Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Modelling the ageing dependence of cancer evolutionary trajectories

Abstract

Ageing is the single most important prognostic factor for cancer development. Despite this knowledge, experimental models of cancer have historically omitted incorporating the impact of age on cancer initiation, progression and treatment outcomes. Ageing interacts with other lifestyle factors, including cigarette smoking, obesity and physical activity, but these intersections are rarely studied in experimental models. Given that cancer-related mortality rates increase with age, there is a growing emphasis on modelling ageing-associated mutational and microenvironmental changes in cancer research. In this Review, we provide guidance on the technological advancements and experimental strategies that have increased our ability to model how ageing impacts various stages of cancer evolution, from mutation-driven clonal expansions, to pre-malignant lesions, and then to progression to more malignant phenotypes and metastasis, and responses to therapies. We discuss the benefits and limitations of methods and models used. The wider adoption of age-appropriate models of cancer will enable the development of improved approaches for the detection, prevention and therapeutic intervention of human cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of ageing-associated changes that contribute to the evolution of cancers.
Fig. 2: Methods for tissue isolation and mutation detection provide distinct insights into mutational landscapes.
Fig. 3: Shared features between humans and animal models used to study accelerated ageing or anti-ageing strategies.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).

    PubMed  Google Scholar 

  2. Lewis, J. H. et al. Participation of patients 65 years of age or older in cancer clinical trials. J. Clin. Oncol. 21, 1383–1389 (2003).

    Article  PubMed  Google Scholar 

  3. Marongiu, F. & DeGregori, J. The sculpting of somatic mutational landscapes by evolutionary forces and their impacts on aging-related disease. Mol. Oncol. 16, 3238–3258 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Hamilton, J. A. G. & Henry, C. J. Aging and immunotherapies: new horizons for the golden ages. Aging Cancer 1, 30–44 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Medawar, P. An Unsolved Problem of Biology (H.K. Lewis, 1952).

  7. Kirkwood, T. B. Understanding the odd science of aging. Cell 120, 437–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Nesse, R. M. & Williams, G. C. Evolution and Healing: the New Science of Darwinian Medicine (Phoenix, 1996).

  9. Blair, W. F. Population density, life span, and mortality rates of small mammals in the blue-grass meadow and blue-grass field associations of southern Michigan. Am. Midl. Nat. 40, 395–419 (1948).

    Article  Google Scholar 

  10. Harding, C., Pompei, F. & Wilson, R. Corrections to: “Age distribution of cancer in mice”. Toxicol. Ind. Health 27, 265–270 (2011).

    Article  PubMed  Google Scholar 

  11. Evans, E. J. Jr. & DeGregori, J. Cells with cancer-associated mutations overtake our tissues as we age. Aging Cancer 2, 82–97 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ward, P. D. & Kirschvink, J. L. A New History of Life: the Radical New Discoveries About the Origins and Evolution of Life on Earth (Bloomsbury, 2015).

  13. Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405–410 (2021). Using an improved duplex sequencing method (nanosequencing), this study shows that somatic mutations scale with age across tissues in humans, with similar mutation accumulation in different tissues independent of cell division history.

    Article  CAS  PubMed  Google Scholar 

  14. Kakiuchi, N. & Ogawa, S. Clonal expansion in non-cancer tissues. Nat. Rev. Cancer 21, 239–256 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Wijewardhane, N., Dressler, L. & Ciccarelli, F. D. Normal somatic mutations in cancer transformation. Cancer Cell 39, 125–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Weissman, I. L. Stem cells are units of natural selection for tissue formation, for germline development, and in cancer development. Proc. Natl Acad. Sci. USA 112, 8922–8928 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Gatenby, R. A. & Gillies, R. J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 8, 56–61 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Chang, K. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    Article  CAS  Google Scholar 

  20. Li, C. H., Haider, S. & Boutros, P. C. Age influences on the molecular presentation of tumours. Nat. Commun. 13, 208 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chatsirisupachai, K., Lesluyes, T., Paraoan, L., Van Loo, P. & de Magalhães, J. P. An integrative analysis of the age-associated multi-omic landscape across cancers. Nat. Commun. 12, 2345 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chatsirisupachai, K., Lagger, C. & de Magalhães, J. P. Age-associated differences in the cancer molecular landscape. Trends Cancer 8, 962–971 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Alexandrov, L. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013). Using the trinucleotide context of mutations, in this study, the authors develop mutational signatures that read out mutational processes owing to both intrinsic and extrinsic insults.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petljak, M. & Alexandrov, L. B. Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis 37, 531–540 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Steele, C. D., Pillay, N. & Alexandrov, L. B. An overview of mutational and copy number signatures in human cancer. J. Pathol. 257, 454–465 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ren, P., Zhang, J. & Vijg, J. Somatic mutations in aging and disease. GeroScience 46, 5171–5189 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012). In this study, the authors develop a duplex sequencing method to detect mutations with error rates below 10−7, through independent tagging and sequencing of each of the two strands of a DNA duplex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maslov, A. Y. et al. Single-molecule, quantitative detection of low-abundance somatic mutations by high-throughput sequencing. Sci. Adv. 8, eabm3259 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Goodell, M. A. & Rando, T. A. Stem cells and healthy aging. Science 350, 1199–1204 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Soto-Palma, C., Niedernhofer, L. J., Faulk, C. D. & Dong, X. Epigenetics, DNA damage, and aging. J. Clin. Invest. 132, e158446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Fowler, J. C. & Jones, P. H. Somatic mutation: what shapes the mutational landscape of normal epithelia? Cancer Discov. 12, 1642–1655 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016). In this study, the authors determine genome-wide mutational patterns in stem cells from the small intestine, colon and liver of humans across the human lifespan, showing linear mutation accumulation throughout life that is similar between these three tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Behjati, S. et al. Genome sequencing of normal cells reveals developmental lineages and mutational processes. Nature 513, 422–425 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pich, O., Reyes-Salazar, I., Gonzalez-Perez, A. & Lopez-Bigas, N. Discovering the drivers of clonal hematopoiesis. Nat. Commun. 13, 4267 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bernstein, N. et al. Analysis of somatic mutations in whole blood from 200,618 individuals identifies pervasive positive selection and novel drivers of clonal hematopoiesis. Nat. Genet. 56, 1147–1155 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. AlSaeed, M. J. et al. Assessing the performance of in silico tools and molecular dynamics simulations for predicting pharmacogenetic variant impact. Clin. Pharmacol. Ther. 116, 1082–1089 (2024).

    Article  CAS  PubMed  Google Scholar 

  41. Cheng, J. et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 381, eadg7492 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Ahmad, R. M. et al. AI-derived comparative assessment of the performance of pathogenicity prediction tools on missense variants of breast cancer genes. Hum. Genom. 18, 99 (2024).

    Article  CAS  Google Scholar 

  43. Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun, R., Hu, Z. & Curtis, C. Big bang tumor growth and clonal evolution. Cold Spring Harb. Perspect. Med. 8, a028381 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Coorens, T. H. H. et al. Reconstructing phylogenetic trees from genome-wide somatic mutations in clonal samples. Nat. Protoc. 19, 1866–1886 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Van Egeren, D. et al. Reconstructing the lineage histories and differentiation trajectories of individual cancer cells in myeloproliferative neoplasms. Cell Stem Cell 28, 514–523.e9 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mitchell, E. et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature 606, 343–350 (2022). This study reveals that haematopoiesis is maintained by a diverse (20,000 to 200,000) pool of HSCs in young people but by a much smaller number of stem cells in older individuals owing to mutation-driven positive selection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Spencer Chapman, M. et al. Lineage tracing of human development through somatic mutations. Nature 595, 85–90 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Martincorena, I. Somatic mutation and clonal expansions in human tissues. Genome Med. 11, 35 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fowler, J. C. et al. Selection of oncogenic mutant clones in normal human skin varies with body site. Cancer Discov. 11, 340–361 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Yokoyama, A. et al. Age-related remodelling of oesophageal epithelia by mutated cancer drivers. Nature 565, 312–317 (2019). In this study, the authors demonstrate the expansion of clones with mutations in driver genes with age in the oesophagus, with increased clonal expansion in individuals who smoked or consumed alcohol.

    Article  CAS  PubMed  Google Scholar 

  52. Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018). This study shows that clones driven by somatic mutations (often through positive selection for known cancer-associated mutations) increase with age and dominate the oesophageal epithelium by older ages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bolton, K. L. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat. Genet. 52, 1219–1226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hill, W. et al. Lung adenocarcinoma promotion by air pollutants. Nature 616, 159–167 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nanki, K. et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577, 254–259 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Kakiuchi, N. et al. Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577, 260–265 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Olafsson, S. et al. Somatic evolution in non-neoplastic IBD-affected colon. Cell 182, 672–684.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Higa, K. C. & DeGregori, J. Decoy fitness peaks, tumor suppression, and aging. Aging Cell 18, e12938 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cook, E. K., Luo, M. & Rauh, M. J. Clonal hematopoiesis and inflammation: partners in leukemogenesis and comorbidity. Exp. Hematol. 83, 85–94 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Bowman, R. L., Busque, L. & Levine, R. L. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22, 157–170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016). Using targeted error-corrected sequencing, this study shows that mutations in known drivers of clonal hematopoiesis are ubiquitous in humans by middle age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559, 400–404 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Desai, P. et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat. Med. 24, 1015–1023 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Weeks, L. D. et al. Prediction of risk for myeloid malignancy in clonal hematopoiesis. NEJM Evid. 2, evidoa2200310 (2023).

    Article  Google Scholar 

  66. Evans, M. A. & Walsh, K. Clonal hematopoiesis, somatic mosaicism, and age-associated disease. Physiol. Rev. 103, 649–716 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Miller, P. et al. Association of clonal hematopoiesis with chronic obstructive pulmonary disease. Blood 139, 357–368 (2021).

    Article  Google Scholar 

  68. van den Akker, E. B. et al. Uncompromised 10-year survival of oldest old carrying somatic mutations in DNMT3A and TET2. Blood 127, 1512–1515 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Stacey, S. N. et al. Genetics and epidemiology of mutational barcode-defined clonal hematopoiesis. Nat. Genet. 55, 2149–2159 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Matas, J. et al. Colorectal cancer is associated with the presence of cancer driver mutations in normal colon. Cancer Res. 82, 1492–1502 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Higgins, J. et al. Characterization of clonal dynamics after hematopoietic cell transplantation using ultra-sensitive duplex sequencing. Blood 134, 2483 (2019).

    Article  Google Scholar 

  72. Loeb, L. A. et al. Extensive subclonal mutational diversity in human colorectal cancer and its significance. Proc. Natl Acad. Sci. USA 116, 26863–26872 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schleicher, W. E., Hoag, B., De Dominici, M., DeGregori, J. & Pietras, E. M. CHIP: a clonal odyssey of the bone marrow niche. J. Clin. Invest. 134, e180068 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liao, M. et al. Aging-elevated inflammation promotes DNMT3A R878H-driven clonal hematopoiesis. Acta Pharm. Sin. B 12, 678–691 (2022).

    Article  CAS  PubMed  Google Scholar 

  75. Caiado, F. et al. Aging drives Tet2+/− clonal hematopoiesis via IL-1 signaling. Blood 141, 886–903 (2022). Using GEMMs, the authors of this study demonstrate that chimerism for Tet2 heterozygous mutation increases with age and that IL-1 treatment is necessary and sufficient for selection of Tet2 mutation in HSPCs.

    Article  PubMed Central  Google Scholar 

  76. Hong, T. et al. TET2 modulates spatial relocalization of heterochromatin in aged hematopoietic stem and progenitor cells. Nat. Aging 3, 1387–1400 (2023). This study has used GEMMs to show that Tet2 loss in old HSPCs results in altered histone methylation and chromatin distribution, preventing the ageing-dependent awakening of endogenous retroviral elements (and the consequent interferon response) and promoting age-related clonal expansion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McClatchy, J. et al. Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells. Nat. Commun. 14, 8102 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Khalatbari-Soltani, S., Si, Y., Dominguez, M., Scott, T. & Blyth, F. M. Worldwide cohort studies to support healthy ageing research: data availabilities and gaps. Ageing Res. Rev. 96, 102277 (2024).

    Article  PubMed  Google Scholar 

  80. Guarente, L., Sinclair, D. A. & Kroemer, G. Human trials exploring anti-aging medicines. Cell Metab. 36, 354–376 (2024).

    Article  CAS  PubMed  Google Scholar 

  81. McCracken, M. N. et al. Normal and neoplastic stem cells. Cold Spring Harb. Symp. Quant. Biol. 81, 1–9 (2016).

    Article  PubMed  Google Scholar 

  82. Corces-Zimmerman, M. R. & Majeti, R. Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis. Leukemia 28, 2276–2282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Velasco-Hernandez, T., Säwén, P., Bryder, D. & Cammenga, J. Potential pitfalls of the Mx1-cre system: implications for experimental modeling of normal and malignant hematopoiesis. Stem Cell Rep. 7, 11–18 (2016).

    Article  CAS  Google Scholar 

  84. Stifter, S. A. & Greter, M. STOP floxing around: specificity and leakiness of inducible Cre/loxP systems. Eur. J. Immunol. 50, 338–341 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Sadhu, S. et al. Radiation-induced macrophage senescence impairs resolution programs and drives cardiovascular inflammation. J. Immunol. 207, 1812–1823 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Schaue, D. et al. Radiation and inflammation. Semin. Radiat. Oncol. 25, 4–10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Higa, K. C. et al. Chronic interleukin-1 exposure triggers selection for Cebpa-knockout multipotent hematopoietic progenitors. J. Exp. Med. 218, e20200560 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Montecino-Rodriguez, E. & Dorshkind, K. Use of busulfan to condition mice for bone marrow transplantation. STAR Protoc. 1, 100159 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Henry, C. J. et al. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors. J. Clin. Invest. 125, 4666–4680 (2015). Using mouse models, the authors of this study show that the aged bone marrow microenvironment can promote selection for oncogenic events, such as mutations in Nras, which can be reversed by blocking inflammation.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Montecino-Rodriguez, E. et al. Lymphoid-biased hematopoietic stem cells are maintained with age and efficiently generate lymphoid progeny. Stem Cell Rep. 12, 584–596 (2019).

    Article  CAS  Google Scholar 

  91. George, B. M. et al. Antibody conditioning enables MHC-mismatched hematopoietic stem cell transplants and organ graft tolerance. Cell Stem Cell 25, 185–192.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, Y. et al. Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight 5, e135204 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001). The authors of this study have developed one of the first GEMMs, which enabled adenoviral-delivered Cre-mediated activation of an oncogenic mutation at its endogenous location in a controllable subset of cells in the lungs of mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jackson, E. L. et al. The differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 65, 10280–10288 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Zhuang, X. et al. Ageing limits stemness and tumorigenesis by reprogramming iron homeostasis. Nature 637, 184–194 (2025).

    Article  CAS  PubMed  Google Scholar 

  96. Parikh, N., Shuck, R. L., Gagea, M., Shen, L. & Donehower, L. A. Enhanced inflammation and attenuated tumor suppressor pathways are associated with oncogene-induced lung tumors in aged mice. Aging Cell 17, e12691 (2018).

    Article  PubMed  Google Scholar 

  97. Shuldiner, E. G. et al. Aging represses lung tumorigenesis and alters tumor suppression. Preprint at bioRxiv https://doi.org/10.1101/2024.05.28.596319 (2024).

  98. Samet, J. M. et al. Lung cancer in never smokers: clinical epidemiology and environmental risk factors. Clin. Cancer Res. 15, 5626–5645 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173, 595–610.e11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lee, J. J.-K. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857.e21 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Zaiss, A. K. et al. Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors. J. Virol. 76, 4580–4590 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yokoo, T. et al. Liver-targeted hydrodynamic gene therapy: recent advances in the technique. World J. Gastroenterol. 22, 8862–8868 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sanchez-Rivera, F. J. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 516, 428–431 (2014). This study combines CRISPR–Cas9-mediated inactivation of tumour suppressor genes together with activation of a conditional KrasG12D allele in mice to enable rapid determination of mutational cooperation in lung cancer development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chiou, S.-H. et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 29, 1576–1585 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Winters, I. P. et al. Multiplexed in vivo homology-directed repair and tumor barcoding enables parallel quantification of Kras variant oncogenicity. Nat. Commun. 8, 2053 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rogers, Z. N. et al. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat. Genet. 50, 483–486 (2018). In this study, the authors combine tumour barcoding and CRISPR–Cas9-mediated genome editing to evaluate the impact of disruption of 31 different tumour suppressor genes on lung carcinogenesis in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lannagan, T. R., Jackstadt, R., Leedham, S. J. & Sansom, O. J. Advances in colon cancer research: in vitro and animal models. Curr. Opin. Genet. Dev. 66, 50–56 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Marongiu, F. et al. Aging promotes neoplastic disease through effects on the tissue microenvironment. Aging 8, 3390–3399 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pasciu, D. et al. Aging is associated with increased clonogenic potential in rat liver in vivo. Aging Cell 5, 373–377 (2006). In this study, the authors show that the microenvironment of older rat livers is more conducive to clonal expansions of transplanted normal hepatocytes, indicating a less competitive tissue environment.

    Article  CAS  PubMed  Google Scholar 

  110. Pham-Danis, C. et al. Inflammation promotes aging-associated oncogenesis in the lung. Aging Cancer 6, 3–18 (2025).

    Article  PubMed  Google Scholar 

  111. Wong, P. K. et al. The promises and pitfalls of CRISPR-mediated base editing in stem cells. CRISPR J. 6, 196–215 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Katti, A. et al. Generation of precision preclinical cancer models using regulated in vivo base editing. Nat. Biotechnol. 42, 437–447 (2024).

    Article  CAS  PubMed  Google Scholar 

  113. Ely, Z. A. et al. A prime editor mouse to model a broad spectrum of somatic mutations in vivo. Nat. Biotechnol. 42, 424–436 (2024). In this study, the authors develop a Cre-inducible prime editor GEMM that allows the rapid induction of a wide range of mutations in vivo, as demonstrated for the lung and pancreas.

    Article  CAS  PubMed  Google Scholar 

  114. Bowling, S. et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 181, 1410–1422.e27 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Herms, A. et al. Self-sustaining long-term 3D epithelioid cultures reveal drivers of clonal expansion in esophageal epithelium. Nat. Genet. 56, 2158–2173 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nam, A. S., Chaligne, R. & Landau, D. A. Integrating genetic and non-genetic determinants of cancer evolution by single-cell multi-omics. Nat. Rev. Genet. 22, 3–18 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Izzo, F. et al. Mapping genotypes to chromatin accessibility profiles in single cells. Nature 629, 1149–1157 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Nam, A. S. et al. Somatic mutations and cell identity linked by genotyping of transcriptomes. Nature 571, 355–360 (2019).

    Article  Google Scholar 

  119. Beneyto-Calabuig, S. et al. Clonally resolved single-cell multi-omics identifies routes of cellular differentiation in acute myeloid leukemia. Cell Stem Cell 30, 706–721.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Izzo, F. et al. DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nat. Genet. 52, 378–387 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yuan, D. J. et al. Genotype-to-phenotype mapping of somatic clonal mosaicism via single-cell co-capture of DNA mutations and mRNA transcripts. Preprint at bioRxiv https://doi.org/10.1101/2024.05.22.595241 (2024).

  122. Jakobsen, N. A. et al. Selective advantage of mutant stem cells in human clonal hematopoiesis is associated with attenuated response to inflammation and aging. Cell Stem Cell 31, 1127–1144.e17 (2024). Through single-cell detection of both gene expression and mutation in human bone marrow, this study shows that DNMT3A and TET2 mutant clonal hematopoietic progenitor cells exhibit an attenuated inflammatory response relative to wild-type progenitor cells in the same sample.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nam, A. S. et al. Single-cell multi-omics of human clonal hematopoiesis reveals that DNMT3A R882 mutations perturb early progenitor states through selective hypomethylation. Nat. Genet. 54, 1514–1526 (2022). By capturing genotype, transcriptomes and methylomes in single progenitor cells from individuals with DNMT3A mutation-driven clonal hematopoiesis, this study reveals how DNMT3A mutation leads to hypomethylation at Polycomb repressive complex 2 (PRC2) targets and altered hematopoietic differentiation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).

    Article  CAS  PubMed  Google Scholar 

  125. Zhao, T. et al. Spatial genomics enables multi-modal study of clonal heterogeneity in tissues. Nature 601, 85–91 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Grzelak, C. A. et al. Elimination of fluorescent protein immunogenicity permits modeling of metastasis in immune-competent settings. Cancer Cell 40, 1–2 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Sankaran, V. G., Weissman, J. S. & Zon, L. I. Cellular barcoding to decipher clonal dynamics in disease. Science 378, eabm5874 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ecker, B. L. et al. Age-related changes in HAPLN1 increase lymphatic permeability and affect routes of melanoma metastasis. Cancer Discov. 9, 82–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. Chhabra, Y. et al. Sex-dependent effects in the aged melanoma tumor microenvironment influence invasion and resistance to targeted therapy. Cell 187, 6016–6034.e25 (2024). In this study, the authors show that the increased association of melanoma with age and male sex can in part be explained by changes in fibroblasts in older male individuals that promotes melanoma metastasis, including through secretion of bone morphogenetic protein 2 (BMP2).

    Article  CAS  PubMed  Google Scholar 

  131. Harper, E. I. et al. Another wrinkle with age: aged collagen and intra-peritoneal metastasis of ovarian cancer. Aging Cancer 3, 116–129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Lee, S. & Schmitt, C. A. The dynamic nature of senescence in cancer. Nat. Cell Biol. 21, 94–101 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Chen, H. A. et al. Senescence rewires microenvironment sensing to facilitate antitumor immunity. Cancer Discov. 13, 432–453 (2023).

    Article  CAS  PubMed  Google Scholar 

  135. Marin, I. et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 13, 410–431 (2023).

    Article  CAS  PubMed  Google Scholar 

  136. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Coppe, J. P., Desprez, P. Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ressler, S. et al. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5, 379–389 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Parikh, P. et al. Cellular senescence in the lung across the age spectrum. Am. J. Physiol. 316, L826–L842 (2019).

    CAS  Google Scholar 

  141. Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Demaria, M. et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31, 722–733 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184 (2016). In this study, the authors use the INK-ATTAC mouse to eliminate p16 (INK4A)-positive senescent cells in mice, leading to reduced ageing-related organ deterioration and delayed tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  145. Kaur, G., Muthumalage, T. & Rahman, I. Clearance of senescent cells reverts the cigarette smoke-induced lung senescence and airspace enlargement in p16-3MR mice. Aging Cell 22, e13850 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Prieto, L. I. et al. Senescent alveolar macrophages promote early-stage lung tumorigenesis. Cancer Cell 41, 1261–1275.e6 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Salam, R. et al. Cellular senescence in malignant cells promotes tumor progression in mouse and patient glioblastoma. Nat. Commun. 14, 441 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hori, N. et al. Shaving black fur uncovers hidden issues in p16-3MR mice. Preprint at bioRxiv https://doi.org/10.1101/2024.06.24.600181 (2024).

  149. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lelarge, V., Capelle, R., Oger, F., Mathieu, T. & Le Calvé, B. Senolytics: from pharmacological inhibitors to immunotherapies, a promising future for patients’ treatment. npj Aging 10, 12 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shahbandi, A. et al. BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death Differ. 27, 3097–3116 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Harrison, D. E. et al. Astaxanthin and meclizine extend lifespan in UM-HET3 male mice; fisetin, SG1002 (hydrogen sulfide donor), dimethyl fumarate, mycophenolic acid, and 4-phenylbutyrate do not significantly affect lifespan in either sex at the doses and schedules used. GeroScience 46, 795–816 (2024).

    Article  CAS  PubMed  Google Scholar 

  153. de Magalhães, J. P. Cellular senescence in normal physiology. Science 384, 1300–1301 (2024).

    Article  PubMed  Google Scholar 

  154. Rossiello, F., Jurk, D., Passos, J. F. & d’Adda di Fagagna, F. Telomere dysfunction in ageing and age-related diseases. Nat. Cell Biol. 24, 135–147 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Daniali, L. et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat. Commun. 4, 1597 (2013).

    Article  PubMed  Google Scholar 

  156. Mather, K. A., Jorm, A. F., Parslow, R. A. & Christensen, H. Is telomere length a biomarker of aging? A review. J. Gerontol. A 66A, 202–213 (2010).

    Article  Google Scholar 

  157. Chakravarti, D., LaBella, K. A. & DePinho, R. A. Telomeres: history, health, and hallmarks of aging. Cell 184, 306–322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. de Magalhaes, J. P. How ageing processes influence cancer. Nat. Rev. Cancer 13, 357–365 (2013).

    Article  PubMed  Google Scholar 

  159. Monninkhof, E. M., van der Schouw, Y. T. & Peeters, P. H. Early age at menopause and breast cancer: are leaner women more protected? A prospective analysis of the Dutch DOM cohort. Breast Cancer Res. Treat. 55, 285–291 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Dunneram, Y., Greenwood, D. C. & Cade, J. E. Diet, menopause and the risk of ovarian, endometrial and breast cancer. Proc. Nutr. Soc. 78, 438–448 (2019).

    Article  PubMed  Google Scholar 

  161. La Vecchia, C. Ovarian cancer: epidemiology and risk factors. Eur. J. Cancer Prev. 26, 55–62 (2017).

    Article  PubMed  Google Scholar 

  162. Vigneswaran, K. & Hamoda, H. Hormone replacement therapy — current recommendations. Best Pract. Res. Clin. Obstet. Gynaecol. 81, 8–21 (2022).

    Article  PubMed  Google Scholar 

  163. Cho, L. et al. Rethinking menopausal hormone therapy: for whom, what, when, and how long? Circulation 147, 597–610 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Abenhaim, H. A. et al. Menopausal hormone therapy formulation and breast cancer risk. Obstet. Gynecol. 139, 1103–1110 (2022).

    Article  PubMed  Google Scholar 

  165. Vinogradova, Y., Coupland, C. & Hippisley-Cox, J. Use of hormone replacement therapy and risk of breast cancer: nested case-control studies using the QResearch and CPRD databases. BMJ 371, m3873 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Ali, A. T., Al-Ani, O. & Al-Ani, F. Epidemiology and risk factors for ovarian cancer. Prz. Menopauzalny 22, 93–104 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Varma, T. R. Sex steroids and cancer in older women. Drugs Aging 2, 174–195 (1992).

    Article  CAS  PubMed  Google Scholar 

  168. Lee, J. J. et al. ERα-associated translocations underlie oncogene amplifications in breast cancer. Nature 618, 1024–1032 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Osborne, C. K., Hobbs, K. & Clark, G. M. Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Res. 45, 584–590 (1985).

    CAS  PubMed  Google Scholar 

  170. Shull, J. D., Dennison, K. L., Chack, A. C. & Trentham-Dietz, A. Rat models of 17β-estradiol-induced mammary cancer reveal novel insights into breast cancer etiology and prevention. Physiol. Genom. 50, 215–234 (2018).

    Article  CAS  Google Scholar 

  171. Canadas-Sousa, A., Santos, M., Leal, B., Medeiros, R. & Dias-Pereira, P. Estrogen receptors genotypes and canine mammary neoplasia. BMC Vet. Res. 15, 325 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Morch, L. S. et al. Contemporary hormonal contraception and the risk of breast cancer. N. Engl. J. Med. 377, 2228–2239 (2017).

    Article  PubMed  Google Scholar 

  173. Brawer, M. K. Androgen supplementation and prostate cancer risk: strategies for pretherapy assessment and monitoring. Rev. Urol. 5, S29–S33 (2003).

    PubMed  PubMed Central  Google Scholar 

  174. Song, W., Soni, V., Soni, S. & Khera, M. Testosterone inhibits the growth of prostate cancer xenografts in nude mice. BMC Cancer 17, 635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Cunningham, M. & Gilkeson, G. Estrogen receptors in immunity and autoimmunity. Clin. Rev. Allergy Immunol. 40, 66–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  176. Zhang, Y. et al. Hormonal therapies up-regulate MANF and overcome female susceptibility to immune checkpoint inhibitor myocarditis. Sci. Transl. Med. 14, eabo1981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Porter, V. R., Greendale, G. A., Schocken, M., Zhu, X. & Effros, R. B. Immune effects of hormone replacement therapy in post-menopausal women. Exp. Gerontol. 36, 311–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  178. Vrachnis, N. et al. Effects of hormone therapy and flavonoids capable on reversal of menopausal immune senescence. Nutrients 13, 2363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hough, H. J., Failla, M. L. & Ludwig, D. A. Active lifestyle offsets HRT-induced suppression of T cell reactivity to mitogens. Maturitas 33, 211–218 (1999).

    Article  CAS  PubMed  Google Scholar 

  180. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Day, M. J. Ageing, immunosenescence and inflammageing in the dog and cat. J. Comp. Pathol. 142, S60–S69 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Tabula Muris, C. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020). In this study, these investigators create a single-cell transcriptomic atlas across the lifespan of mice from 23 anatomical sites, which includes detailed transcriptomic information on senescence, genomic instability, immunity and other systems.

    Article  Google Scholar 

  183. Wu, R., Sun, F., Zhang, W., Ren, J. & Liu, G. H. Targeting aging and age-related diseases with vaccines. Nat. Aging 4, 464–482 (2024).

    Article  PubMed  Google Scholar 

  184. Coe, C. L., Lubach, G. R. & Kinnard, J. Immune senescence in old and very old rhesus monkeys: reduced antibody response to influenza vaccination. Age 34, 1169–1177 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pang, W. W., Schrier, S. L. & Weissman, I. L. Age-associated changes in human hematopoietic stem cells. Semin. Hematol. 54, 39–42 (2017).

    Article  PubMed  Google Scholar 

  186. Song, Y. et al. T-cell immunoglobulin and ITIM domain contributes to CD8+ T-cell immunosenescence. Aging Cell 17, e12716 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Hamilton, J. A. G. et al. Interleukin-37 improves T-cell-mediated immunity and chimeric antigen receptor T-cell therapy in aged backgrounds. Aging Cell 20, e13309 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Erbe, R. et al. Evaluating the impact of age on immune checkpoint therapy biomarkers. Cell Rep. 36, 109599 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Kugel, C. H. III et al. Age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin. Cancer Res. 24, 5347–5356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Harder, O. E., Martinez, M. & Niewiesk, S. Nonsteroidal anti-inflammatory drugs restore immune function to respiratory syncytial virus in geriatric cotton rats (Sigmodon hispidus). Virology 563, 28–37 (2021).

    Article  CAS  PubMed  Google Scholar 

  191. Fielder, E. et al. Anti-inflammatory treatment rescues memory deficits during aging in nfkb1−/− mice. Aging Cell 19, e13188 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Selvarani, R., Mohammed, S. & Richardson, A. Effect of rapamycin on aging and age-related diseases — past and future. Geroscience 43, 1135–1158 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Hodge, B. A. et al. Dietary restriction and the transcription factor clock delay eye aging to extend lifespan in Drosophila melanogaster. Nat. Commun. 13, 3156 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Papp, G. et al. Regular exercise may restore certain age-related alterations of adaptive immunity and rebalance immune regulation. Front. Immunol. 12, 639308 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Bastiaannet, E. et al. Immunotherapy and targeted therapies in older patients with advanced melanoma; Young International Society of Geriatric Oncology review paper. J. Geriatr. Oncol. 10, 389–397 (2019).

    Article  PubMed  Google Scholar 

  196. Kolawole, O. R. & Kashfi, K. NSAIDs and cancer resolution: new paradigms beyond cyclooxygenase. Int. J. Mol. Sci. 23, 1432 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Zhao, X., Xu, Z. & Li, H. NSAIDs use and reduced metastasis in cancer patients: results from a meta-analysis. Sci. Rep. 7, 1875 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Choy, E. H. et al. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 16, 335–345 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Raskova, M. et al. The role of IL-6 in cancer cell invasiveness and metastasis — overview and therapeutic opportunities. Cells 11, 3698 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 33, 127–148 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. Fisher, D. T., Appenheimer, M. M. & Evans, S. S. The two faces of IL-6 in the tumor microenvironment. Semin. Immunol. 26, 38–47 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Long, K. B. et al. IL6 receptor blockade enhances chemotherapy efficacy in pancreatic ductal adenocarcinoma. Mol. Cancer Ther. 16, 1898–1908 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sheppard, M., Laskou, F., Stapleton, P. P., Hadavi, S. & Dasgupta, B. Tocilizumab (Actemra). Hum. Vaccin. Immunother. 13, 1972–1988 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Widjaja, A. A. et al. Inhibition of IL-11 signalling extends mammalian healthspan and lifespan. Nature 632, 157–165 (2024). This study demonstrates that deletion of IL-11α, loss of the IL-11 receptor α chain, or treatment with an IL-11 neutralizing antibody protects against metabolic decline, multi-morbidity and frailty and extends the lifespan of aged mice by 25%.

    Article  Google Scholar 

  205. Idris, A., Ghazali, N. B. & Koh, D. Interleukin 1β — a potential salivary biomarker for cancer progression? Biomark. Cancer 7, 25–29 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dayer, J. M., Oliviero, F. & Punzi, L. A brief history of IL-1 and IL-1 Ra in rheumatology. Front. Pharmacol. 8, 293 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Neogi, T. Interleukin-1 antagonism in acute gout: is targeting a single cytokine the answer? Arthritis Rheum. 62, 2845–2849 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Buckley, L. F. & Abbate, A. Interleukin-1 blockade in cardiovascular diseases: a clinical update. Eur. Heart J. 39, 2063–2069 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Litmanovich, A., Khazim, K. & Cohen, I. The role of interleukin-1 in the pathogenesis of cancer and its potential as a therapeutic target in clinical practice. Oncol. Ther. 6, 109–127 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Ridker, P. M. et al. Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390, 1833–1842 (2017).

    Article  CAS  PubMed  Google Scholar 

  211. Horai, R. et al. Production of mice deficient in genes for interleukin (IL)-1α, IL-1β, IL-1α/β, and IL-1 receptor antagonist shows that IL-1β is crucial in turpentine-induced fever development and glucocorticoid secretion. J. Exp. Med. 187, 1463–1475 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Lonnemann, N. et al. The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 117, 32145–32154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lunding, L. P., Skouras, D. B., Vock, C., Dinarello, C. A. & Wegmann, M. The NLRP3 inflammasome inhibitor, OLT1177((R)), ameliorates experimental allergic asthma in mice. Allergy 77, 1035–1038 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Mercogliano, M. F., Bruni, S., Mauro, F., Elizalde, P. V. & Schillaci, R. Harnessing tumor necrosis factor alpha to achieve effective cancer immunotherapy. Cancers 13, 564 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wang, X. & Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin. 29, 1275–1288 (2008).

    Article  PubMed  Google Scholar 

  216. Evangelatos, G., Bamias, G., Kitas, G. D., Kollias, G. & Sfikakis, P. P. The second decade of anti-TNF-a therapy in clinical practice: new lessons and future directions in the COVID-19 era. Rheumatol. Int. 42, 1493–1511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Charles, K. A. et al. The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest. 119, 3011–3023 (2009). This study demonstrates in mice and humans that TNF drives IL-17 production from CD4+ T cells, which increases myeloid cell recruitment to the TME.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Cavalli, G. & Dinarello, C. A. Suppression of inflammation and acquired immunity by IL-37. Immunol. Rev. 281, 179–190 (2018).

    Article  CAS  PubMed  Google Scholar 

  219. Ballak, D. B. et al. Short-term interleukin-37 treatment improves vascular endothelial function, endurance exercise capacity, and whole-body glucose metabolism in old mice. Aging Cell 19, e13074 (2020). This study demonstrates that treating aged mice with recombinant human IL-37 increases vascular endothelial function, augments exercise endurance capacity, improves whole-body insulin sensitivity, increases glucose tolerance and promotes increased nitric oxide and fatty acid metabolism.

    Article  CAS  PubMed  Google Scholar 

  220. Cao, J. et al. The role of IL-36 and 37 in hepatocellular carcinoma. Front. Immunol. 15, 1281121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lin, L. et al. Interleukin-37 expression and its potential role in oral leukoplakia and oral squamous cell carcinoma. Sci. Rep. 6, 26757 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wang, X. et al. IL-37bΔ1-45 suppresses the migration and invasion of endometrial cancer cells by targeting the Rac1/NF-κB/MMP2 signal pathway. Lab. Invest. 101, 760–774 (2021).

    Article  CAS  PubMed  Google Scholar 

  223. Gu, M. et al. Novel insights into IL-37: an anti-inflammatory cytokine with emerging roles in anti-cancer process. Front. Immunol. 14, 1278521 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Lin, T. C. RUNX2 and cancer. Int. J. Mol. Sci. 24, 7001 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Salvestrini, V., Sell, C. & Lorenzini, A. Obesity may accelerate the aging process. Front. Endocrinol. 10, 266 (2019).

    Article  Google Scholar 

  226. Horvath, S. et al. Obesity accelerates epigenetic aging of human liver. Proc. Natl Acad. Sci. USA 111, 15538–15543 (2014). Using a DNA methylation pattern-based epigenetic clock, this paper shows that obesity increases the epigenetic age of the liver by 3.3 years for every 10 units of body mass index and is not reversible by bariatric surgery-induced weight loss.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Villareal, D. T. Editorial: Obesity and accelerated aging. J. Nutr. Health Aging 27, 312–313 (2023).

    Article  CAS  PubMed  Google Scholar 

  228. Petrelli, F. et al. Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw. Open 4, e213520 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Pati, S., Irfan, W., Jameel, A., Ahmed, S. & Shahid, R. K. Obesity and cancer: a current overview of epidemiology, pathogenesis, outcomes, and management. Cancers 15, 485 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kirby, J. B., Liang, L., Chen, H. J. & Wang, Y. Race, place, and obesity: the complex relationships among community racial/ethnic composition, individual race/ethnicity, and obesity in the United States. Am. J. Public Health 102, 1572–1578 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Izquierdo-Torres, E., Hernandez-Oliveras, A., Lozano-Arriaga, D. & Zarain-Herzberg, A. Obesity, the other pandemic: linking diet and carcinogenesis by epigenetic mechanisms. J. Nutr. Biochem. 108, 109092 (2022).

    Article  CAS  PubMed  Google Scholar 

  232. Boutari, C. & Mantzoros, C. S. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 133, 155217 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Recalde, M. et al. Longitudinal body mass index and cancer risk: a cohort study of 2.6 million Catalan adults. Nat. Commun. 14, 3816 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Akimoto, N. et al. Rising incidence of early-onset colorectal cancer — a call to action. Nat. Rev. Clin. Oncol. 18, 230–243 (2021).

    Article  PubMed  Google Scholar 

  235. Li, D. et al. Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. JAMA 301, 2553–2562 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Koroukian, S. M., Dong, W. & Berger, N. A. Changes in age distribution of obesity-associated cancers. JAMA Netw. Open 2, e199261 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Horowitz, N. S. & Wright, A. A. Impact of obesity on chemotherapy management and outcomes in women with gynecologic malignancies. Gynecol. Oncol. 138, 201–206 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  238. Mota, B. et al. Effects of high-fat and high-fat high-sugar diets in the anxiety, learning and memory, and in the hippocampus neurogenesis and neuroinflammation of aged rats. Nutrients 15, 1370 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Stott, N. L. & Marino, J. S. High fat rodent models of type 2 diabetes: from rodent to human. Nutrients 12, 3650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Suriano, F. et al. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome 9, 147 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Etzel, L. et al. Obesity and accelerated epigenetic aging in a high-risk cohort of children. Sci. Rep. 12, 8328 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Lee, M. et al. Obesity-induced galectin-9 is a therapeutic target in B-cell acute lymphoblastic leukemia. Nat. Commun. 13, 1157 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Zhang, B. T., Xu, J. Y., Wang, W., Zeng, Y. & Jiang, J. Obesity and cancer: mouse models used in studies. Front. Oncol. 13, 1125178 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lee, M. et al. Adipocyte-mediated epigenomic instability in human T-ALL cells is cytotoxic and phenocopied by epigenetic-modifying drugs. Front. Cell Dev. Biol. 10, 909557 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Wijesinghe, S. N., Nicholson, T., Tsintzas, K. & Jones, S. W. Involvements of long noncoding RNAs in obesity-associated inflammatory diseases. Obes. Rev. 22, e13156 (2021).

    Article  CAS  PubMed  Google Scholar 

  246. Wagner, V. et al. Characterizing expression changes in noncoding RNAs during aging and heterochronic parabiosis across mouse tissues. Nat. Biotechnol. 42, 109–118 (2024).

    Article  CAS  PubMed  Google Scholar 

  247. Deng, T., Lyon, C. J., Bergin, S., Caligiuri, M. A. & Hsueh, W. A. Obesity, inflammation, and cancer. Annu. Rev. Pathol. 11, 421–449 (2016).

    Article  CAS  PubMed  Google Scholar 

  248. Ringel, A. E. et al. Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell 183, 1848–1866.e26 (2020). This paper shows that high-fat diets impair the function of CD8+ T cells in the TME of mice, in part owing to increased fat uptake by tumour cells, which reduces β-oxidation in T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Pasupuleti, S. K. et al. Obesity-induced inflammation exacerbates clonal hematopoiesis. J. Clin. Invest. 133, e163968 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Palmer, A. K. & Jensen, M. D. Metabolic changes in aging humans: current evidence and therapeutic strategies. J. Clin. Invest. 132, e158451 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Bindu, S., Mazumder, S. & Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem. Pharmacol. 180, 114147 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  CAS  PubMed  Google Scholar 

  253. Danilov, A. et al. Influence of non-steroidal anti-inflammatory drugs on Drosophila melanogaster longevity. Oncotarget 6, 19428–19444 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  254. Rohwer, N. et al. Effects of chronic low-dose aspirin treatment on tumor prevention in three mouse models of intestinal tumorigenesis. Cancer Med. 9, 2535–2550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Hamoya, T. et al. Effects of NSAIDs on the risk factors of colorectal cancer: a mini review. Genes Environ. 38, 6 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Zhang, T. et al. Association between nonsteroidal anti-inflammatory drugs use and risk of central nervous system tumors: a dose-response meta analysis. Oncotarget 8, 102486–102498 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Wong, R. S. Y. Role of nonsteroidal anti-inflammatory drugs (NSAIDs) in cancer prevention and cancer promotion. Adv. Pharmacol. Sci. 2019, 3418975 (2019).

    PubMed  PubMed Central  Google Scholar 

  258. Skriver, C. et al. Long-term aspirin use and cancer risk: a 20-year cohort study. J. Natl Cancer Inst. 116, 530–538 (2024).

    Article  CAS  PubMed  Google Scholar 

  259. Oh, T. K. & Song, I. A. Long-term aspirin use and 5-year survival in healthy adults: a population-based cohort study in South Korea. Yonsei Med. J. 61, 997–1003 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. McNeil, J. J. et al. Effect of aspirin on cancer incidence and mortality in older adults. J. Natl Cancer Inst. 113, 258–265 (2021).

    Article  CAS  PubMed  Google Scholar 

  261. Elwood, P. et al. Aspirin and cancer treatment: systematic reviews and meta-analyses of evidence: for and against. Br. J. Cancer 130, 3–8 (2024).

    Article  PubMed  Google Scholar 

  262. Marcum, Z. A. & Hanlon, J. T. Recognizing the risks of chronic nonsteroidal anti-inflammatory drug use in older adults. Ann. Longterm Care 18, 24–27 (2010).

    PubMed  PubMed Central  Google Scholar 

  263. Davis, A. & Robson, J. The dangers of NSAIDs: look both ways. Br. J. Gen. Pract. 66, 172–173 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Laurentie, J. et al. Comparative genome analysis of Enterococcus cecorum reveals intercontinental spread of a lineage of clinical poultry isolates. mSphere 8, e0049522 (2023).

    Article  PubMed  Google Scholar 

  265. Yang, X. et al. Aspirin prevents colorectal cancer by regulating the abundance of Enterococcus cecorum and TIGIT+ Treg cells. Sci. Rep. 14, 13592 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Holmes, M. D. et al. Aspirin intake and survival after breast cancer. J. Clin. Oncol. 28, 1467–1472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Ausina, P. et al. Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis. Sci. Rep. 10, 19617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Zhang, Y. et al. Aspirin counteracts cancer stem cell features, desmoplasia and gemcitabine resistance in pancreatic cancer. Oncotarget 6, 9999–10015 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  269. Xu, X. F. et al. Aspirin ameliorates pancreatic inflammation and fibrosis by inhibiting COX-2 expression in experimental chronic pancreatitis. J. Inflamm. Res. 15, 4737–4749 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  270. Cooke, N. M., Spillane, C. D., Sheils, O., O’Leary, J. & Kenny, D. Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BMC Cancer 15, 627 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Huang, Y. et al. Antitumor and antiangiogenic effects of aspirin-PC in ovarian cancer. Mol. Cancer Ther. 15, 2894–2904 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Xiao, X., Zeng, S., Li, Y., Li, L. & Zhang, J. Aspirin suppressed PD-L1 expression through suppressing KAT5 and subsequently inhibited PD-1 and PD-L1 signaling to attenuate OC development. J. Oncol. 2022, 4664651 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Lee, D. J. W., Hodzic Kuerec, A. & Maier, A. B. Targeting ageing with rapamycin and its derivatives in humans: a systematic review. Lancet Healthy Longev. 5, e152–e162 (2024).

    Article  PubMed  Google Scholar 

  274. Bitto, A. et al. Transient rapamycin treatment can increase lifespan and healthspan in middle-aged mice. eLife 5, e16351 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Tardif, S. et al. Testing efficacy of administration of the antiaging drug rapamycin in a nonhuman primate, the common marmoset. J. Gerontol. A 70, 577–587 (2015).

    Article  CAS  Google Scholar 

  277. Ross, C. et al. Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus). Aging 7, 964–973 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Jefferies, H. B. et al. Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J. 16, 3693–3704 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Ravikumar, B., Duden, R. & Rubinsztein, D. C. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11, 1107–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  281. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  282. Noda, T. & Ohsumi, Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J. Biol. Chem. 273, 3963–3966 (1998).

    Article  CAS  PubMed  Google Scholar 

  283. Cao, Y. et al. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J. Biol. Chem. 281, 20483–20493 (2006).

    Article  CAS  PubMed  Google Scholar 

  284. Blagosklonny, M. V. Cancer prevention with rapamycin. Oncotarget 14, 342–350 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Stamatakis, E. et al. Vigorous intermittent lifestyle physical activity and cancer incidence among nonexercising adults: the UK Biobank accelerometry study. JAMA Oncol. 9, 1255–1259 (2023). Using a sample of more than 22,000 self-reported cases, this study demonstrates that vigorous intermittent physical activity lowers the risk of developing cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  286. Vainshelboim, B. et al. Cardiorespiratory fitness and cancer incidence in men. Ann. Epidemiol. 27, 442–447 (2017).

    Article  PubMed  Google Scholar 

  287. Gouez, M. et al. Combined effects of exercise and immuno-chemotherapy treatments on tumor growth in MC38 colorectal cancer-bearing mice. Front. Immunol. 15, 1368550 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Rundqvist, H. et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. eLife 9, e59996 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Plaza-Diaz, J. et al. Impact of physical activity and exercise on the epigenome in skeletal muscle and effects on systemic metabolism. Biomedicines 10, 126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Hastings, M. H. et al. Animal models of exercise from rodents to pythons. Cir. Res. 130, 1994–2014 (2022).

    Article  CAS  Google Scholar 

  291. Heilbronn, L. K. & Ravussin, E. Calorie restriction and aging: review of the literature and implications for studies in humans. Am. J. Clin. Nutr. 78, 361–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  292. Ataman, M. et al. Calorie restriction and rapamycin distinctly mitigate aging-associated protein phosphorylation changes in mouse muscles. Commun. Biol. 7, 974 (2024). In this study, the phosphoproteome of caloric restriction versus rapamycin was compared in various muscles of adult and aged mice, showing that caloric restriction and rapamycin activate similar pathways, albeit in different muscles, with rapamycin showing more uniform changes across multiple muscle groups.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Pifferi, F. et al. Promoting healthspan and lifespan with caloric restriction in primates. Commun. Biol. 2, 107 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Nencioni, A., Caffa, I., Cortellino, S. & Longo, V. D. Fasting and cancer: molecular mechanisms and clinical application. Nat. Rev. Cancer 18, 707–719 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Xiao, Y. L., Gong, Y., Qi, Y. J., Shao, Z. M. & Jiang, Y. Z. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 9, 59 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Navas, L. E. & Carnero, A. NAD+ metabolism, stemness, the immune response, and cancer. Signal Transduct. Target. Ther. 6, 2 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Mottahedeh, J. et al. CD38 is methylated in prostate cancer and regulates extracellular NAD+. Cancer Metab. 6, 13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Hubert, S. et al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2–P2X7 pathway. J. Exp. Med. 207, 2561–2568 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Mills, K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016). In this study, the authors demonstrate that supplementation of nicotinamide mononucleotide for 1 year in the chow of mice leads to the accumulation of NAD+ in various tissues and mitigates ageing-associated weight gain, enhances energy metabolism, increases physical activity, improves insulin sensitivity, improves plasma lipid profiles, and ameliorates eye-related pathologies, without inducing any signs of toxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Adriouch, S. et al. NAD+ released during inflammation participates in T cell homeostasis by inducing ART2-mediated death of naive T cells in vivo. J. Immunol. 179, 186–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  301. Moreschi, I., Bruzzone, S., Melone, L., De Flora, A. & Zocchi, E. NAADP+ synthesis from cADPRP and nicotinic acid by ADP-ribosyl cyclases. Biochem. Biophys. Res. Commun. 345, 573–580 (2006).

    Article  CAS  PubMed  Google Scholar 

  302. Van Gool, F. et al. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner. Nat. Med. 15, 206–210 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Curran, C. S. et al. Nicotinamide antagonizes lipopolysaccharide-induced hypoxic cell signals in human macrophages. J. Immunol. 211, 261–273 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. McReynolds, M. R., Chellappa, K. & Baur, J. A. Age-related NAD+ decline. Exp. Gerontol. 134, 110888 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Yang, F. et al. Association of human whole blood NAD+ contents with aging. Front. Endocrinol. 13, 829658 (2022).

    Article  Google Scholar 

  306. Iqbal, T. & Nakagawa, T. The therapeutic perspective of NAD+ precursors in age-related diseases. Biochem. Biophys. Res. Commun. 702, 149590 (2024).

    Article  CAS  PubMed  Google Scholar 

  307. Ciazynska, M. et al. The incidence and clinical analysis of non-melanoma skin cancer. Sci. Rep. 11, 4337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Nikas, I. P., Paschou, S. A. & Ryu, H. S. The role of nicotinamide in cancer chemoprevention and therapy. Biomolecules 10, 477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Aliramaji, A. et al. Age distribution types of bladder cancers and their relationship with opium consumption and smoking. Casp. J. Intern. Med. 6, 82–86 (2015).

    Google Scholar 

  310. Huang, J. et al. Updated disease distributions, risk factors, and trends of laryngeal cancer: a global analysis of cancer registries. Int. J. Surg. 110, 810–819 (2024).

    Article  PubMed  Google Scholar 

  311. Kouka, M., Hermanns, I., Schlattmann, P. & Guntinas-Lichius, O. The association between patient’s age and head and neck cancer treatment decision — a population-based diagnoses-related group-based nationwide study in Germany. Cancers 15, 1780 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  312. Kim, S. K. et al. Identification of gene expression signature modulated by nicotinamide in a mouse bladder cancer model. PLoS ONE 6, e26131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Bernier, J. et al. ARCON: accelerated radiotherapy with carbogen and nicotinamide in non small cell lung cancer: a phase I/II study by the EORTC. Radiother. Oncol. 52, 149–156 (1999).

    Article  CAS  PubMed  Google Scholar 

  314. Al-Gayyar, M. M. H., Bagalagel, A., Noor, A. O., Almasri, D. M. & Diri, R. The therapeutic effects of nicotinamide in hepatocellular carcinoma through blocking IGF-1 and effecting the balance between Nrf2 and PKB. Biomed. Pharmacother. 112, 108653 (2019).

    Article  CAS  PubMed  Google Scholar 

  315. Rakieten, N. et al. Modification of renal tumorigenic effect of streptozotocin by nicotinamide: spontaneous reversibility of streptozotocin diabetes. Proc. Soc. Exp. Biol. Med. 151, 356–361 (1976).

    Article  CAS  PubMed  Google Scholar 

  316. Bartleman, A. P., Jacobs, R. & Kirkland, J. B. Niacin supplementation decreases the incidence of alkylation-induced nonlymphocytic leukemia in Long-Evans rats. Nutr. Cancer 60, 251–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  317. DeGregori, J. The special issue on cancer and evolution: lessons learned. Evol. Appl. 13, 1784–1790 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  318. Tammela, T. & Sage, J. Investigating tumor heterogeneity in mouse models. Annu. Rev. Cancer Biol. 4, 99–119 (2020).

    Article  PubMed  Google Scholar 

  319. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022). In this study, sequencing of intestinal crypts across 16 mammalian species has revealed that somatic mutagenesis was dominated by seemingly endogenous mutational processes in all species, somatic mutation rates inversely correlated with species lifespan, and the somatic mutation burden at the end of life for all species varied only by a factor of 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Crimmins, E. M. Recent trends and increasing differences in life expectancy present opportunities for multidisciplinary research on aging. Nat. Aging 1, 12–13 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  321. Palliyaguru, D. L. et al. Study of longitudinal aging in mice: presentation of experimental techniques. J. Gerontol. A 76, 552–560 (2021).

    Article  Google Scholar 

  322. Threadgill, D. W., Miller, D. R., Churchill, G. A. & de Villena, F. P. The collaborative cross: a recombinant inbred mouse population for the systems genetic era. ILAR J. 52, 24–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  323. Jo, M. K. et al. Effect of aging on the formation and growth of colonic epithelial organoids by changes in cell cycle arrest through TGF-β-Smad3 signaling. Inflamm. Regen. 43, 35 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Tao, Y. et al. Aging-like spontaneous epigenetic silencing facilitates Wnt activation, stemness, and Braf(V600E)-induced tumorigenesis. Cancer Cell 35, 315–328.e6 (2019). Using mouse colon-derived organoids, this study demonstrates that promoter hypermethylation spontaneously arises with age in colon cells, that hypermethylation-mediated silencing of genes activates WNT signalling inducing differentiation defects, and that these changes increase BrafV600E-mediated transformation of colon cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Hason, M. & Bartůněk, P. Zebrafish models of cancer — new insights on modeling human cancer in a non-mammalian vertebrate. Genes 10, 935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Saito, Y., Muramatsu, T. & Saito, H. Establishment and long-term culture of organoids derived from human biliary tract carcinoma. STAR Protoc. 1, 100009 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  327. Anisimov, V. N. et al. Rapamycin extends maximal lifespan in cancer-prone mice. Am. J. Pathol. 176, 2092–2097 (2010). In this study, the investigators demonstrate that rapamycin prevents age-related weight gain, decreases the rate of ageing, increases lifespan and suppresses carcinogenesis in transgenic human epidermal growth factor receptor 2 (HER2)/neu cancer-prone mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Obimba, D. C., Esteva, C., Nzouatcham Tsicheu, E. N. & Wong, R. Effectiveness of artificial intelligence technologies in cancer treatment for older adults: a systematic review. J. Clin. Med. 13, 4979 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Brown, W. T. Progeria: a human-disease model of accelerated aging. Am. J. Clin. Nutr. 55, 1222S–1224S (1992).

    Article  CAS  PubMed  Google Scholar 

  330. Goto, M., Miller, R. W., Ishikawa, Y. & Sugano, H. Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol. Biomark. Prev. 5, 239–246 (1996).

    CAS  Google Scholar 

  331. Gordon, L. B. et al. Association of lonafarnib treatment vs no treatment with mortality rate in patients with Hutchinson-Gilford progeria syndrome. JAMA 319, 1687–1695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Yoo, J. E. et al. Association between changes in alcohol consumption and cancer risk. JAMA Netw. Open 5, e2228544 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  333. Weeks, L. D. & Ebert, B. L. Causes and consequences of clonal hematopoiesis. Blood 142, 2235–2246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Bell, C. F. & Leeper, N. J. Killing the two deadly birds of atherosclerosis and cancer with one stone. Nat. Cardiovasc. Res. 1, 403–404 (2022).

    Article  PubMed  Google Scholar 

  335. Blasco, M. T., Espuny, I. & Gomis, R. R. Ecology and evolution of dormant metastasis. Trends Cancer 8, 570–582 (2022).

    Article  CAS  PubMed  Google Scholar 

  336. Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer 1, 672–680 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Fane, M. E. et al. Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature 606, 396–405 (2022). In this study, the authors demonstrate that the aged lung microenvironment facilitates a permissive niche for efficient outgrowth of dormant disseminated melanoma cells, in contrast to the aged skin, which suppresses melanoma growth while promoting dissemination.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Jenkins, E. C. et al. Age alters the oncogenic trajectory toward luminal mammary tumors that activate unfolded proteins responses. Aging Cell 21, e13665 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Turrell, F. K. et al. Age-associated microenvironmental changes highlight the role of PDGF-C in ER+ breast cancer metastatic relapse. Nat. Cancer 4, 468–484 (2023). This study shows that high expression of PDGFC in the microenvironment of ageing or fibrotic lungs promotes the expansion of dormant DCCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Ghosh, T. S., Shanahan, F. & O’Toole, P. W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19, 565–584 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  341. Binyamin, D. et al. The aging mouse microbiome has obesogenic characteristics. Genome Med. 12, 87 (2020). In this study, the authors analyse faecal and blood samples from adult and aged mice, demonstrating that transplantation of aged, but not adult, microbiomes into young germ-free mice induced metabolic defects with increased feeding, elevated fat body mass, higher respiratory quotient and higher circulating insulin levels.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Kandalai, S., Li, H., Zhang, N., Peng, H. & Zheng, Q. The human microbiome and cancer: a diagnostic and therapeutic perspective. Cancer Biol. Ther. 24, 2240084 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  343. Iyer, N. Methods in microbiome research. Lab Anim. 45, 323–326 (2016).

    Article  Google Scholar 

  344. Parhi, L. et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat. Commun. 11, 3259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. Wroblewski, L. E., Peek, R. M. Jr. & Wilson, K. T. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev. 23, 713–739 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Liu, B. N., Liu, X. T., Liang, Z. H. & Wang, J. H. Gut microbiota in obesity. World J. Gastroenterol. 27, 3837–3850 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Negi, S., Das, D. K., Pahari, S., Nadeem, S. & Agrewala, J. N. Potential role of gut microbiota in induction and regulation of innate immune memory. Front. Immunol. 10, 2441 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. De Dominici for his careful review of this manuscript. The authors also thank M. Tipton and A. A. Henry for the original figures they created for this work. Funding to support this article was provided by the National Institutes of Health (NIH) grants R01AG066544 (J.D.), U01CA271830 (J.D.), NIH grant R01AI172452 (C.J.H.), the Courtenay C. and Lucy Patten Davis Endowed Chair in Lung Cancer Research (J.D.), and the David F. and Margaret Turley Grohne Endowed Chair in Translational Cancer Research (C.J.H.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Curtis J. Henry or James DeGregori.

Ethics declarations

Competing interests

J.D. is the editor in chief of the journal Aging And Cancer and a member of the scientific advisory boards for the International Center for Aging and Cancer (Hainan, China) and for the biotech company Mitotherapeutix. C.J.H. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks João Pedro de Magalhães and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Base editing

A derivative of CRISPR technology that allows for the generation of precise single-nucleotide variants. This gene-editing technology specifically makes single base substitutions (for example, converting an adenine (A) to a guanine (G) nucleotide).

Cellular senescence

A process whereby cells can permanently exit the cell cycle but remain viable in response to damage or oncogenic stress; can be tumour-suppressive or tumour-promoting.

Chemopreventative agent

The use of natural, biological or synthetic agents to inhibit cancer initiation or progression.

Drift

The random distribution of alleles over generations.

Epigenetic changes

Heritable changes without alteration of the DNA sequence, such as through altered methylation of DNA or modifications of chromatin-associated histones.

Fitness

The relative ability of a (epi)genotype to contribute to subsequent generations.

Glutaminolysis

The metabolic utilization of glutamine to produce ATP, lactate, glutamate, α-ketoglutarate and ammonia in cells.

Healthspan

The number of years alive without debilitating pathologies.

Hormone replacement therapy

(HRT). Treatment involving the replacement of hormones that decline with age, such as in women post-menopause.

Hypogonadism

A condition wherein the gonads produce little or no hormones.

Immunosenescence

Reduced or altered functionality of the immune system in older ages.

Lifespan

The number of years an organism lives.

Microbiome

The community of microorganisms living within a tissue.

Mutations

Changes to the DNA sequence, from single-nucleotide variants to chromosomal rearrangements.

Organoid

A 3D tissue culture model of an organ made from stem cells or tumour cells.

Pentose phosphate pathway

A cellular metabolic pathway that primarily produces NADPH and ribose-5-phosphate, a precursor for nucleotide synthesis.

Prime editing

A derivative of CRISPR technology that allows for the generation of precise single-nucleotide variants. Compared to base editing, this gene-editing technology enables a wider range of edits, including substitutions, insertions and deletions.

Selection

Changes in the frequency of a phenotype within a population based on its effect on fitness.

Senolytics

Agents used to deplete senescent cells, often in mouse models.

Single-nucleotide variants

(SNVs). Mutations that change a single base pair in DNA.

Soma

All body parts of an organism with the exception of the reproductive organs.

Telomerase

An enzyme that maintains telomeres.

Telomeres

Repetitive sequences at the end of chromosomes that alleviate the end-replication problem and prevent the triggering of a DNA damage response.

Unique molecular identifiers

(UMIs). Short random sequences experimentally attached to fragments of DNA that enable assignment of all amplified progeny DNAs to their original parent DNA.

Variant allele frequency

(VAF). The proportion of alleles that are variant (that is, mutated).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henry, C.J., DeGregori, J. Modelling the ageing dependence of cancer evolutionary trajectories. Nat Rev Cancer 25, 757–780 (2025). https://doi.org/10.1038/s41568-025-00838-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00838-3

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer