Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Revisiting the TGFβ paradox: insights from HPV-driven cancer and the DNA damage response

Abstract

The transforming growth factor-β (TGFβ) paradox refers to the well-established role of TGFβ in suppressing cancer in healthy tissues yet promoting malignancy in established cancers. Although this positioned TGFβ inhibitors as a potential therapeutic strategy for malignancy, therapuetic blockade has failed in multiple clinical trials. The general lack of selection principles for defining which patients would most benefit from the addition of a TGFβ inhibitor has probably hindered its deployment. Here, we highlight the therapeutic potential in TGFβ regulation of DNA repair using human papillomavirus (HPV)-driven head and neck squamous cell carcinoma (HNSCC) as an illustrative example. HPV inhibits TGFβ signalling, which in turn reduces DNA damage repair, ultimately conferring sensitivity to cancer treatments and thus contributing to the favourable prognosis of HPV-positive HNSCC. Here, we review the DNA repair deficit caused by a loss of TGFβ signalling and how this could be targeted to induce synthetic lethality. Moreover, we explore its role in predicting response to immune checkpoint inhibitors and the potential of biomarkers to select which patients with cancer could ultimately benefit from TGFβ inhibition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TGFβ signalling is altered by HPV.
Fig. 2: TGFβ regulates DNA damage repair.
Fig. 3: Modulation of TGFβ signalling competency to promote response to genotoxic therapy and ICIs.
Fig. 4: Targeting TGFβ signalling in the βloAlthi TME can promote antitumour immune cell migration and improve response to ICIs.

Similar content being viewed by others

References

  1. Massagué, J. & Sheppard, D. TGF-β signaling in health and disease. Cell 186, 4007–4037 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nixon, B. G., Gao, S., Wang, X. & Li, M. O. TGFβ control of immune responses in cancer: a holistic immuno-oncology perspective. Nat. Rev. Immunol. 23, 346–362 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Batlle, E. & Massague, J. Transforming growth factor-β signaling in immunity and cancer. Immunity 50, 924–940 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, J. et al. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 11, 1345–1363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    Article  PubMed  Google Scholar 

  6. Moreau, J. M., Velegraki, M., Bolyard, C., Rosenblum, M. D. & Li, Z. Transforming growth factor-β1 in regulatory T cell biology. Sci. Immunol. 7, eabi4613 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tian, M. & Schiemann, W. P. The TGF-β paradox in human cancer: an update. Future Oncol. 5, 259–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Glick, A. B. et al. Loss of expression of transforming growth factor β in skin and skin tumors is associated with hyperproliferation and a high risk for malignant conversion. Proc. Natl Acad. Sci. USA 90, 6076–6080 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Glick, A. B. et al. Targeted deletion of the TGF-β1 gene causes rapid progression to squamous cell carcinoma. Genes. Dev. 8, 2429–2440 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Korkut, A. et al. A pan-cancer analysis reveals high-frequency genetic alterations in mediators of signaling by the TGF-β superfamily. Cell Syst. 7, 422–437.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Barcellos-Hoff, M. H. The radiobiology of TGFβ. Semin. Cancer Biol. 86, 857–867 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Teicher, B. A., Ikebe, M., Ara, G., Keyes, S. R. & Herbst, R. S. Transforming growth factor-β1 overexpression produces drug resistance in vivo: reversal by decorin. In Vivo 11, 463–472 (1997).

    CAS  PubMed  Google Scholar 

  13. Teicher, B. A., Holden, S. A., Ara, G. & Chen, G. Transforming growth factor-β in in vivo resistance. Cancer Chemother. Pharmacol. 37, 601–609 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, P., Menon, K., Alvarez, E., Lu, K. & Teicher, B. A. Transforming growth factor-β and response to anticancer therapies in human liver and gastric tumors in vitro and in vivo. Int. J. Oncol. 16, 599–610 (2000).

    CAS  PubMed  Google Scholar 

  15. Ehrhart, E. J., Carroll, A., Segarini, P., Tsang, M. L.-S. & Barcellos-Hoff, M. H. Latent transforming growth factor-β activation in situ: quantitative and functional evidence following low dose irradiation. FASEB J. 11, 991–1002 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Barcellos-Hoff, M. H. & Dix, T. A. Redox-mediated activation of latent transforming growth factor-β1. Molec Endocrin 10, 1077–1083 (1996).

    CAS  Google Scholar 

  17. Barcellos-Hoff, M. H. Radiation-induced transforming growth factor β and subsequent extracellular matrix reorganization in murine mammary gland. Cancer Res. 53, 3880–3886 (1993).

    CAS  PubMed  Google Scholar 

  18. Vanpouille-Box, C. et al. Transforming growth factor (TGF) β is a master regulator of radiotherapy-induced anti-tumor immunity. Cancer Res. 75, 2232–2242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holmgaard, R. B. et al. Targeting the TGFβ pathway with galunisertib, a TGFβRI small molecule inhibitor, promotes anti-tumor immunity leading to durable, complete responses, as monotherapy and in combination with checkpoint blockade. J. Immunother. Cancer 6, 47 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dodagatta-Marri, E. et al. α-PD-1 therapy elevates Treg/TH balance and increases tumor cell pSmad3 that are both targeted by α-TGFβ antibody to promote durable rejection and immunity in squamous cell carcinomas. J. Immunother. Cancer 7, 62 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lind, H. et al. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. J. Immunother. Cancer 8, e000433 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martin, C. J. et al. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci. Transl. Med. 12, eaay8456 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Ciardiello, D., Elez, E., Tabernero, J. & Seoane, J. Clinical development of therapies targeting TGFβ: current knowledge and future perspectives. Ann. Oncol. 31, 1336–1349 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Anido, J. et al. TGF-β receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 18, 655–668 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Rodon, J. et al. First-in-human dose study of the novel transforming growth factor-β receptor I kinase inhibitor LY2157299 monohydrate in patients with advanced cancer and glioma. Clin. Cancer Res. 21, 553–560 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Wick, A. et al. Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-β receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest. N. Drugs 38, 1570–1579 (2020).

    Article  CAS  Google Scholar 

  27. Sharma, P. et al. The next decade of immune checkpoint therapy. Cancer Discov. 11, 838–857 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, C.-Y. et al. Recent progress in TGF-β inhibitors for cancer therapy. Biomed. Pharmacother. 134, 111046 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Metropulos, A. E., Munshi, H. G. & Principe, D. R. The difficulty in translating the preclinical success of combined TGFβ and immune checkpoint inhibition to clinical trial. eBioMedicine 86, 104380 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lohaus, F. et al. HPV16 DNA status is a strong prognosticator of loco-regional control after postoperative radiochemotherapy of locally advanced oropharyngeal carcinoma: results from a multicentre explorative study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Radiother. Oncol. 113, 317–323 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Q., Lopez, K., Murnane, J., Humphrey, T. & Barcellos-Hoff, M. H. Misrepair in context: TGFβ regulation of DNA repair. Front. Oncol. 9, 799 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kirshner, J. et al. Inhibition of transforming growth factor-β1 signaling attenuates ataxia telangiectasia mutated activity in response to genotoxic stress. Cancer Res. 66, 10861–10869 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bornstein, S. et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J. Clin. Invest. 119, 3408–3419 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Haeger, S. M. et al. Smad4 loss promotes lung cancer formation but increases sensitivity to DNA topoisomerase inhibitors. Oncogene 35, 577–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Q. et al. Loss of TGFβ signaling increases alternative end-joining DNA repair that sensitizes to genotoxic therapies across cancer types. Sci. Transl. Med. 13, eabc4465 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Q. et al. Subjugation of TGFβ signaling by human papilloma virus in head and neck squamous cell carcinoma shifts DNA repair from homologous recombination to alternative end joining. Clin. Cancer Res. 24, 6001–6014 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Guix, I. et al. Validation of anticorrelated TGFβ signaling and alternative end-joining DNA repair signatures that predict response to genotoxic cancer therapy. Clin. Cancer Res. 28, 1372–1382 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sandhu, C. et al. TGF-β stabilizes p15INK4B protein, increases p15INK4B/cdk4 complexes and inhibits cyclin D1/cdk4 association in human mammary epithelial cells. Mol. Cell. Biol. 17, 2458–2467 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moody, C. A. & Laimins, L. A. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer 10, 550–560 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Levovitz, C. et al. TGFβ receptor 1: an immune susceptibility gene in HPV-associated cancer. Cancer Res. 74, 6833–6844 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ceccaldi, R., Rondinelli, B. & D’Andrea, A. D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26, 52–64 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Glick, A. B., Weinberg, W. C., Wu, I. H., Quan, W. & Yuspa, S. H. Transforming growth factor β1 suppresses genomic instability independent of a G1 arrest, p53, and Rb. Cancer Res. 56, 3645–3650 (1996).

    CAS  PubMed  Google Scholar 

  44. Maxwell, C. A. et al. Targeted and nontargeted effects of ionizing radiation that impact genomic instability. Cancer Res. 68, 8304–8311 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Kanamoto, T., Hellman, U., Heldin, C. H. & Souchelnytskyi, S. Functional proteomics of transforming growth factor-β1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFβ1-dependent regulation of DNA repair. EMBO J. 21, 1219–1230 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, M. R. et al. TGFβ protects cells from gamma-IR by enhancing the activity of the NHEJ repair pathway. Mol. Cancer Res. 13, 319–329 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, J., Kim, M. R., Kim, H. J., An, Y. S. & Yi, J. Y. TGF-β1 accelerates the DNA damage response in epithelial cells via Smad signaling. Biochem. Biophys. Res. Commun. 476, 420–425 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nat. Rev. Cancer 3, 155–168 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Ewan, K. B. et al. Transforming growth factor-β1 mediates cellular response to DNA damage in situ. Cancer Res. 62, 5627–5631 (2002).

    CAS  PubMed  Google Scholar 

  50. Tsai, W.-B., Chung, Y. M., Takahashi, Y., Xu, Z. & Hu, M. C. T. Functional interaction between FOXO3a and ATM regulates DNA damage response. Nat. Cell Biol. 10, 460–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chung, Y. M. et al. FOXO3 signalling links ATM to the p53 apoptotic pathway following DNA damage. Nat. Commun. 3, 1000 (2012).

    Article  PubMed  Google Scholar 

  52. Martinez-Ruiz, H. et al. A TGFβ–miR-182–BRCA1 axis controls the mammary differentiation hierarchy. Sci. Signal. 9, ra118 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Deng, Y. et al. Transcriptional down-regulation of Brca1 and E-cadherin by CtBP1 in breast cancer. Mol. Carcinog. 51, 500–507 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Bennardo, N., Cheng, A., Huang, N. & Stark, J. M. Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet. 4, e1000110 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Iliakis, G., Murmann, T. & Soni, A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: implications for the formation of chromosome translocations. Mutat. Res. Genet. Toxicol. Env. Mutagen. 793, 166–175 (2015).

    Article  CAS  Google Scholar 

  57. Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518, 258–262 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wood, R. D. & Doublie, S. DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair. 44, 22–32 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ramsden, D. A., Carvajal-Garcia, J. & Gupta, G. P. Mechanism, cellular functions and cancer roles of polymerase-θ-mediated DNA end joining. Nat. Rev. Mol. Cell Biol. 23, 125–140 (2021).

    Article  PubMed  Google Scholar 

  60. Sallmyr, A. & Tomkinson, A. E. Repair of DNA double-strand breaks by mammalian alternative end-joining pathways. J. Biol. Chem. 293, 10536–10546 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Espín, R. et al. Harnessing transcriptional regulation of alternative end-joining to predict cancer treatment. NAR Cancer 7, zcaf007 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Du, S. et al. Attenuation of the DNA damage response by TGFβ inhibitors enhances radiation sensitivity of NSCLC cells in vitro and in vivo. Int. J. Radiat. Oncol. Biol. Phys. 91, 91–99 (2014).

    Article  Google Scholar 

  63. Hardee, M. E. et al. Resistance of glioblastoma-initiating cells to radiation mediated by the tumor microenvironment can be abolished by inhibiting transforming growth factor-β. Cancer Res. 72, 4119–4129 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bouquet, S. F. et al. Transforming growth factor β1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin. Cancer Res. 17, 6754–6765 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, M. et al. Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res. 71, 7155–7167 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, M. et al. Trimodal glioblastoma treatment consisting of concurrent radiotherapy, temozolomide, and the novel TGF-β receptor I kinase inhibitor LY2109761. Neoplasia 13, 537–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Young, K. H. et al. TGFβ inhibition prior to hypofractionated radiation enhances efficacy in preclinical models. Cancer Immunol. Res. 2, 1011–1022 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Jank, B. J. et al. Radiosensitizing effect of galunisertib, a TGF-β receptor I inhibitor, on head and neck squamous cell carcinoma in vitro. Invest. N. Drugs 40, 478–486 (2022).

    Article  CAS  Google Scholar 

  69. Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Taube, J. H. et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc. Natl Acad. Sci. USA 107, 15449–15454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Andarawewa, K. L. et al. Ionizing radiation predisposes nonmalignant human mammary epithelial cells to undergo transforming growth factor β induced epithelial to mesenchymal transition. Cancer Res. 67, 8662–8670 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Chowdhury, S. et al. Proteogenomic analysis of chemo-refractory high-grade serous ovarian cancer. Cell 186, 3476–3498.e35 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cleary, J. M., Aguirre, A. J., Shapiro, G. I. & D’Andrea, A. D. Biomarker-guided development of DNA repair inhibitors. Mol. Cell 78, 1070–1085 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Morris, Z. S. et al. Proceedings of the National Cancer Institute Workshop on combining immunotherapy with radiotherapy: challenges and opportunities for clinical translation. Lancet Oncol. 26, e152–e170 (2025).

    Article  PubMed  Google Scholar 

  75. Roberts, A. B. & Wakefield, L. M. The two faces of transforming growth factor β in carcinogenesis. Proc. Natl Acad. Sci. USA 100, 8621–8623 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang, Y. et al. The outcome of TGFβ antagonism in metastatic breast cancer models in vivo reflects a complex balance between tumor-suppressive and proprogression activities of TGFβ. Clin. Cancer Res. 26, 643–656 (2020).

    Article  PubMed  Google Scholar 

  77. Guo, W. et al. Targeting the TGF-β signaling pathway: an updated patent review (2021–present). Expert. Opin. Ther. Pat. 34, 99–126 (2024).

    Article  PubMed  Google Scholar 

  78. Danielpour, D. Advances and challenges in targeting TGF-β isoforms for therapeutic intervention of cancer: a mechanism-based perspective. Pharmaceuticals 17, 533 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Flanders, K. C. et al. Quantitation of TGF-β proteins in mouse tissues shows reciprocal changes in TGF-β1 and TGF-β3 in normal vs neoplastic mammary epithelium. Oncotarget 7, 38164–38179 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Terabe, M. et al. Blockade of only TGF-β1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy. Oncoimmunology 6, e1308616 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Canè, S., Van Snick, J., Uyttenhove, C., Pilotte, L. & Van den Eynde, B. J. TGFβ1 neutralization displays therapeutic efficacy through both an immunomodulatory and a non-immune tumor-intrinsic mechanism. J. Immunother. Cancer 9, e001798 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yom, S. S. et al. Reduced-dose radiation therapy for HPV-associated oropharyngeal carcinoma (NRG Oncology HN002). J. Clin. Oncol. 39, 956–965 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Drew, Y., Zenke, F. T. & Curtin, N. J. DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications. Nat. Rev. Drug Discov. 24, 19–39 (2025).

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, M., Lahn, M. & Huber, P. E. Translating the combination of TGFβ blockade and radiotherapy into clinical development in glioblastoma. Oncoimmunology 1, 943–945 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  85. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02688712 (2025).

  86. Yamazaki, T. et al. Galunisertib plus neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer: a single-arm, phase 2 trial. Lancet Oncol. 23, 1189–1200 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Feng, W., Smith, C. M., Simpson, D. A. & Gupta, G. P. Targeting non-homologous and alternative end joining repair to enhance cancer radiosensitivity. Semin. Radiat. Oncol. 32, 29–41 (2022).

    Article  PubMed  Google Scholar 

  88. Zatreanu, D. et al. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat. Commun. 12, 3636 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, J. et al. A first-in-class polymerase θ inhibitor selectively targets homologous-recombination-deficient tumors. Nat. Cancer 2, 598–610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hoppe, M. M., Sundar, R., Tan, D. S. P. & Jeyasekharan, A. D. Biomarkers for homologous recombination deficiency in cancer. J. Natl Cancer Inst. 110, 704–713 (2018).

    Article  PubMed  Google Scholar 

  91. Gonzalez-Martin, A. et al. Niraparib in patients with newly diagnosed advanced ovarian cancer. N. Engl. J. Med. 381, 2391–2402 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

    Article  CAS  PubMed  Google Scholar 

  93. Lynch, C., Pitroda, S. P. & Weichselbaum, R. R. Radiotherapy, immunity, and immune checkpoint inhibitors. Lancet Oncol. 25, e352–e362 (2024).

    Article  CAS  PubMed  Google Scholar 

  94. Gulley, J. L. et al. Dual inhibition of TGF-β and PD-L1: a novel approach to cancer treatment. Mol. Oncol. 16, 2117–2134 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT02517398 (2024).

  96. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03427411 (2023).

  97. Strauss, J. et al. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus-associated malignancies. J. Immunother. Cancer 8, e001395 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gameiro, S. R., Strauss, J., Gulley, J. L. & Schlom, J. Preclinical and clinical studies of bintrafusp alfa, a novel bifunctional anti-PD-L1/TGFβRII agent: current status. Exp. Biol. Med. 247, 1124–1134 (2022).

    Article  CAS  Google Scholar 

  99. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03631706 (2025).

  100. Barcellos-Hoff, M. H. & Gulley, J. L. Molecular pathways and mechanisms of TGFβ in cancer therapy. Clin. Cancer Res. 29, 2025–2033 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Lake, R. A. & Robinson, B. W. Immunotherapy and chemotherapy—a practical partnership. Nat. Rev. Cancer 5, 397–405 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Lu, C. et al. DNA sensing in mismatch repair-deficient tumor cells is essential for anti-tumor immunity. Cancer Cell 39, 96–108.e106 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Moore, J. et al. Identification of a conserved subset of cold tumors responsive to immune checkpoint blockade. J. Immunother. Cancer 13, e010528 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hugo, W. et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165, 35–44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Dhainaut, M. et al. Spatial CRISPR genomics identifies regulators of the tumor microenvironment. Cell 185, 1223–1239.e20 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim, B.-G., Malek, E., Choi, S. H., Ignatz-Hoover, J. J. & Driscoll, J. J. Novel therapies emerging in oncology to target the TGF-β pathway. J. Hematol. Oncol. 14, 55 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Böttinger, E. P., Letterio, J. J. & Roberts, A. B. Biology of TGF-β in knockout and transgenic mouse models. Kidney Int. 51, 1355–1360 (1997).

    Article  PubMed  Google Scholar 

  111. Kitisin, K. et al. TGF-β signaling in development. Sci. STKE https://doi.org/10.1126/stke.3992007cm1 (2007).

  112. Shah, M., Foreman, D. M. & Ferguson, M. W. J. Control of scarring in adult wounds by neutralizing antibody to transforming growth factor β. Lancet 339, 213–214 (1992).

    Article  CAS  PubMed  Google Scholar 

  113. Beck, L. S. et al. TGF-β1 accelerates wound healing: reversal of steroid-impaired healing in rats and rabbits. Growth Factors 5, 295–304 (1991).

    Article  CAS  PubMed  Google Scholar 

  114. Liarte, S., Bernabé-García, Á. & Nicolás, F. J. Role of TGF-β in skin chronic wounds: a keratinocyte perspective. Cells 9, 306 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sánchez-Capelo, A. Dual role for TGF-β1 in apoptosis. Cytokine Growth Factor. Rev. 16, 15–34 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge J. Gkantalis for draft figures. They also thank the research contributions of collaborators and laboratory members on which this Perspective is based. The authors also acknowledge funding from the University of California, San Francisco (UCSF) Department of Radiation Oncology, the Genentech imCORE network and National Institutes of Health (NIH) grants R01CA239235 and R01CA270332 (to M.H.B.-H.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the article.

Corresponding author

Correspondence to Mary Helen Barcellos-Hoff.

Ethics declarations

Competing interests

M.H.B.-H. reports grants and non-financial support from Roche/Genentech; personal fees and non-financial support from Innovation Pathways, Inc.; consulting fees from Scholar Rock and Vericyte; non-financial support from Bicara during the conduct of the study; spoke at a meeting organized by for-profit Hanson-Wade in 2022 and 2023; has a patent pending for PCT/US2021/037078; and is a co-inventor on a patent pending (18/009,885) and a provisional patent (18/602,978) related to the βAlt signature owned by University of California, San Francisco (UCSF). S.S.Y. reports research support from Bristol-Myers Squibb, Merck, EMD Serono, Biomimetix and Nanobiotix.

Peer review

Peer review information

Nature Reviews Cancer thanks L. Wakefield, C.-H. Heldin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barcellos-Hoff, M.H., Yom, S.S. Revisiting the TGFβ paradox: insights from HPV-driven cancer and the DNA damage response. Nat Rev Cancer 25, 534–544 (2025). https://doi.org/10.1038/s41568-025-00819-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00819-6

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer