Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory T cells in the tumour microenvironment

Abstract

The powerful suppressive capabilities of regulatory T (Treg) cells and their appreciable contribution to tumour progression make them attractive immunotherapeutic targets. However, their role in systemic immune homeostasis makes it important to find ways to specifically target tumour-infiltrating Treg cells while leaving the wider system unperturbed. It is also unknown whether therapies depleting or disrupting the function of tumour-infiltrating Treg cells will provide the greatest efficacy while limiting immune-related adverse events. In addition, Treg cells share much of their biology with conventional CD4+ T cells, introducing challenges when designing targeted immunotherapies. In this Review, we discuss recent advances in differentiating tumour-infiltrating Treg cells from their systemic and tissue-resident counterparts and understanding how the biology of tumour-infiltrating Treg cells differs from conventional CD4+ T cells. We also discuss how recent technological advances may enable the study of tumour-infiltrating Treg cells in even greater detail, helping to identify new targets for next-generation immunotherapeutic drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phenotypic and functional heterogeneity of tumour-infiltrating regulatory T cells.
Fig. 2: Mechanisms of major suppressive functions of regulatory T cells.
Fig. 3: Metabolic reprogramming and adaptation of tumour-infiltrating regulatory T cells.
Fig. 4: Therapeutic targeting of tumour-infiltrating regulatory T cells.

Similar content being viewed by others

References

  1. Postow, M. A., Callahan, M. K. & Wolchok, J. D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 33, 1974–1982 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 11, 3801 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Baessler, A. & Vignali, D. A. A. T cell exhaustion. Annu. Rev. Immunol. 42, 179–206 (2024).

    Article  PubMed  CAS  Google Scholar 

  4. Qin, S. et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer 18, 155 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cillo, A. R. et al. Blockade of LAG-3 and PD-1 leads to co-expression of cytotoxic and exhaustion gene modules in CD8+ T cells to promote antitumor immunity. Cell 187, 4373–4388.e15 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yu, S. et al. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J. Hematol. Oncol. 10, 78 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Quezada, S. A., Peggs, K. S., Simpson, T. R. & Allison, J. P. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol. Rev. 241, 104–118 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Roychoudhuri, R., Eil, R. L. & Restifo, N. P. The interplay of effector and regulatory T cells in cancer. Curr. Opin. Immunol. 33, 101–111 (2015).

    Article  PubMed  CAS  Google Scholar 

  10. Scott, E. N., Gocher, A. M., Workman, C. J. & Vignali, D. A. A. Regulatory T cells: barriers of immune infiltration into the tumor microenvironment. Front. Immunol. 12, 702726 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Vignali, D. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sharma, A. & Rudra, D. Emerging functions of regulatory T cells in tissue homeostasis. Front. Immunol. 9, 883 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  PubMed  CAS  Google Scholar 

  14. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    Article  PubMed  CAS  Google Scholar 

  15. Liu, C., Workman, C. J. & Vignali, D. A. Targeting regulatory T cells in tumors. FEBS J. 283, 2731–2748 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. Shan, F., Somasundaram, A., Bruno, T. C., Workman, C. J. & Vignali, D. A. A. Therapeutic targeting of regulatory T cells in cancer. Trends Cancer 8, 944–961 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. He, X. & Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 30, 660–669 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. Spiliopoulou, P., Kaur, P., Hammett, T., Di Conza, G. & Lahn, M. Targeting T regulatory (Treg) cells in immunotherapy-resistant cancers. Cancer Drug. Resist. 7, 2 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Cesana, G. C. et al. Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J. Clin. Oncol. 24, 1169–1177 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. Jordan, M. S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ahmadzadeh, M. et al. Tumor-infiltrating human CD4+ regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci. Immunol. 4, eaao4310 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang, L. et al. Connecting blood and intratumoral Treg cell activity in predicting future relapse in breast cancer. Nat. Immunol. 20, 1220–1230 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tay, C., Tanaka, A. & Sakaguchi, S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell 41, 450–465 (2023). This is a recent comprehensive review describing current immunotherapy strategies aimed at specifically targeting tumour-infiltrating Treg cells.

    Article  PubMed  CAS  Google Scholar 

  26. Saleh, R. & Elkord, E. FoxP3+ T regulatory cells in cancer: prognostic biomarkers and therapeutic targets. Cancer Lett. 490, 174–185 (2020).

    Article  PubMed  CAS  Google Scholar 

  27. Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. Wolf, D. et al. The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin. Cancer Res. 11, 8326–8331 (2005).

    Article  PubMed  CAS  Google Scholar 

  30. Bates, G. J. et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 24, 5373–5380 (2006).

    Article  PubMed  Google Scholar 

  31. Liu, S. et al. Prognostic significance of FOXP3+ tumor-infiltrating lymphocytes in breast cancer depends on estrogen receptor and human epidermal growth factor receptor-2 expression status and concurrent cytotoxic T-cell infiltration. Breast Cancer Res. 16, 432 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Perez, S. A. et al. CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients. Clin. Cancer Res. 13, 2714–2721 (2007).

    Article  PubMed  CAS  Google Scholar 

  33. Stenstrom, J., Hedenfalk, I. & Hagerling, C. Regulatory T lymphocyte infiltration in metastatic breast cancer-an independent prognostic factor that changes with tumor progression. Breast Cancer Res. 23, 27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Petersen, R. P. et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107, 2866–2872 (2006).

    Article  PubMed  Google Scholar 

  35. Tao, H. et al. Prognostic potential of FOXP3 expression in non-small cell lung cancer cells combined with tumor-infiltrating regulatory T cells. Lung Cancer 75, 95–101 (2012).

    Article  PubMed  Google Scholar 

  36. Suzuki, K. et al. Prognostic immune markers in non-small cell lung cancer. Clin. Cancer Res. 17, 5247–5256 (2011).

    Article  PubMed  CAS  Google Scholar 

  37. Soo, R. A. et al. Prognostic significance of immune cells in non-small cell lung cancer: meta-analysis. Oncotarget 9, 24801–24820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gao, Q. et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol. 25, 2586–2593 (2007).

    Article  PubMed  Google Scholar 

  39. Sun, L. et al. Clinicopathologic and prognostic significance of regulatory T cells in patients with hepatocellular carcinoma: a meta-analysis. Oncotarget 8, 39658–39672 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fu, J. et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology 132, 2328–2339 (2007).

    Article  PubMed  Google Scholar 

  41. Ormandy, L. A. et al. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 65, 2457–2464 (2005).

    Article  PubMed  CAS  Google Scholar 

  42. Sasaki, A. et al. Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in patients with hepatocellular carcinoma. Eur. J. Surg. Oncol. 34, 173–179 (2008).

    Article  PubMed  CAS  Google Scholar 

  43. Griffiths, R. W. et al. Frequency of regulatory T cells in renal cell carcinoma patients and investigation of correlation with survival. Cancer Immunol. Immunother. 56, 1743–1753 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hiraoka, N., Onozato, K., Kosuge, T. & Hirohashi, S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer Res. 12, 5423–5434 (2006).

    Article  PubMed  CAS  Google Scholar 

  45. Perrone, G. et al. Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. Eur. J. Cancer 44, 1875–1882 (2008).

    Article  PubMed  CAS  Google Scholar 

  46. Jordanova, E. S. et al. Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin. Cancer Res. 14, 2028–2035 (2008).

    Article  PubMed  CAS  Google Scholar 

  47. Sinicrope, F. A. et al. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology 137, 1270–1279 (2009).

    Article  PubMed  CAS  Google Scholar 

  48. West, N. R. et al. Tumour-infiltrating FOXP3+ lymphocytes are associated with cytotoxic immune responses and good clinical outcome in oestrogen receptor-negative breast cancer. Br. J. Cancer 108, 155–162 (2013).

    Article  PubMed  CAS  Google Scholar 

  49. Salama, P. et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J. Clin. Oncol. 27, 186–192 (2009).

    Article  PubMed  Google Scholar 

  50. Frey, D. M. et al. High frequency of tumor-infiltrating FOXP3+ regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int. J. Cancer 126, 2635–2643 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Leffers, N. et al. Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol. Immunother. 58, 449–459 (2009).

    Article  PubMed  Google Scholar 

  52. Sakaguchi, S. et al. Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566 (2020).

    Article  PubMed  CAS  Google Scholar 

  53. Dikiy, S. & Rudensky, A. Y. Principles of regulatory T cell function. Immunity 56, 240–255 (2023). Together with Vignali et al. (2008), this comprehensive review describes how Treg cells work to maintain peripheral tolerance.

    Article  PubMed  CAS  Google Scholar 

  54. Miragaia, R. J. et al. Single-cell transcriptomics of regulatory T cells reveals trajectories of tissue adaptation. Immunity 50, 493–504.e7 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Delacher, M. et al. Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells. Immunity 54, 702–720.e17 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zheng, C. et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 169, 1342–1356.e16 (2017).

    Article  PubMed  CAS  Google Scholar 

  57. Plitas, G. et al. Regulatory T cells exhibit distinct features in human breast cancer. Immunity 45, 1122–1134 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Zheng, L. et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells. Science 374, abe6474 (2021).

    Article  PubMed  Google Scholar 

  59. Miyara, M. et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30, 899–911 (2009).

    Article  PubMed  CAS  Google Scholar 

  60. Cillo, A. R. et al. Immune landscape of viral- and carcinogen-driven head and neck cancer. Immunity 52, 183–199.e9 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Shan, F. et al. Integrated BATF transcriptional network regulates suppressive intratumoral regulatory T cells. Sci. Immunol. 8, eadf6717 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Itahashi, K. et al. BATF epigenetically and transcriptionally controls the activation program of regulatory T cells in human tumors. Sci. Immunol. 7, eabk0957 (2022). Together with Shan et al. (2023), this study identifies BATF as a key regulator of Treg cells in tumours.

    Article  PubMed  CAS  Google Scholar 

  63. Alvisi, G. et al. IRF4 instructs effector Treg differentiation and immune suppression in human cancer. J. Clin. Invest. 130, 3137–3150 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cretney, E. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat. Immunol. 12, 304–311 (2011).

    Article  PubMed  CAS  Google Scholar 

  66. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015).

    Article  PubMed  CAS  Google Scholar 

  67. Delacher, M. et al. Precursors for nonlymphoid-tissue treg cells reside in secondary lymphoid organs and are programmed by the transcription factor BATF. Immunity 52, 295–312.e11 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Xu, C. et al. BATF regulates T regulatory cell functional specification and fitness of triglyceride metabolism in restraining allergic responses. J. Immunol. 206, 2088–2100 (2021).

    Article  PubMed  CAS  Google Scholar 

  69. Khatun, A. et al. BATF is required for Treg homeostasis and stability to prevent autoimmune pathology. Adv. Sci. 10, e2206692 (2023).

    Article  Google Scholar 

  70. Dykema, A. G. et al. Lung tumor-infiltrating Treg have divergent transcriptional profiles and function linked to checkpoint blockade response. Sci. Immunol. 8, eadg1487 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Cho, J. W., Son, J., Ha, S. J. & Lee, I. Systems biology analysis identifies TNFRSF9 as a functional marker of tumor-infiltrating regulatory T-cell enabling clinical outcome prediction in lung cancer. Comput. Struct. Biotechnol. J. 19, 860–868 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Freeman, Z. T. et al. A conserved intratumoral regulatory T cell signature identifies 4-1BB as a pan-cancer target. J. Clin. Invest. 130, 1405–1416 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sukumar, S. et al. Characterization of MK-4166, a clinical agonistic antibody that targets human GITR and inhibits the generation and suppressive effects of T regulatory cells. Cancer Res. 77, 4378–4388 (2017).

    Article  PubMed  CAS  Google Scholar 

  74. Lam, J. H. et al. CD30+OX40+ Treg is associated with improved overall survival in colorectal cancer. Cancer Immunol. Immunother. 70, 2353–2365 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Overacre, A. E. & Vignali, D. A. Treg stability: to be or not to be. Curr. Opin. Immunol. 39, 39–43 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Overacre-Delgoffe, A. E. et al. Interferon-γ drives Treg fragility to promote anti-tumor immunity. Cell 169, 1130–1141.e11 (2017). This study identifies IFNγ as key driver of Treg cell fragility in tumours.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Zhao, J., Zhao, J. & Perlman, S. Differential effects of IL-12 on Tregs and non-Treg T cells: roles of IFN-γ, IL-2 and IL-2R. PLoS ONE 7, e46241 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Choi, G., Na, H., Kuen, D. S., Kim, B. S. & Chung, Y. Autocrine TGF-β1 maintains the stability of Foxp3+ regulatory T cells via IL-12Rβ2 downregulation. Biomolecules 10, 819 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Liu, Y. et al. AKT hyperactivation confers a Th1 phenotype in thymic Treg cells deficient in TGF-β receptor II signaling. Eur. J. Immunol. 44, 521–532 (2014).

    Article  PubMed  CAS  Google Scholar 

  81. Gocher-Demske, A. M. et al. IFNγ-induction of TH1-like regulatory T cells controls antiviral responses. Nat. Immunol. 24, 841–854 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Schaer, D. A. et al. GITR pathway activation abrogates tumor immune suppression through loss of regulatory T cell lineage stability. Cancer Immunol. Res. 1, 320–331 (2013).

    Article  PubMed  CAS  Google Scholar 

  83. Shang, B., Liu, Y., Jiang, S. J. & Liu, Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci. Rep. 5, 15179 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Saito, T. et al. Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat. Med. 22, 679–684 (2016). This study associates tumour-infiltrating Treg cell heterogeneity with colorectal cancer prognosis and provides a possible explanation as to why some cancers with increased Treg cell frequencies have better prognosis.

    Article  PubMed  CAS  Google Scholar 

  85. Allan, S. E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).

    Article  PubMed  CAS  Google Scholar 

  86. Wang, J., Ioan-Facsinay, A., van der Voort, E. I., Huizinga, T. W. & Toes, R. E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129–138 (2007).

    Article  PubMed  CAS  Google Scholar 

  87. Gavin, M. A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl Acad. Sci. USA 103, 6659–6664 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    Article  PubMed  CAS  Google Scholar 

  89. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  PubMed  CAS  Google Scholar 

  91. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  PubMed  CAS  Google Scholar 

  92. Joshi, N. S. et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43, 579–590 (2015). This study demonstrates that Treg cells in TLSs actively suppress antitumour immunity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Eschweiler, S. et al. Intratumoral follicular regulatory T cells curtail anti-PD-1 treatment efficacy. Nat. Immunol. 22, 1052–1063 (2021). This study is one of the first to characterise TFR cells as a specific subpopulation of tumour-infiltrating Treg cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Dixon, M. L. et al. Remodeling of the tumor microenvironment via disrupting Blimp1+ effector Treg activity augments response to anti-PD-1 blockade. Mol. Cancer 20, 150 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Imianowski, C. J. et al. IFNγ production by functionally reprogrammed tregs promotes antitumor efficacy of OX40/CD137 bispecific agonist therapy. Cancer Res. Commun. 4, 2045–2057 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Gonzalez-Navajas, J. M. et al. The impact of Tregs on the anticancer immunity and the efficacy of immune checkpoint inhibitor therapies. Front. Immunol. 12, 625783 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    Article  PubMed  CAS  Google Scholar 

  99. Du, W. et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int. J. Mol. Sci. 18, 645 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  PubMed  CAS  Google Scholar 

  101. Tivol, E. A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  PubMed  CAS  Google Scholar 

  102. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  PubMed  CAS  Google Scholar 

  103. Zappasodi, R. et al. CTLA-4 blockade drives loss of Treg stability in glycolysis-low tumours. Nature 591, 652–658 (2021). This study describes a mechanism by which CTLA4 blockade contributes to loss of Treg cell stability in tumours.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Arce Vargas, F. et al. Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33, 649–663.e4 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Marangoni, F. et al. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell 184, 3998–4015.e19 (2021). This study describes how CTLA4 blockade contributes to CD28-mediated expansion of tumour-associated Treg cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Sato, Y. et al. Fc-independent functions of anti-CTLA-4 antibodies contribute to anti-tumor efficacy. Cancer Immunol. Immunother. 71, 2421–2431 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Ha, D. et al. Differential control of human Treg and effector T cells in tumor immunity by Fc-engineered anti-CTLA-4 antibody. Proc. Natl Acad. Sci. USA 116, 609–618 (2019).

    Article  PubMed  CAS  Google Scholar 

  108. Huang, C. T. et al. Role of LAG-3 in regulatory T cells. Immunity 21, 503–513 (2004).

    Article  PubMed  CAS  Google Scholar 

  109. Camisaschi, C. et al. LAG-3 expression defines a subset of CD4+CD25highFoxp3+ regulatory T cells that are expanded at tumor sites. J. Immunol. 184, 6545–6551 (2010).

    Article  PubMed  CAS  Google Scholar 

  110. Jie, H. B. et al. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br. J. Cancer 109, 2629–2635 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Wei, T. et al. Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients. Am. J. Cancer Res. 5, 2190–2201 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Joller, N. et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40, 569–581 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Fourcade, J. et al. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 3, e121157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Chauvin, J. M. & Zarour, H. M. TIGIT in cancer immunotherapy. J. Immunother. Cancer 8, e000957 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Fuhrman, C. A. et al. Divergent phenotypes of human regulatory T cells expressing the receptors TIGIT and CD226. J. Immunol. 195, 145–155 (2015).

    Article  PubMed  CAS  Google Scholar 

  116. Preillon, J. et al. Restoration of T-cell effector function, depletion of Tregs, and direct killing of tumor cells: the multiple mechanisms of action of a-TIGIT antagonist antibodies. Mol. Cancer Ther. 20, 121–131 (2021).

    Article  PubMed  CAS  Google Scholar 

  117. Kim, M. J. et al. Deletion of PD-1 destabilizes the lineage identity and metabolic fitness of tumor-infiltrating regulatory T cells. Nat. Immunol. 24, 148–161 (2023).

    Article  PubMed  CAS  Google Scholar 

  118. Kamada, T. et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Vick, S. C., Kolupaev, O. V., Perou, C. M. & Serody, J. S. Anti-PD-1 checkpoint therapy can promote the function and survival of regulatory T cells. J. Immunol. 207, 2598–2607 (2021). Together with Kim et al. (2023) and Kamada et al. (2019), this study provides mechanistic detail for how PD1 deletion and/or blockade regulates tumour-infiltrating Treg cells.

    Article  PubMed  CAS  Google Scholar 

  120. Tan, C. L. et al. PD-1 restraint of regulatory T cell suppressive activity is critical for immune tolerance. J. Exp. Med. 218, e20182232 (2021).

    Article  PubMed  CAS  Google Scholar 

  121. Huynh, A. et al. Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat. Immunol. 16, 188–196 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Shrestha, S. et al. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat. Immunol. 16, 178–187 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Sharma, M. D. et al. The PTEN pathway in Tregs is a critical driver of the suppressive tumor microenvironment. Sci. Adv. 1, e1500845 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ali, K. et al. Inactivation of PI(3)K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 510, 407–411 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Eschweiler, S. et al. Intermittent PI3Kδ inhibition sustains anti-tumour immunity and curbs irAEs. Nature 605, 741–746 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Geels, S. N. et al. Interruption of the intratumor CD8+ T cell:Treg crosstalk improves the efficacy of PD-1 immunotherapy. Cancer Cell 42, 1051–1066.e7 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Sage, P. T., Francisco, L. M., Carman, C. V. & Sharpe, A. H. The receptor PD-1 controls follicular regulatory T cells in the lymph nodes and blood. Nat. Immunol. 14, 152–161 (2013).

    Article  PubMed  CAS  Google Scholar 

  128. Kumagai, S. et al. The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat. Immunol. 21, 1346–1358 (2020).

    Article  PubMed  CAS  Google Scholar 

  129. Aksoylar, H. I. & Boussiotis, V. A. PD-1+ Treg cells: a foe in cancer immunotherapy? Nat. Immunol. 21, 1311–1312 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Lowther, D. E. et al. PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight 1, e85935 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Lim, S. A. et al. Lipid signalling enforces functional specialization of Treg cells in tumours. Nature 591, 306–311 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Zhang, A. et al. Dual targeting of CTLA-4 and CD47 on Treg cells promotes immunity against solid tumors. Sci. Transl. Med. 13, eabg8693 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  PubMed  CAS  Google Scholar 

  134. Janke, M., Witsch, E. J., Mages, H. W., Hutloff, A. & Kroczek, R. A. Eminent role of ICOS costimulation for T cells interacting with plasmacytoid dendritic cells. Immunology 118, 353–360 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Sim, G. C. et al. IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. J. Clin. Invest. 124, 99–110 (2014).

    Article  PubMed  CAS  Google Scholar 

  136. Chen, Y., Shen, S., Gorentla, B. K., Gao, J. & Zhong, X. P. Murine regulatory T cells contain hyperproliferative and death-prone subsets with differential ICOS expression. J. Immunol. 188, 1698–1707 (2012).

    Article  PubMed  CAS  Google Scholar 

  137. Nagase, H. et al. ICOS+Foxp3+ TILs in gastric cancer are prognostic markers and effector regulatory T cells associated with Helicobacter pylori. Int. J. Cancer 140, 686–695 (2017).

    Article  PubMed  CAS  Google Scholar 

  138. Glasner, A. et al. Conserved transcriptional connectivity of regulatory T cells in the tumor microenvironment informs new combination cancer therapy strategies. Nat. Immunol. 24, 1020–1035 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  PubMed  CAS  Google Scholar 

  140. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Linsley, P. S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991).

    Article  PubMed  CAS  Google Scholar 

  142. Linsley, P. S. et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801 (1994).

    Article  PubMed  CAS  Google Scholar 

  143. Tekguc, M., Wing, J. B., Osaki, M., Long, J. & Sakaguchi, S. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc. Natl Acad. Sci. USA 118, e2023739118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Qureshi, O. S. et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332, 600–603 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nat. Immunol. 4, 1206–1212 (2003).

    Article  PubMed  CAS  Google Scholar 

  146. Mbongue, J. C. et al. The role of indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines 3, 703–729 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Belladonna, M. L. et al. Immunosuppression via tryptophan catabolism: the role of kynurenine pathway enzymes. Transplantation 84, S17–S20 (2007).

    Article  PubMed  CAS  Google Scholar 

  148. Azimnasab-Sorkhabi, P., Soltani-Asl, M., Yoshinaga, T. T., Massoco, C. O. & Kfoury Junior, J. R. IDO blockade negatively regulates the CTLA-4 signaling in breast cancer cells. Immunol. Res. 71, 679–686 (2023).

    Article  PubMed  CAS  Google Scholar 

  149. Liang, B. et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol. 180, 5916–5926 (2008).

    Article  PubMed  CAS  Google Scholar 

  150. Yu, X. et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat. Immunol. 10, 48–57 (2009).

    Article  PubMed  CAS  Google Scholar 

  151. Malek, T. R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).

    Article  PubMed  CAS  Google Scholar 

  152. Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    Article  PubMed  CAS  Google Scholar 

  153. Ross, S. H. & Cantrell, D. A. Signaling and function of interleukin-2 in T lymphocytes. Annu. Rev. Immunol. 36, 411–433 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Waldmann, T. A. The multi-subunit interleukin-2 receptor. Annu. Rev. Biochem. 58, 875–911 (1989).

    Article  PubMed  CAS  Google Scholar 

  156. Spangler, J. B. et al. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 42, 815–825 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Barthlott, T. et al. CD25+CD4+ T cells compete with naive CD4+ T cells for IL-2 and exploit it for the induction of IL-10 production. Int. Immunol. 17, 279–288 (2005).

    Article  PubMed  CAS  Google Scholar 

  158. de la Rosa, M., Rutz, S., Dorninger, H. & Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2480–2488 (2004).

    Article  PubMed  Google Scholar 

  159. Scheffold, A., Murphy, K. M. & Hofer, T. Competition for cytokines: Treg cells take all. Nat. Immunol. 8, 1285–1287 (2007).

    Article  PubMed  CAS  Google Scholar 

  160. Busse, D. et al. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments. Proc. Natl Acad. Sci. USA 107, 3058–3063 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Thornton, A. M., Donovan, E. E., Piccirillo, C. A. & Shevach, E. M. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J. Immunol. 172, 6519–6523 (2004).

    Article  PubMed  CAS  Google Scholar 

  162. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M. J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353–1362 (2007).

    Article  PubMed  CAS  Google Scholar 

  163. Pipkin, M. E. et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79–90 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Liao, W., Lin, J. X. & Leonard, W. J. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 23, 598–604 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Liao, W., Lin, J. X., Wang, L., Li, P. & Leonard, W. J. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 551–559 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Boyman, O. & Sprent, J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol. 12, 180–190 (2012).

    Article  PubMed  CAS  Google Scholar 

  167. Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Attia, P., Maker, A. V., Haworth, L. R., Rogers-Freezer, L. & Rosenberg, S. A. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother. 28, 582–592 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Mitchell, D. A. et al. Monoclonal antibody blockade of IL-2 receptor α during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood 118, 3003–3012 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Jacobs, J. F. et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin. Cancer Res. 16, 5067–5078 (2010).

    Article  PubMed  CAS  Google Scholar 

  171. Solomon, I. et al. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat. Cancer 1, 1153–1166 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Huang, S., Apasov, S., Koshiba, M. & Sitkovsky, M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood 90, 1600–1610 (1997).

    Article  PubMed  CAS  Google Scholar 

  174. Sawant, D. V. et al. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat. Immunol. 20, 724–735 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Wei, X. et al. Reciprocal expression of IL-35 and IL-10 defines two distinct effector treg subsets that are required for maintenance of immune tolerance. Cell Rep. 21, 1853–1869 (2017). Together with Sawant et al. (2019), this study identifies that Treg cell subpopulations have distinct expression of the inhibitory cytokines IL-10 and IL-35.

    Article  PubMed  CAS  Google Scholar 

  176. Collison, L. W., Pillai, M. R., Chaturvedi, V. & Vignali, D. A. Regulatory T cell suppression is potentiated by target T cells in a cell contact, IL-35- and IL-10-dependent manner. J. Immunol. 182, 6121–6128 (2009).

    Article  PubMed  CAS  Google Scholar 

  177. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  PubMed  CAS  Google Scholar 

  178. Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    Article  PubMed  CAS  Google Scholar 

  179. Turnis, M. E. et al. Interleukin-35 limits anti-tumor immunity. Immunity 44, 316–329 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Lin, J. T., Martin, S. L., Xia, L. & Gorham, J. D. TGF-β 1 uses distinct mechanisms to inhibit IFN-γ expression in CD4+ T cells at priming and at recall: differential involvement of Stat4 and T-bet. J. Immunol. 174, 5950–5958 (2005).

    Article  PubMed  CAS  Google Scholar 

  181. Hilchey, S. P., De, A., Rimsza, L. M., Bankert, R. B. & Bernstein, S. H. Follicular lymphoma intratumoral CD4+CD25+GITR+ regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8+CD25 and CD4+CD25 T cells. J. Immunol. 178, 4051–4061 (2007).

    Article  PubMed  CAS  Google Scholar 

  182. Gorelik, L., Constant, S. & Flavell, R. A. Mechanism of transforming growth factor β-induced inhibition of T helper type 1 differentiation. J. Exp. Med. 195, 1499–1505 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Chen, M. L. et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Natl Acad. Sci. USA 102, 419–424 (2005).

    Article  PubMed  CAS  Google Scholar 

  184. Gunderson, A. J. et al. TGFβ suppresses CD8+ T cell expression of CXCR3 and tumor trafficking. Nat. Commun. 11, 1749 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Gondek, D. C., Lu, L. F., Quezada, S. A., Sakaguchi, S. & Noelle, R. J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786 (2005).

    Article  PubMed  CAS  Google Scholar 

  186. Cao, X. et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27, 635–646 (2007).

    Article  PubMed  CAS  Google Scholar 

  187. Bopp, T. et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med. 204, 1303–1310 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Yano, H., Andrews, L. P., Workman, C. J. & Vignali, D. A. A. Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity. Immunology 157, 232–247 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Gobert, M. et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 69, 2000–2009 (2009).

    Article  PubMed  CAS  Google Scholar 

  190. Fujimura, T., Kambayashi, Y., Fujisawa, Y., Hidaka, T. & Aiba, S. Tumor-associated macrophages: therapeutic targets for skin cancer. Front. Oncol. 8, 3 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Wiedemann, G. M. et al. Cancer cell-derived IL-1α induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology 5, e1175794 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Wertel, I. et al. Macrophage-derived chemokine CCL22 and regulatory T cells in ovarian cancer patients. Tumour Biol. 36, 4811–4817 (2015).

    Article  PubMed  CAS  Google Scholar 

  193. Menetrier-Caux, C. et al. Innate immune recognition of breast tumor cells mediates CCL22 secretion favoring Treg recruitment within tumor environment. Oncoimmunology 1, 759–761 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Marshall, L. A. et al. Tumors establish resistance to immunotherapy by regulating Treg recruitment via CCR4. J. Immunother. Cancer 8, e000764 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Sugiyama, D. et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc. Natl Acad. Sci. USA 110, 17945–17950 (2013). Together with Marshall et al. (2020), this study establishes that CCR4 blockade or depletion promotes antitumour immunity by selectively targeting a suppressive subpopulation of Treg cells in the tumour.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. You, S. et al. Lymphatic-localized Treg-mregDC crosstalk limits antigen trafficking and restrains anti-tumor immunity. Cancer Cell 42, 1415–1433.e12 (2024).

    Article  PubMed  CAS  Google Scholar 

  197. Kidani, Y. et al. CCR8-targeted specific depletion of clonally expanded Treg cells in tumor tissues evokes potent tumor immunity with long-lasting memory. Proc. Natl Acad. Sci. USA 119, e2114282119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Van Damme, H. et al. Therapeutic depletion of CCR8+ tumor-infiltrating regulatory T cells elicits antitumor immunity and synergizes with anti-PD-1 therapy. J. Immunother. Cancer 9, e001749 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Campbell, J. R. et al. Fc-optimized anti-CCR8 antibody depletes regulatory T cells in human tumor models. Cancer Res. 81, 2983–2994 (2021). Together with Kidani et al. (2022) and Van Damme et al. (2021), this study shows that depletion using CCR8 antibodies specifically targets tumour-infiltrating Treg cells and is more therapeutically efficacious than using CCR8 antibodies aimed at blocking migration.

    Article  PubMed  CAS  Google Scholar 

  200. Weaver, J. D. et al. Differential expression of CCR8 in tumors versus normal tissue allows specific depletion of tumor-infiltrating T regulatory cells by GS-1811, a novel Fc-optimized anti-CCR8 antibody. Oncoimmunology 11, 2141007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Yeh, C. R. et al. Fibroblast ERα promotes bladder cancer invasion via increasing the CCL1 and IL-6 signals in the tumor microenvironment. Am. J. Cancer Res. 5, 1146–1157 (2015).

    PubMed  PubMed Central  Google Scholar 

  202. Li, Z. et al. Participation of CCL1 in snail-positive fibroblasts in colorectal cancer contribute to 5-fluorouracil/paclitaxel chemoresistance. Cancer Res. Treat. 50, 894–907 (2018).

    Article  PubMed  CAS  Google Scholar 

  203. Sun, D. et al. M2-polarized tumor-associated macrophages promote epithelial-mesenchymal transition via activation of the AKT3/PRAS40 signaling pathway in intrahepatic cholangiocarcinoma. J. Cell Biochem. 121, 2828–2838 (2020).

    Article  PubMed  CAS  Google Scholar 

  204. Hoelzinger, D. B. et al. Blockade of CCL1 inhibits T regulatory cell suppressive function enhancing tumor immunity without affecting T effector responses. J. Immunol. 184, 6833–6842 (2010).

    Article  PubMed  CAS  Google Scholar 

  205. Iellem, A. et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J. Exp. Med. 194, 847–853 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Kuehnemuth, B. et al. CCL1 is a major regulatory T cell attracting factor in human breast cancer. BMC Cancer 18, 1278 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. De Simone, M. et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45, 1135–1147 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Whiteside, S. K. et al. CCR8 marks highly suppressive Treg cells within tumours but is dispensable for their accumulation and suppressive function. Immunology 163, 512–520 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Schlecker, E. et al. Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. J. Immunol. 189, 5602–5611 (2012).

    Article  PubMed  CAS  Google Scholar 

  210. Tan, M. C. et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J. Immunol. 182, 1746–1755 (2009).

    Article  PubMed  CAS  Google Scholar 

  211. de Oliveira, C. E. et al. CCR5-dependent homing of T regulatory cells to the tumor microenvironment contributes to skin squamous cell carcinoma development. Mol. Cancer Ther. 16, 2871–2880 (2017).

    Article  PubMed  Google Scholar 

  212. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  PubMed  CAS  Google Scholar 

  213. Meng, W., Xue, S. & Chen, Y. The role of CXCL12 in tumor microenvironment. Gene 641, 105–110 (2018).

    Article  PubMed  CAS  Google Scholar 

  214. Lecavalier-Barsoum, M. et al. Targeting the CXCL12/CXCR4 pathway and myeloid cells to improve radiation treatment of locally advanced cervical cancer. Int. J. Cancer 143, 1017–1028 (2018).

    Article  PubMed  CAS  Google Scholar 

  215. Shimizu, Y. et al. CXCR4+FOXP3+CD25+ lymphocytes accumulate in CXCL12-expressing malignant pleural mesothelioma. Int. J. Immunopathol. Pharmacol. 22, 43–51 (2009).

    Article  PubMed  CAS  Google Scholar 

  216. Righi, E. et al. CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res. 71, 5522–5534 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Polimeno, M. et al. Regulatory T cells, interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), CXCL10, CXCL11, epidermal growth factor (EGF) and hepatocyte growth factor (HGF) as surrogate markers of host immunity in patients with renal cell carcinoma. BJU Int. 112, 686–696 (2013).

    Article  PubMed  CAS  Google Scholar 

  218. Jaafar, F. et al. Correlation of CXCL12 expression and FoxP3+ cell infiltration with human papillomavirus infection and clinicopathological progression of cervical cancer. Am. J. Pathol. 175, 1525–1535 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Mezzapelle, R. et al. CXCR4/CXCL12 activities in the tumor microenvironment and implications for tumor immunotherapy. Cancers 14, 2314 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Liu, J. et al. Tumor-associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS ONE 6, e19495 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Redjimi, N. et al. CXCR3+ T regulatory cells selectively accumulate in human ovarian carcinomas to limit type I immunity. Cancer Res. 72, 4351–4360 (2012).

    Article  PubMed  CAS  Google Scholar 

  222. Moreno Ayala, M. A. et al. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8+ T cell antitumor immunity. Immun 56, 1613–1630.e5 (2023).

    Article  CAS  Google Scholar 

  223. Wang, H. Y., Peng, G., Guo, Z., Shevach, E. M. & Wang, R. F. Recognition of a new ARTC1 peptide ligand uniquely expressed in tumor cells by antigen-specific CD4+ regulatory T cells. J. Immunol. 174, 2661–2670 (2005).

    Article  PubMed  CAS  Google Scholar 

  224. Takahashi, M. et al. Intratumoral antigen signaling traps CD8+ T cells to confine exhaustion to the tumor site. Sci. Immunol. 9, eade2094 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Ikebuchi, R. et al. Cutting edge: recruitment, retention, and migration underpin functional phenotypic heterogeneity of regulatory T cells in tumors. J. Immunol. 207, 771–776 (2021).

    Article  PubMed  CAS  Google Scholar 

  226. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  PubMed  CAS  Google Scholar 

  227. Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Scharping, N. E. et al. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45, 701–703 (2016).

    Article  PubMed  CAS  Google Scholar 

  229. Najjar, Y. G. et al. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma. JCI Insight 4, e124989 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Wang, Y., Huang, T., Gu, J. & Lu, L. Targeting the metabolism of tumor-infiltrating regulatory T cells. Trends Immunol. 44, 598–612 (2023). This review covers aspects of Treg cell metabolism in the TME and discusses how these can be targeted therapeutically.

    Article  PubMed  CAS  Google Scholar 

  232. Kempkes, R. W. M., Joosten, I., Koenen, H. & He, X. Metabolic pathways involved in regulatory T cell functionality. Front. Immunol. 10, 2839 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Yan, Y. et al. Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: implications for antitumor immunity. J. Hematol. Oncol. 15, 104 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature 499, 485–490 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Chapman, N. M. et al. mTOR coordinates transcriptional programs and mitochondrial metabolism of activated Treg subsets to protect tissue homeostasis. Nat. Commun. 9, 2095 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Sun, I. H. et al. mTOR complex 1 signaling regulates the generation and function of central and effector Foxp3+ regulatory T cells. J. Immunol. 201, 481–492 (2018).

    Article  PubMed  CAS  Google Scholar 

  237. Saravia, J. et al. Homeostasis and transitional activation of regulatory T cells require c-Myc. Sci. Adv. 6, eaaw6443 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Yang, C. et al. Myc inhibition tips the immune balance to promote antitumor immunity. Cell. Mol. Immunol. 19, 1030–1041 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Kishore, M. et al. Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity 47, 875–889.e10 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Miska, J. et al. HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of Tregs in glioblastoma. Cell Rep. 27, 226–237.e4 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Gerriets, V. A. et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat. Immunol. 17, 1459–1466 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Angelin, A. et al. Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e7 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Howie, D. et al. Foxp3 drives oxidative phosphorylation and protection from lipotoxicity. JCI Insight 2, e89160 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Ho, P. C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Apostolova, P. & Pearce, E. L. Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment. Trends Immunol. 43, 969–977 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Quinn, W. J. 3rd et al. Lactate limits T cell proliferation via the NAD(H) redox state. Cell Rep. 33, 108500 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Feng, Q. et al. Lactate increases stemness of CD8+ T cells to augment anti-tumor immunity. Nat. Commun. 13, 4981 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Rao, D. et al. Acidity-mediated induction of FoxP3+ regulatory T cells. Eur. J. Immunol. 53, e2250258 (2023).

    Article  PubMed  Google Scholar 

  250. Kumagai, S. et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 40, 201–218 e209 (2022). Together with Watson et al. (2021), this study determines the critical role of lactic acid in tumour-infiltrating Treg cell function and its association with the efficacy of anti-PD1 immunotherapy.

    Article  PubMed  CAS  Google Scholar 

  251. Gu, J. et al. Tumor metabolite lactate promotes tumorigenesis by modulating moesin lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 39, 110986 (2022).

    Article  PubMed  CAS  Google Scholar 

  252. Ding, R. et al. Lactate modulates RNA splicing to promote CTLA-4 expression in tumor-infiltrating regulatory T cells. Immunity 57, 528–540.e6 (2024).

    Article  PubMed  CAS  Google Scholar 

  253. Nagarajan, S. R., Butler, L. M. & Hoy, A. J. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab. 9, 2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Kumagai, S. et al. An oncogenic alteration creates a microenvironment that promotes tumor progression by conferring a metabolic advantage to regulatory T cells. Immunity 53, 187–203.e8 (2020).

    Article  PubMed  CAS  Google Scholar 

  255. Pacella, I. et al. Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proc. Natl Acad. Sci. USA 115, E6546–E6555 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Xu, C. et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity. Cell Rep. 35, 109235 (2021).

    Article  PubMed  CAS  Google Scholar 

  257. Manzo, T. et al. Accumulation of long-chain fatty acids in the tumor microenvironment drives dysfunction in intrapancreatic CD8+ T cells. J. Exp. Med. 217, e20191920 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Reina-Campos, M., Scharping, N. E. & Goldrath, A. W. CD8+ T cell metabolism in infection and cancer. Nat. Rev. Immunol. 21, 718–738 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Tang, Y., Chen, Z., Zuo, Q. & Kang, Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell. Mol. Immunol. 21, 1215–1230 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Ruan, C., Meng, Y. & Song, H. CD36: an emerging therapeutic target for cancer and its molecular mechanisms. J. Cancer Res. Clin. Oncol. 148, 1551–1558 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Wang, H. et al. CD36-mediated metabolic adaptation supports regulatory T cell survival and function in tumors. Nat. Immunol. 21, 298–308 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  262. Field, C. S. et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function. Cell Metab. 31, 422–437.e5 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  263. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013).

    Article  PubMed  CAS  Google Scholar 

  264. Song, X. et al. Microbial bile acid metabolites modulate gut RORγ+ regulatory T cell homeostasis. Nature 577, 410–415 (2020).

    Article  PubMed  CAS  Google Scholar 

  265. Hang, S. et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576, 143–148 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Campbell, C. et al. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581, 475–479 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Li, W. et al. A bacterial bile acid metabolite modulates Treg activity through the nuclear hormone receptor NR4A1. Cell Host Microbe 29, 1366–1377.e9 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Lugano, R., Ramachandran, M. & Dimberg, A. Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 77, 1745–1770 (2020).

    Article  PubMed  CAS  Google Scholar 

  269. Kumar, V. & Gabrilovich, D. I. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology 143, 512–519 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Ohta, A. et al. The development and immunosuppressive functions of CD4+CD25+FoxP3+ regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front. Immunol. 3, 190 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Ma, S. et al. Serine enrichment in tumors promotes regulatory T cell accumulation through sphinganine-mediated regulation of c-Fos. Sci. Immunol. 9, eadg8817 (2024).

    Article  PubMed  CAS  Google Scholar 

  272. Kesarwani, P. et al. Tryptophan metabolism contributes to radiation-induced immune checkpoint reactivation in glioblastoma. Clin. Cancer Res. 24, 3632–3643 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Klysz, D. et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).

    Article  PubMed  Google Scholar 

  274. Campesato, L. F. et al. Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by l-kynurenine. Nat. Commun. 11, 4011 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  275. Kurniawan, H. et al. Glutathione restricts serine metabolism to preserve regulatory T cell function. Cell Metab. 31, 920–936.e7 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  276. Do, M. H. et al. Nutrient mTORC1 signaling underpins regulatory T cell control of immune tolerance. J. Exp. Med. 217, e20190848 (2020).

    Article  PubMed  Google Scholar 

  277. Shi, H. et al. Amino acids license kinase mTORC1 activity and Treg cell function via small G proteins Rag and Rheb. Immunity 51, 1012–1027.e7 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Ikeda, K. et al. Slc3a2 mediates branched-chain amino-acid-dependent maintenance of regulatory T cells. Cell Rep. 21, 1824–1838 (2017).

    Article  PubMed  CAS  Google Scholar 

  279. Cobbold, S. P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl Acad. Sci. USA 106, 12055–12060 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Taves, M. D. et al. Tumors produce glucocorticoids by metabolite recycling, not synthesis, and activate Tregs to promote growth. J. Clin. Invest. 133, e164599 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  281. Maj, T. et al. Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat. Immunol. 18, 1332–1341 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Halford, S. et al. A phase I dose-escalation study of AZD3965, an oral monocarboxylate transporter 1 inhibitor, in patients with advanced cancer. Clin. Cancer Res. 29, 1429–1439 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Raud, B. et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 28, 504–515.e7 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882.e21 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. Whiteside, S. K. et al. Acquisition of suppressive function by conventional T cells limits antitumor immunity upon Treg depletion. Sci. Immunol. 8, eabo5558 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Obradovic, A. et al. Systematic elucidation and pharmacological targeting of tumor-infiltrating regulatory T cell master regulators. Cancer Cell 41, 933–949.e11 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  288. Long, X. et al. Targeting JMJD1C to selectively disrupt tumor Treg cell fitness enhances antitumor immunity. Nat. Immunol. 25, 525–536 (2024).

    Article  PubMed  CAS  Google Scholar 

  289. Kuratani, A. et al. Platelet factor 4-induced TH1-Treg polarization suppresses antitumor immunity. Science 386, eadn8608 (2024).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the Vignali laboratory (Vignali-lab.com, @Vignali_Lab) for insights and constructive comments. The authors are supported by the US National Institutes of Health: P01 AI108545, R35 CA263850, P50 CA254865 and P50 CA097190 to D.A.A.V.; and R01 AI144422 to D.A.A.V. and C.J.W.

Author information

Authors and Affiliations

Authors

Contributions

C.J.I. and Q.C. researched data for the article, contributed substantially to discussion of the content and wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Dario A. A. Vignali.

Ethics declarations

Competing interests

D.A.A.V. and C.J.W. have patents covering LAG3, with others pending, and are entitled to a share of net income generated from licensing of these patent rights for commercial development. D.A.A.V. is a cofounder and stockholder of Novasenta, Potenza, Tizona and Trishula; a stockholder of Werewolf; has patents licensed and royalties for BMS and Novasenta; a scientific advisory board member of Werewolf, Apeximmune and T7/Imreg Bio; a consultant for BMS, Regeneron, Ono Pharma, Peptone, Avidity Partners, Third Arc Bio, Peptone, Secarna and Curio Bio; and has been provided funding from BMS and Novasenta. C.J.I. and Q.C. declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Markus Feuerer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anergy

An induced state of permanent unresponsiveness to antigen.

Antibody-dependent cellular cytotoxicity

(ADCC). The lysis of antibody-coated target cells by effector cells such as natural killer cells or macrophages, induced by the engagement of activating Fcγ receptors and subsequent release of cytotoxic granules.

Antibody-dependent cellular phagocytosis

(ADCP). The internalization and degradation of opsonized target cells, induced by the engagement of Fcγ receptors on effector cells such as myeloid cells and granulocytes.

Electron transport chain

A series of protein complexes found in the mitochondrial membrane that couple redox reactions to the generation of ATP by the formation of an electrochemical gradient.

Ferroptosis

A form of regulated cell death, dependent on iron, that involves the accumulation of lipid peroxides in cells.

Glycolysis

A metabolic pathway used to convert glucose to pyruvate or lactate and generate energy in the form of ATP.

Lactylation

A post-transcriptional modification involving the addition of a lactyl group to a lysine residue.

Oxidative phosphorylation

(OXPHOS). The process by which cells generate ATP through the transfer of electrons from NADH and FADH2 to oxygen.

Peripheral tolerance

A mechanism to control the self-reactivity of mature lymphocytes in the periphery, achieved by suppressing the production of self-reactive antibodies by B cells and inhibition of self-reactive effector T cells.

T follicular helper (TFH) cells

A subset of CD4+ helper T cells that develop under the direction of the master transcription factor BCL6 and are found in lymphoid tissue; they provide help for B cells to produce high-affinity antibodies.

Thymocytes

T cells that develop within the thymus.

Transendocytosis

The biological process in which cells bind to and capture cell-surface receptors from another cell for internalization and degradation.

Trogocytosis

The active process of plasma membrane acquisition by a recipient cell, including the transfer of membrane molecules.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imianowski, C.J., Chen, Q., Workman, C.J. et al. Regulatory T cells in the tumour microenvironment. Nat Rev Cancer 25, 703–722 (2025). https://doi.org/10.1038/s41568-025-00832-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00832-9

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer