101/2024.09.25.615094v1 (2024).

  119. Shaum, J. B. et al. High-throughput diversification of protein-ligand surfaces to discover chemical inducers of proximity. Preprint at bioRxiv https://doi.org/10.1101/2024.09.30.615685v1 (2024).

  120. den Besten, W. et al. Primary amine tethered small molecules promote the degradation of X-linked inhibitor of apoptosis protein. J. Am. Chem. Soc. 143, 10571–10575 (2021).

    Article  CAS  Google Scholar 

  121. Nie, D. Y. et al. Recruitment of FBXO22 for targeted degradation of NSD2. Nat. Chem. Biol. 20, 1597–1607 (2024).

    Article  CAS  PubMed  Google Scholar 

  122. Kagiou, C. et al. Alkylamine-tethered molecules recruit FBXO22 for targeted protein degradation. Nat. Commun. 15, 5409 (2024). Together with Nie et al. (2024), this study presents flexible alkylamines as transplantable degradation tail precursors that upon metabolization into active aldehydes covalently engage the E3 ligase FBXO22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhuang, Z. et al. Charged molecular glue discovery enabled by targeted degron display. Preprint at bioRxiv https://doi.org/10.1101/2024.09.24.614843v1 (2024).

  124. Ma, A. et al. Discovery of a first-in-class EZH2 selective degrader. Nat. Chem. Biol. 16, 214–222 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Gustafson, J. L. et al. Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angew. Chem. Int. Ed. Engl. 54, 9659–9662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xie, S. et al. Discovery of norbornene as a novel hydrophobic tag applied in protein degradation. Angew. Chem. Int. Ed. Engl. 62, e202217246 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Tsai, J. M. et al. UBR5 forms ligand-dependent complexes on chromatin to regulate nuclear hormone receptor stability. Mol. Cell 83, 2753–2767.e2710 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pike, A. C. et al. Structural insights into the mode of action of a pure antiestrogen. Structure 9, 145–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Y. & Tang, S. C. The race to develop oral SERDs and other novel estrogen receptor inhibitors: recent clinical trial results and impact on treatment options. Cancer Metastasis Rev. 41, 975–990 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Martin, M. et al. Giredestrant for estrogen receptor-positive, HER2-negative, previously treated advanced breast cancer: results from the randomized, phase II acelERA breast cancer study. J. Clin. Oncol. 42, 2149–2160 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Tolaney, S. M. et al. AMEERA-3: randomized phase II study of amcenestrant (oral selective estrogen receptor degrader) versus standard endocrine monotherapy in estrogen receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer. J. Clin. Oncol. 41, 4014–4024 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Müller, S., Miller, W. H. & Dejean, A. Trivalent antimonials induce degradation of the PML-RARα oncoprotein and reorganization of the promyelocytic leukemia nuclear bodies in acute promyelocytic leukemia NB4 cells. Blood 92, 4308–4316 (1998).

    Article  PubMed  Google Scholar 

  133. Tatham, M. H. et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 10, 538–546 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Lallemand-Breitenbach, V. et al. Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol. 10, 547–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Jaffray, E. G. et al. The p97/VCP segregase is essential for arsenic-induced degradation of PML and PML-RARA. J. Cell. Biol. 222, e202201027 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ferretti, S. et al. Discovery of WRN inhibitor HRO761 with synthetic lethality in MSI cancers. Nature 629, 443–449 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Baltgalvis, K. A. et al. Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature 629, 435–442 (2024).

    Article  CAS  PubMed  Google Scholar 

  138. Rodriguez Perez, F. et al. WRN inhibition leads to its chromatin-associated degradation via the PIAS4-RNF4-p97/VCP axis. Nat. Commun. 15, 6059 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liu, J. C. Y. et al. Concerted SUMO-targeted ubiquitin ligase activities of TOPORS and RNF4 are essential for stress management and cell proliferation. Nat. Struct. Mol. Biol. 31, 1355–1367 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lobbestael, E. et al. Pharmacological LRRK2 kinase inhibition induces LRRK2 protein destabilization and proteasomal degradation. Sci. Rep. 6, 33897 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wu, H. et al. Discovery of a potent, covalent BTK inhibitor for B-cell lymphoma. ACS Chem. Biol. 9, 1086–1091 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Beke, L. et al. MELK-T1, a small-molecule inhibitor of protein kinase MELK, decreases DNA-damage tolerance in proliferating cancer cells. Biosci. Rep. 35, e00267 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  143. McNaughton, M., Pitman, M., Pitson, S. M., Pyne, N. J. & Pyne, S. Proteasomal degradation of sphingosine kinase 1 and inhibition of dihydroceramide desaturase by the sphingosine kinase inhibitors, SKi or ABC294640, induces growth arrest in androgen-independent LNCaP-AI prostate cancer cells. Oncotarget 7, 16663–16675 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Jones, L. H. Small-molecule kinase downregulators. Cell Chem. Biol. 25, 30–35 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Taipale, M. et al. Quantitative analysis of HSP90–client interactions reveals principles of substrate recognition. Cell 150, 987–1001 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Polier, S. et al. ATP-competitive inhibitors block protein kinase recruitment to the Hsp90–Cdc37 system. Nat. Chem. Biol. 9, 307–312 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Fiskus, W. et al. Activity of menin inhibitor ziftomenib (KO-539) as monotherapy or in combinations against AML cells with MLL1 rearrangement or mutant NPM1. Leukemia 36, 2729–2733 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cutler, J. et al. Menin inhibitor induced menin protein degradation contributes to menin inhibitor efficacy. Blood 142, 2788–2788 (2023).

    Article  Google Scholar 

  149. Mark, K. G. et al. Orphan quality control shapes network dynamics and gene expression. Cell 186, 3460–3475.e3423 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Wu, Y. et al. Disruption of the menin–MLL interaction triggers menin protein degradation via ubiquitin–proteasome pathway. Am. J. Cancer Res. 9, 1682–1694 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Yaguchi, H. et al. Menin missense mutants associated with multiple endocrine neoplasia type 1 are rapidly degraded via the ubiquitin–proteasome pathway. Mol. Cell Biol. 24, 6569–6580 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Canaff, L. et al. Menin missense mutants encoded by the MEN1 gene that are targeted to the proteasome: restoration of expression and activity by CHIP siRNA. J. Clin. Endocrinol. Metab. 97, E282–E291 (2012).

    Article  CAS  PubMed  Google Scholar 

  153. Hennes, E. et al. Identification of a monovalent pseudo-natural product degrader class supercharging degradation of IDO1 by its native E3 KLHDC3. Preprint at bioRxiv https://doi.org/10.1101/2024.07.10.602857v3 (2025).

  154. Arafeh, R. & Samuels, Y. PIK3CA in cancer: the past 30 years. Semin. Cancer Biol. 59, 36–49 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Song, K. W. et al. RTK-dependent inducible degradation of mutant PI3Kα drives GDC-0077 (Inavolisib) efficacy. Cancer Discov. 12, 204–219 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Scholes, N. S. et al. Inhibitor-induced supercharging of kinase turnover via endogenous proteolytic circuits. Preprint at bioRxiv https://doi.org/10.1101/2024.07.10.602881v2 (2024).

  157. Kerres, N. et al. Chemically induced degradation of the oncogenic transcription factor BCL6. Cell Rep. 20, 2860–2875 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Slabicki, M. et al. Small-molecule-induced polymerization triggers degradation of BCL6. Nature 588, 164–168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase. Nature 535, 252–257 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Petzold, G., Fischer, E. S. & Thoma, N. H. Structural basis of lenalidomide-induced CK1α degradation by the CRL4(CRBN) ubiquitin ligase. Nature 532, 127–130 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Baek, K. et al. Unveiling the hidden interactome of CRBN molecular glues with chemoproteomics. Preprint at bioRxiv https://doi.org/10.1101/2024.09.11.612438v2 (2024).

  162. Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hanzl, A. et al. Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders. Nat. Chem. Biol. 19, 323–333 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Kronke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Donovan, K. A. et al. Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane radial ray syndrome. eLife 7, e38430 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Asatsuma-Okumura, T. et al. p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat. Chem. Biol. 15, 1077–1084 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Matyskiela, M. E. et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol. 14, 981–987 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Powell, C. E. et al. Selective degradation of GSPT1 by cereblon modulators identified via a focused combinatorial library. ACS Chem. Biol. 15, 2722–2730 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ng, A. et al. Discovery of molecular glue degraders via isogenic morphological profiling. ACS Chem. Biol. 18, 2464–2473 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Surka, C. et al. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 137, 661–677 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bonazzi, S. et al. Discovery and characterization of a selective IKZF2 glue degrader for cancer immunotherapy. Cell Chem. Biol. 30, 235–247.e212 (2023). This study reports the design of the MGD NVP-DKY709 that selectively targets IKZF2 to CRBN, without degrading the close relatives IKZF1 and IKZF3. NVP-DKY709 reduces regulatory T cell suppression and is now in clinical trials as an immune-enhancing agent for cancer immunotherapy.

    Article  CAS  PubMed  Google Scholar 

  172. Brand, M. et al. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem. Biol. 26, 300–306.e309 (2019).

    Article  CAS  PubMed  Google Scholar 

  173. Tovell, H. et al. Design and characterization of SGK3-PROTAC1, an isoform specific SGK3 kinase PROTAC degrader. ACS Chem. Biol. 14, 2024–2034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Huang, H. T. et al. A chemoproteomic approach to query the degradable kinome using a multi-kinase degrader. Cell Chem. Biol. 25, 88–99.e86 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Kannt, A. & Dikic, I. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chem. Biol. 28, 1014–1031 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Sarosiek, K. A. & Letai, A. Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using BH3 mimetics — recent successes, current challenges and future promise. FEBS J. 283, 3523–3533 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mason, K. D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Khan, S. et al. A selective BCL-X(L) PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25, 1938–1947 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mares, A. et al. Extended pharmacodynamic responses observed upon PROTAC-mediated degradation of RIPK2. Commun. Biol. 3, 140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Law, R. P. et al. Discovery and characterisation of highly cooperative FAK-degrading PROTACs. Angew. Chem. Int. Ed. Engl. 60, 23327–23334 (2021).

    Article  CAS  PubMed  Google Scholar 

  181. Li, J. et al. Proteome-wide mapping of short-lived proteins in human cells. Mol. Cell 81, 4722–4735.e4725 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Li, Y. et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J. Med. Chem. 62, 448–466 (2019).

    Article  CAS  PubMed  Google Scholar 

  183. Wang, B. et al. Development of selective small molecule MDM2 degraders based on nutlin. Eur. J. Med. Chem. 176, 476–491 (2019).

    Article  PubMed  Google Scholar 

  184. Winter, G. E. et al. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell 67, 5–18.e19 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wang, L. et al. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat. Chem. Biol. 17, 567–575 (2021).

    Article  CAS  PubMed  Google Scholar 

  186. Remillard, D. et al. Degradation of the BAF complex factor BRD9 by heterobifunctional ligands. Angew. Chem. Int. Ed. Engl. 56, 5738–5743 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Vangamudi, B. et al. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res. 75, 3865–3878 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Cantley, J. et al. Selective PROTAC-mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers. Nat. Commun. 13, 6814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kofink, C. et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat. Commun. 13, 5969 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Ackerman, L. et al. IRAK4 degrader in hidradenitis suppurativa and atopic dermatitis: a phase 1 trial. Nat. Med. 29, 3127–3136 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pereira, M. & Gazzinelli, R. T. Regulation of innate immune signaling by IRAK proteins. Front. Immunol. 14, 1133354 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Aldea, M. et al. Overcoming resistance to tumor-targeted and immune-targeted therapies. Cancer Discov. 11, 874–899 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Hendriks, R. W., Yuvaraj, S. & Kil, L. P. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat. Rev. Cancer 14, 219–232 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Brown, J. R. et al. Zanubrutinib or ibrutinib in relapsed or refractory chronic lymphocytic leukemia. N. Engl. J. Med. 388, 319–332 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Wang, M. L. et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 369, 507–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Montoya, S. et al. Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science 383, eadi5798 (2024). This paper reports a first-in-class BTK degrader able to overcome resistance to BTK inhibitors resulting from an acquired scaffolding function of BTK.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Buhimschi, A. D. et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-mediated degradation. Biochemistry 57, 3564–3575 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Robbins, D. W. et al. Nx-2127, a degrader of BTK and IMiD neosubstrates, for the treatment of B-cell malignancies. Blood 136, 34–34 (2020).

    Article  Google Scholar 

  199. Hanker, A. B., Sudhan, D. R. & Arteaga, C. L. Overcoming endocrine resistance in breast cancer. Cancer Cell 37, 496–513 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hamilton, E. P. et al. VERITAC-2: a phase III study of vepdegestrant, a PROTAC ER degrader, versus fulvestrant in ER+/HER2 advanced breast cancer. Future Oncol. 20, 2447–2455 (2024). Results of a clinical trial with vepdegestrant, the first PROTAC to enter phase III trials, which marks a milestone on the path of rationally designed degraders towards clinical applications.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Petrylak, D. P. et al. ARV-766, a proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader, in metastatic castration-resistant prostate cancer (mCRPC): Initial results of a phase 1/2 study. J. Clin. Oncol. 42, 5011–5011 (2024).

    Article  Google Scholar 

  202. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Salami, J. et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun. Biol. 1, 100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Kregel, S. et al. Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia 22, 111–119 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gao, Y. et al. Catalytic degraders effectively address kinase site mutations in EML4–ALK oncogenic fusions. J. Med. Chem. 66, 5524–5535 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Jang, J. et al. Mutant-selective allosteric EGFR degraders are effective against a broad range of drug-resistant mutations. Angew. Chem. Int. Ed. Engl. 59, 14481–14489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Burslem, G. M. et al. Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation. Cancer Res. 79, 4744–4753 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Vetma, V. et al. Confounding factors in targeted degradation of short-lived proteins. ACS Chem. Biol. 19, 1484–1494 (2024).

    Article  CAS  PubMed  Google Scholar 

  209. Bartlett, D. W. & Gilbert, A. M. Translational PK–PD for targeted protein degradation. Chem. Soc. Rev. 51, 3477–3486 (2022).

    Article  CAS  PubMed  Google Scholar 

  210. Schneider, M. et al. The PROTACtable genome. Nat. Rev. Drug. Discov. 20, 789–797 (2021).

    Article  CAS  PubMed  Google Scholar 

  211. Buckley, D. L. et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of halotag fusion proteins. ACS Chem. Biol. 10, 1831–1837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Tovell, H. et al. Rapid and reversible knockdown of endogenously tagged endosomal proteins via an optimized HaloPROTAC degrader. ACS Chem. Biol. 14, 882–892 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Bond, A. G. et al. Development of BromoTag: a ‘Bump-and-Hole’-PROTAC system to induce potent, rapid, and selective degradation of tagged target proteins. J. Med. Chem. 64, 15477–15502 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Nabet, B. et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nat. Commun. 11, 4687 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Nishimura, K. et al. A super-sensitive auxin-inducible degron system with an engineered auxin–TIR1 pair. Nucleic Acids Res. 48, e108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Mercer, J. A. M. et al. Continuous evolution of compact protein degradation tags regulated by selective molecular glues. Science 383, eadk4422 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Martinez-Hoyer, S. et al. Loss of lenalidomide-induced megakaryocytic differentiation leads to therapy resistance in del(5q) myelodysplastic syndrome. Nat. Cell Biol. 22, 526–533 (2020).

    Article  PubMed  Google Scholar 

  220. Jiang, B. et al. Discovery and resistance mechanism of a selective CDK12 degrader. Nat. Chem. Biol. 17, 675–683 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. He, T. et al. Development of an orally bioavailable mSWI/SNF ATPase degrader and acquired mechanisms of resistance in prostate cancer. Proc. Natl Acad. Sci. USA 121, e2322563121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Shirasaki, R. et al. Functional genomics identify distinct and overlapping genes mediating resistance to different classes of heterobifunctional degraders of oncoproteins. Cell Rep. 34, 108532 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Zhang, L., Riley-Gillis, B., Vijay, P. & Shen, Y. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol. Cancer Ther. 18, 1302–1311 (2019).

    Article  PubMed  Google Scholar 

  224. Sievers, Q. L., Gasser, J. A., Cowley, G. S., Fischer, E. S. & Ebert, B. L. Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4(CRBN) activity. Blood 132, 1293–1303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Mayor-Ruiz, C. et al. Plasticity of the cullin-RING ligase repertoire shapes sensitivity to ligand-induced protein degradation. Mol. Cell 75, 849–858.e848 (2019).

    Article  CAS  PubMed  Google Scholar 

  226. Kortum, K. M. et al. Targeted sequencing of refractory myeloma reveals a high incidence of mutations in CRBN and Ras pathway genes. Blood 128, 1226–1233 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Haertle, L. et al. Cereblon enhancer methylation and IMiD resistance in multiple myeloma. Blood 138, 1721–1726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Gooding, S. et al. Multiple cereblon genetic changes are associated with acquired resistance to lenalidomide or pomalidomide in multiple myeloma. Blood 137, 232–237 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sperling, A. S. et al. Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood 134, 160–170 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bond, A. G. et al. Leveraging dual-ligase recruitment to enhance protein degradation via a heterotrivalent proteolysis targeting chimera. J. Am. Chem. Soc. 146, 33675–33711 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Liu, Y., Sun, X., Liu, Q., Han, C. & Rao, Y. A dual-target and dual-mechanism design strategy by combining inhibition and degradation together. J. Am. Chem. Soc. 147, 3110–3118 (2025).

    Article  CAS  PubMed  Google Scholar 

  232. Price, E. et al. Beyond rule of five and PROTACs in modern drug discovery: polarity reducers, chameleonicity, and the evolving physicochemical landscape. J. Med. Chem. 67, 5683–5698 (2024).

    Article  CAS  PubMed  Google Scholar 

  233. Hornberger, K. R. & Araujo, E. M. V. Physicochemical property determinants of oral absorption for PROTAC protein degraders. J. Med. Chem. 66, 8281–8287 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Schade, M. et al. Structural and physicochemical features of oral PROTACs. J. Med. Chem. 67, 13106–13116 (2024).

    Article  CAS  PubMed  Google Scholar 

  235. Maple, H. J., Clayden, N., Baron, A., Stacey, C. & Felix, R. Developing degraders: principles and perspectives on design and chemical space. MedChemComm 10, 1755–1764 (2019).

    Article  CAS  PubMed  Google Scholar 

  236. Chirnomas, D., Hornberger, K. R. & Crews, C. M. Protein degraders enter the clinic — a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 20, 265–278 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Xiang, W. et al. Structure-guided discovery of novel potent and efficacious proteolysis targeting chimera (PROTAC) degrader of BRD4. Bioorg. Chem. 115, 105238 (2021).

    Article  CAS  PubMed  Google Scholar 

  238. Liu, X. et al. Discovery of XL01126: a potent, fast, cooperative, selective, orally bioavailable, and blood-brain barrier penetrant PROTAC degrader of leucine-rich repeat kinase 2. J. Am. Chem. Soc. 144, 16930–16952 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Wu, M. et al. Discovery of an exceptionally orally bioavailable and potent HPK1 PROTAC with enhancement of antitumor efficacy of anti-PD-L1 therapy. J. Med. Chem. 67, 13852–13878 (2024).

    Article  CAS  PubMed  Google Scholar 

  240. O’Brien Laramy, M. N., Luthra, S., Brown, M. F. & Bartlett, D. W. Delivering on the promise of protein degraders. Nat. Rev. Drug Discov. 22, 410–427 (2023).

    Article  PubMed  Google Scholar 

  241. Roy, R. D., Rosenmund, C. & Stefan, M. I. Cooperative binding mitigates the high-dose hook effect. BMC Syst. Biol. 11, 74 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Benowitz, A. B., Scott-Stevens, P. T. & Harling, J. D. Challenges and opportunities for in vivo PROTAC delivery. Future Med. Chem. 14, 119–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  243. Dragovich, P. S. et al. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg. Med. Chem. Lett. 30, 126907 (2020).

    Article  CAS  PubMed  Google Scholar 

  244. Pillow, T. H. et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem 15, 17–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Maneiro, M. A. et al. Antibody–PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4. ACS Chem. Biol. 15, 1306–1312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

    Article  CAS  PubMed  Google Scholar 

  247. Su, Y. et al. APC is essential for targeting phosphorylated β-catenin to the SCFβ-TrCP ubiquitin ligase. Mol. Cell 32, 652–661 (2008).

    Article  CAS  PubMed  Google Scholar 

  248. Simonetta, K. R. et al. Prospective discovery of small molecule enhancers of an E3 ligase–substrate interaction. Nat. Commun. 10, 1402 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Orasch, O. et al. Protein–protein interaction prediction for targeted protein degradation. Int. J. Mol. Sci. 23, 7033 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Kovtun, D. et al. PINDER: the protein interaction dataset and evaluation resource. Preprint at bioRxiv https://doi.org/10.1101/2024.07.17.603980v4 (2024).

  251. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024). This study describes AlphaFold 3, which marks an important upgrade from previous deep learning models for the accurate prediction of protein–ligand, protein–nucleic acid and protein–protein interactions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

    Article  CAS  PubMed  Google Scholar 

  253. Durairaj, J. et al. PLINDER: the protein–ligand interactions dataset and evaluation resource. Preprint at bioRxiv https://doi.org/10.1101/2024.07.17.603955v3 (2024).

  254. Qiao, Z., Nie, W., Vahdat, A., Miller, T. F. & Anandkumar, A. State-specific protein–ligand complex structure prediction with a multiscale deep generative model. Nat. Mach. Intell. 6, 195–208 (2024).

    Article  Google Scholar 

  255. Peteani, G., Huynh, M. T. D., Gerebtzoff, G. & Rodriguez-Perez, R. Application of machine learning models for property prediction to targeted protein degraders. Nat. Commun. 15, 5764 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Petzold, G. et al. Mining the CRBN target space redefines rules for molecular glue-induced neosubstrate recognition. Preprint at bioRxiv https://doi.org/10.1101/2024.10.07.616933v1 (2024).

  257. Lu, L. et al. De novo design of drug-binding proteins with predictable binding energy and specificity. Science 384, 106–112 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Marchand, A. et al. Targeting protein-ligand neosurfaces with a generalizable deep learning tool. Nature 639, 522–531 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Gainza, P. et al. De novo design of protein interactions with learned surface fingerprints. Nature 617, 176–184 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Huang, B. et al. Designed endocytosis-inducing proteins degrade targets and amplify signals. Nature 638, 796–804 (2025).

    Article  CAS  PubMed  Google Scholar 

  261. Backus, K. M. et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 534, 570–574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Offensperger, F. et al. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells. Science 384, eadk5864 (2024).

    Article  CAS  PubMed  Google Scholar 

  263. Carter, T. R. et al. SuFEx-based chemical diversification for the systematic discovery of CRBN molecular glues. Bioorg. Med. Chem. 104, 117699 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Wang, Z. et al. Direct-to-biology, automated, nano-scale synthesis, and phenotypic screening-enabled E3 ligase modulator discovery. Nat. Commun. 14, 8437 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Mason, J. W. et al. DNA-encoded library-enabled discovery of proximity-inducing small molecules. Nat. Chem. Biol. 20, 170–179 (2024).

    Article  CAS  PubMed  Google Scholar 

  266. Liu, S. et al. Rational screening for cooperativity in small-molecule inducers of protein-protein associations. J. Am. Chem. Soc. 145, 23281–23291 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Jochem, M. et al. Degradome analysis to identify direct protein substrates of small-molecule degraders. Cell Chem. Biol. 32, 192–200.e196 (2025).

    Article  CAS  PubMed  Google Scholar 

  268. Jarnuczak, A. F. et al. Network-driven identification of indisulam neo-substrates for targeted protein degradation. Preprint at bioRxiv https://doi.org/10.1101/2024.09.16.613231v1 (2024).

  269. Nguyen, T. M. et al. Proteolysis-targeting chimeras with reduced off-targets. Nat. Chem. 16, 218–228 (2024).

    Article  CAS  PubMed  Google Scholar 

  270. Huang, H. T. et al. Ubiquitin-specific proximity labeling for the identification of E3 ligase substrates. Nat. Chem. Biol. 20, 1227–1236 (2024).

    Article  CAS  PubMed  Google Scholar 

  271. Grothusen, G. P. et al. DCAF15 control of cohesin dynamics sustains acute myeloid leukemia. Nat. Commun. 15, 5604 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Kroupova, A. et al. Design of a Cereblon construct for crystallographic and biophysical studies of protein degraders. Nat. Commun. 15, 8885 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Li, J. et al. Cullin-RING ligases employ geometrically optimized catalytic partners for substrate targeting. Mol. Cell 84, 1304–1320.e1316 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Gourisankar, S. et al. Rewiring cancer drivers to activate apoptosis. Nature 620, 417–425 (2023). This study introduces the concept of TCIPs and exemplifies the potential of this strategy with compounds that recruit BRD4 to reactivate transcription from loci repressed by overexpressed BCL6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Sarott, R. C. et al. Relocalizing transcriptional kinases to activate apoptosis. Science 386, eadl5361 (2024).

    Article  CAS  PubMed  Google Scholar 

  276. Ng, C. S. C., Liu, A., Cui, B. & Banik, S. M. Targeted protein relocalization via protein transport coupling. Nature 633, 941–951 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Liu, J. et al. Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP–FK506 complexes. Cell 66, 807–815 (1991).

    Article  CAS  PubMed  Google Scholar 

  278. Schulze, C. J. et al. Chemical remodeling of a cellular chaperone to target the active state of mutant KRAS. Science 381, 794–799 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Raina, K. et al. Regulated induced proximity targeting chimeras-RIPTACs — a heterobifunctional small molecule strategy for cancer selective therapies. Cell Chem. Biol. 31, 1490–1502.e1442 (2024).

    Article  CAS  PubMed  Google Scholar 

  280. Nalawansha, D. A., Mangano, K., den Besten, W. & Potts, P. R. TAC-tics for leveraging proximity biology in drug discovery. ChemBioChem 25, e202300712 (2024).

    Article  CAS  PubMed  Google Scholar 

  281. Costales, M. G., Matsumoto, Y., Velagapudi, S. P. & Disney, M. D. Small molecule targeted recruitment of a nuclease to RNA. J. Am. Chem. Soc. 140, 6741–6744 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Tong, Y. et al. Programming inactive RNA-binding small molecules into bioactive degraders. Nature 618, 169–179 (2023). This study introduces heterobifunctional compounds that selectively target mRNAs or miRNAs for degradation by linking RNA-binding molecules to RNase L ligands.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Matyskiela, M. E. et al. Crystal structure of the SALL4–pomalidomide–cereblon–DDB1 complex. Nat. Struct. Mol. Biol. 27, 319–322 (2020).

    Article  CAS  PubMed  Google Scholar 

  284. Zhang, B. et al. Unexpected equivalent potency of a constrained chromene enantiomeric pair rationalized by co-crystal structures in complex with estrogen receptor alpha. Bioorg. Med. Chem. Lett. 29, 905–911 (2019).

    Article  CAS  PubMed  Google Scholar 

  285. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Bender, A. T. et al. Ability of Bruton’s tyrosine kinase inhibitors to sequester Y551 and prevent phosphorylation determines potency for inhibition of Fc receptor but not B-cell receptor signaling. Mol. Pharmacol. 91, 208–219 (2017).

    Article  CAS  PubMed  Google Scholar 

  287. Robbins, D. W. et al. Discovery and preclinical pharmacology of NX-2127, an orally bioavailable degrader of Bruton’s tyrosine kinase with immunomodulatory activity for the treatment of patients with B cell malignancies. J. Med. Chem. 67, 2321–2336 (2024).

    Article  CAS  PubMed  Google Scholar 

  288. Ji, C. H. et al. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy–lysosome system. Nat. Commun. 13, 904 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell 76, 797–810.e710 (2019).

    Article  CAS  PubMed  Google Scholar 

  290. Seabrook, L. J. et al. Methylarginine targeting chimeras for lysosomal degradation of intracellular proteins. Nat. Chem. Biol. 20, 1566–1576 (2024).

    Article  CAS  PubMed  Google Scholar 

  291. Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Ahn, G. et al. Elucidating the cellular determinants of targeted membrane protein degradation by lysosome-targeting chimeras. Science 382, eadf6249 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Zhou, Y., Teng, P., Montgomery, N. T., Li, X. & Tang, W. Development of triantennary N-acetylgalactosamine conjugates as degraders for extracellular proteins. ACS Cent. Sci. 7, 499–506 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Caianiello, D. F. et al. Bifunctional small molecules that mediate the degradation of extracellular proteins. Nat. Chem. Biol. 17, 947–953 (2021).

    Article  CAS  PubMed  Google Scholar 

  296. Nalawansha, D. A. et al. LYMTACs: chimeric small molecules repurpose lysosomal membrane proteins for target protein relocalization and degradation. Preprint at bioRxiv https://doi.org/10.1101/2024.09.08.611923v1 (2024).

  297. Pance, K. et al. Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins. Nat. Biotechnol. 41, 273–281 (2023).

    Article  CAS  PubMed  Google Scholar 

  298. Zheng, J. et al. Bifunctional compounds as molecular degraders for integrin-facilitated targeted protein degradation. J. Am. Chem. Soc. 144, 21831–21836 (2022).

    Article  CAS  PubMed  Google Scholar 

  299. Zhou, Y., Liao, Y., Zhao, Y. & Tang, W. Development of integrin targeting chimeras (ITACs) for the lysosomal degradation of extracellular proteins. ChemMedChem 19, e202300643 (2024).

    Article  CAS  PubMed  Google Scholar 

  300. Zhang, D. et al. Transferrin receptor targeting chimeras for membrane protein degradation. Nature 638, 787–795 (2025).

    Article  CAS  PubMed  Google Scholar 

  301. Zhou, Y. et al. Development of folate receptor targeting chimeras for cancer selective degradation of extracellular proteins. Nat. Commun. 15, 8695 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Zhang, H. et al. Covalently engineered nanobody chimeras for targeted membrane protein degradation. J. Am. Chem. Soc. 143, 16377–16382 (2021).

    Article  CAS  PubMed  Google Scholar 

  303. Cotton, A. D., Nguyen, D. P., Gramespacher, J. A., Seiple, I. B. & Wells, J. A. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. J. Am. Chem. Soc. 143, 593–598 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Marei, H. et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation. Nature 610, 182–189 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Siepe, D. H., Picton, L. K. & Garcia, K. C. Receptor elimination by E3 ubiquitin ligase recruitment (REULR): a targeted protein degradation toolbox. ACS Synth. Biol. 12, 1081–1093 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Sun, R., Meng, Z., Lee, H., Offringa, R. & Niehrs, C. ROTACs leverage signaling-incompetent R-spondin for targeted protein degradation. Cell Chem. Biol. 30, 739–752.e738 (2023).

    Article  CAS  PubMed  Google Scholar 

  307. Chen, X., Zhou, Y., Zhao, Y. & Tang, W. Targeted degradation of extracellular secreted and membrane proteins. Trends Pharmacol. Sci. 44, 762–775 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Wells, J. A. & Kumru, K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat. Rev. Drug Discov. 23, 126–140 (2024).

    Article  PubMed  Google Scholar 

  309. Hong, K. B. & An, H. Degrader–antibody conjugates: emerging new modality. J. Med. Chem. 66, 140–148 (2023).

    Article  CAS  PubMed  Google Scholar 

  310. Guo, Y., Li, X., Xie, Y. & Wang, Y. What influences the activity of degrader–antibody conjugates (DACs). Eur. J. Med. Chem. 268, 116216 (2024).

    Article  CAS  PubMed  Google Scholar 

  311. Hurvitz, S. A. et al. A phase 1, first-in-human, open label, escalation and expansion study of ORM-5029, a highly potent GSPT1 degrader targeting HER2, in patients with HER2-expressing advanced solid tumors. J. Clin. Oncol. 41, TPS1114–TPS1114 (2023).

    Article  Google Scholar 

  312. Palacino, J. et al. ORM-6151: a first-in-class, anti-CD33 antibody-enabled GSPT1 degrader for AML. Blood 140, 3061–3062 (2022).

    Article  Google Scholar 

  313. Poudel, Y. B., Thakore, R. R. & Chekler, E. P. The new frontier: merging molecular glue degrader and antibody–drug conjugate modalities to overcome strategic challenges. J. Med. Chem. 67, 15996–16001 (2024).

    Article  CAS  PubMed  Google Scholar 

  314. Tsuchikama, K., Anami, Y., Ha, S. Y. Y. & Yamazaki, C. M. Exploring the next generation of antibody–drug conjugates. Nat. Rev. Clin. Oncol. 21, 203–223 (2024).

    Article  CAS  PubMed  Google Scholar 

  315. Dragovich, P. S. Degrader–antibody conjugates. Chem. Soc. Rev. 51, 3886–3897 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Winter and Ciulli labs for helpful discussions during the preparation of this review article. We apologize to all colleagues in the TPD and induced-proximity community whose work we could not appropriately cite and discuss due to space limitations. CeMM and the Winter lab are supported by the Austrian Academy of Sciences. The Winter lab is further supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement 851478), by team KOODAC via the Cancer Grand Challenges partnership funded by Cancer Research UK (CGCATF-2023/100013), Institut National Du Cancer (INCa) and KiKa (Children Cancer Free Foundation), as well as by funding from the Austrian Science Fund (FWF, projects P5918723, P36746 and P7909) and the Vienna Science and Technology Fund (WWTF, project LS21-015). The Ciulli laboratory at CeTPD receives funding from the Innovative Medicines Initiative 2 (IMI2) Joint Undertaking under grant 875510 (EUbOPEN project), which receives support from the European Union’s Horizon 2020 research and innovation programme, EFPIA companies and associated partners: KTH, OICR, Diamond, and McGill; and the KOODAC team supported by the Cancer Grand Challenges partnership funded by Cancer Research UK (CGCATF-2023/100013), INCa and KiKa. A.C. is deeply grateful to the many organizations that have funded or further fund current research in his laboratory, including the UK Biotechnology and Biological Sciences Research Council (BBSRC) and other UK Research Councils, the European Research Council (ERC), the European Commission and the pharmaceutical companies Almirall, Amgen, Amphista Therapeutics, Boehringer Ingelheim, GlaxoSmithKline, Eisai, Merck KGaA, Nurix Therapeutics, Ono Pharmaceuticals and Tocris-Biotechne.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Alessio Ciulli or Georg E. Winter.

Ethics declarations

Competing interests

A.C. is a scientific founder and shareholder of Amphista Therapeutics, a company that is developing TPD therapeutic platforms. A.C. is on the scientific advisory board of ProtOS. G.E.W. is scientific founder and shareholder of Proxygen and Solgate Therapeutics and shareholder of Cellgate Therapeutics. G.E.W. is on the Scientific Advisory Board of Proxygen and Nexo Therapeutics. The Winter laboratory has received research funding from Pfizer. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Mikihiko Naito, Markella Konstantinidou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Chemoproteomics

Mass spectrometry-based technique used to identify how small molecules interact with and/or modify proteins either in cell lysates or in the context of intact cells.

Click chemistry

A subset of synthetic chemistry reactions that aim to efficiently combine two building blocks in a way that is compatible with biological systems and therefore must be insensitive to water and oxygen.

Degrons

Motifs on a substrate protein that are recognized by an E3 ubiquitin ligase or substrate receptor.

Exit vectors

In medicinal chemistry and drug design, exit vectors refer to the spatial orientation in which a functional group, in the case of PROTACs the linker, is attached to the ligand scaffold.

Hook effect

PROTACs can independently bind to an E3 ubiquitin ligase and a target protein. Saturated binary compound:protein interactions prevent ternary complex formation, resulting in reduced activity at high compound concentrations and a hook-shaped dose–response curve.

Microsatellite instability

Deficiencies in DNA mismatch repair leading to the accumulation of replication errors, especially in short repetitive DNA sequences called microsatellites. Microsatellite instability is associated with several cancer types, particularly colon cancer.

Neddylation

Attaching the ubiquitin-like protein NEDD8 to a cullin results in activation of the corresponding cullin RING E3 ligase (CRL) enzyme.

Nuclear PML bodies

Dynamic, membrane-less nuclear organelles composed of a promyelocytic leukaemia (PML) protein scaffold that organizes a condensate of sumoylated client proteins, involved in diverse cellular processes including stress responses and transcriptional regulation.

Occupancy-based inhibitors

A pharmacology strategy that requires the continued engagement of the target by the small molecule to induce the desired pharmacological effect, for example, protein inhibition.

Pharmacodynamic properties

The effect of the drug on the body.

Pharmacokinetic properties

The effect of the body on the drug, including absorption, distribution, metabolism and clearance.

Positive cooperativity

Occurs when the binding of two components of the ternary complex favours the binding of the third.

Protein turnover rates

Proteins are degraded and resynthesized continuously at specific rates, determining their steady-state levels and cellular half-life. Some proteins are long lived (days), others are turned over within minutes.

Sumoylation

Post-translational covalent attachment of small ubiquitin-like modifier (SUMO) proteins to a target protein to regulate its stability, activity, intracellular localization or other functions.

Synthetic lethal interaction

Concurrent change (mutation or degradation) in two genes or proteins, which results in cell death where the corresponding change to each individual gene or protein does not.

Ternary complex

A complex formed between an E3 ubiquitin ligase, a degrader and a target protein, where the degrader is typically sandwiched between the two proteins.

Ubiquitin

A small globular protein that can be covalently attached to a lysine side chain on the surface of a target protein by the activity of an E3 ubiquitin ligase.

Ubiquitin–proteasome system

(UPS). Major cellular protein degradation system comprising ubiquitin as the degradation tag, E3 ligases for ubiquitin transfer and the proteasome as the degradation compartment.

Unfolded protein response

Cellular stress response triggered by the accumulation of misfolded proteins in the endoplasmic reticulum. It aims to restore protein homeostasis by promoting protein folding and degradation of misfolded proteins.

Valosin-containing protein

(VCP). Known as p97 in mammals, VCP is a AAA+ ATPase that extracts ubiquitinated target proteins from cellular structures, such as protein assemblies or chromatin, for subsequent proteasomal degradation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinterndorfer, M., Spiteri, V.A., Ciulli, A. et al. Targeted protein degradation for cancer therapy. Nat Rev Cancer 25, 493–516 (2025). https://doi.org/10.1038/s41568-025-00817-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00817-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing