Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Cancer progression through the lens of age-induced metabolic reprogramming

Abstract

Ageing is an important risk factor for cancer incidence and augments cancer progression. A shared hallmark of ageing and cancer is metabolic reprogramming, which has been suggested to be not only a cause but also a consequence of ageing. Strikingly, many age-regulated pathways are known to also drive tumour progression, suggesting that metabolic reprogramming connects ageing and tumorigenic processes and shapes whether malignant phenotypes manifest, thrive and evolve. With the rising average age of the world population, understanding how age-related changes in the body influence cancer progression is of paramount importance. In this Perspective, we discuss the metabolic changes that occur with ageing and their potential links with tumour initiation and progression and the development of metastatic disease. Finally, we discuss age-induced metabolic divergences that cause racial disparities and their consequences for the tumorigenic process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ageing contributes to tumorigenesis via metabolic reprogramming of tissues and systems within the body.
Fig. 2: Age-induced reprogramming of the tumour microenvironment promotes tumorigenesis.
Fig. 3: Systemic metabolic changes in the aged host can promote tumour progression.
Fig. 4: Ageing leads to metabolic alterations in the steps of the metastatic cascade.
Fig. 5: Age-induced metabolic reprogramming influences metastatic organotropism.
Fig. 6: Mitochondrial diversity is at the root of race disparities in cancer and ageing.

Similar content being viewed by others

References

  1. Siegel, R. L., Giaquinto, A. N. & Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 74, 12–49 (2024).

    PubMed  Google Scholar 

  2. Chatsirisupachai, K., Lesluyes, T., Paraoan, L., Van Loo, P. & de Magalhães, J. P. An integrative analysis of the age-associated multi-omic landscape across cancers. Nat. Commun. 12, 2345 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Li, C. H., Haider, S. & Boutros, P. C. Age influences on the molecular presentation of tumours. Nat. Commun. 13, 208 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Shah, Y. et al. Pan-cancer analysis reveals molecular patterns associated with age. Cell Rep. 37, 110100 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Erbe, R. et al. Evaluating the impact of age on immune checkpoint therapy biomarkers. Cell Rep. 37, 110033 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kaur, A. et al. Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov. 9, 64–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Zabransky, D. J. et al. Fibroblasts in the aged pancreas drive pancreatic cancer progression. Cancer Res. 84, 1221–1236 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chatsirisupachai, K., Lagger, C. & de Magalhaes, J. P. Age-associated differences in the cancer molecular landscape. Trends Cancer 8, 962–971 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh-Choudhary, S., Liu, J. & Finkel, T. Metabolic regulation of cell fate and function. Trends Cell Biol. 30, 201–212 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  12. Pavlova, N. N., Zhu, J. & Thompson, C. B. The hallmarks of cancer metabolism: still emerging. Cell Metab. 34, 355–377 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956).

    Article  CAS  PubMed  Google Scholar 

  14. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  Google Scholar 

  15. Lunt, S. Y. & Vander Heiden, M. G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Serio, S. et al. Cardiac aging is promoted by pseudohypoxia increasing p300-induced glycolysis. Circ. Res. 133, 687–703 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Murao, N. et al. Increased glycolysis affects β-cell function and identity in aging and diabetes. Mol. Metab. 55, 101414 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Ravera, S. et al. Discrete changes in glucose metabolism define aging. Sci. Rep. 9, 10347 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  20. Traxler, L. et al. Warburg-like metabolic transformation underlies neuronal degeneration in sporadic Alzheimer’s disease. Cell Metab. 34, 1248–1263.e6 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wu, L. E., Gomes, A. P. & Sinclair, D. A. Geroncogenesis: metabolic changes during aging as a driver of tumorigenesis. Cancer Cell 25, 12–19 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Drapela, S., Ilter, D. & Gomes, A. P. Metabolic reprogramming: a bridge between aging and tumorigenesis. Mol. Oncol. 16, 3295–3318 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zhang, Y. et al. Upregulation of antioxidant capacity and nucleotide precursor availability suffices for oncogenic transformation. Cell Metab. 33, 94–109.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Morris, O., Deng, H., Tam, C. & Jasper, H. Warburg-like metabolic reprogramming in aging intestinal stem cells contributes to tissue hyperplasia. Cell Rep. 33, 108423 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Lu, C. & Thompson, C. B. Metabolic regulation of epigenetics. Cell Metab. 16, 9–17 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Schvartzman, J. M., Thompson, C. B. & Finley, L. W. S. Metabolic regulation of chromatin modifications and gene expression. J. Cell Biol. 217, 2247–2259 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Kinnaird, A., Zhao, S., Wellen, K. E. & Michelakis, E. D. Metabolic control of epigenetics in cancer. Nat. Rev. Cancer 16, 694–707 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, J.-H. et al. Loss of epigenetic information as a cause of mammalian aging. Cell 186, 305–326.e27 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wang, K. et al. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct. Target. Ther. 7, 374 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Feinberg, A. P. & Levchenko, A. Epigenetics as a mediator of plasticity in cancer. Science 379, eaaw3835 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  32. Nebbioso, A., Tambaro, F. P., Dell’Aversana, C. & Altucci, L. Cancer epigenetics: moving forward. PLoS Genet. 14, e1007362 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  33. Zeng, Q. et al. Synaptic proximity enables NMDAR signalling to promote brain metastasis. Nature 573, 526–531 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  35. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Pan, X. et al. TET2 mutations contribute to adverse prognosis in acute myeloid leukemia (AML): results from a comprehensive analysis of 502 AML cases and the Beat AML public database. Clin. Exp. Med. 24, 35 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Pilley, S. E. et al. A metabolic atlas of mouse aging. Preprint at bioRxiv https://doi.org/10.1101/2024.05.04.592445 (2024).

  38. Chin, R. M. et al. The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397–401 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Kaur, P. et al. Combining stem cell rejuvenation and senescence targeting to synergistically extend lifespan. Aging 14, 8270–8291 (2022).

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Asadi Shahmirzadi, A. et al. Alpha-ketoglutarate, an endogenous metabolite, extends lifespan and compresses morbidity in aging mice. Cell Metab. 32, 447–456.e6 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. McReynolds, M. R. et al. NAD+ flux is maintained in aged mice despite lower tissue concentrations. Cell Syst. 12, 1160–1172.e4 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. McReynolds, M. R., Chellappa, K. & Baur, J. A. Age-related NAD+ decline. Exp. Gerontol. 134, 110888 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Manni, W., Jianxin, X., Weiqi, H., Siyuan, C. & Huashan, S. JMJD family proteins in cancer and inflammation. Signal Transduct. Target. Ther. 7, 304 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  44. Demetriadou, C. & Kirmizis, A. Histone acetyltransferases in cancer: guardians or hazards? Crit. Rev. Oncog. 22, 195–218 (2017).

    Article  PubMed  Google Scholar 

  45. McCauley, B. S. et al. Altered chromatin states drive cryptic transcription in aging mammalian stem cells. Nat. Aging 1, 684–697 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  46. Harries, L. W. et al. Human aging is characterized by focused changes in gene expression and deregulation of alternative splicing. Aging Cell 10, 868–878 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Holly, A. C. et al. Changes in splicing factor expression are associated with advancing age in man. Mech. Ageing Dev. 134, 356–366 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Debès, C. et al. Ageing-associated changes in transcriptional elongation influence longevity. Nature 616, 814–821 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  49. Negrini, S., Gorgoulis, V. G. & Halazonetis, T. D. Genomic instability — an evolving hallmark of cancer. Nat. Rev. Mol. Cell Biol. 11, 220–228 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Jones, T. P. & McGranahan, N. Deciphering the landscape of transcriptional heterogeneity across cancer. Cancer Cell 41, 1548–1550 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Green, C. L., Lamming, D. W. & Fontana, L. Molecular mechanisms of dietary restriction promoting health and longevity. Nat. Rev. Mol. Cell Biol. 23, 56–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Crowell, P. D. et al. MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate cancer. Cell Rep. 42, 113221 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kim, M. et al. Glioblastoma as an age-related neurological disorder in adults. Neurooncol. Adv. 3, vdab125 (2021).

    PubMed Central  PubMed  Google Scholar 

  55. Grassian, A. R. et al. IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism. Cancer Res. 74, 3317–3331 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Lenting, K. et al. Isocitrate dehydrogenase 1-mutated human gliomas depend on lactate and glutamate to alleviate metabolic stress. FASEB J. 33, 557–571 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Khurshed, M., Molenaar, R. J., Lenting, K., Leenders, W. P. & van Noorden, C. J. F. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma. Oncotarget 8, 49165–49177 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  58. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  59. Grimm, A. & Eckert, A. Brain aging and neurodegeneration: from a mitochondrial point of view. J. Neurochem. 143, 418–431 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Kusi, M. et al. 2-Hydroxyglutarate destabilizes chromatin regulatory landscape and lineage fidelity to promote cellular heterogeneity. Cell Rep. 38, 110220 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zhuang, X. et al. Ageing limits stemness and tumorigenesis by reprogramming iron homeostasis. Nature 637, 184–194 (2025).

    Article  CAS  PubMed  Google Scholar 

  63. Patel, A. A. H. et al. Aging promotes lung cancer metastasis through epigenetic ATF4 induction. Preprint at bioRxiv https://doi.org/10.1101/2024.07.03.601209 (2024).

  64. White, M. C. et al. Age and cancer risk: a potentially modifiable relationship. Am. J. Prev. Med. 46, S7–S15 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  65. Tas, F., Ciftci, R., Kilic, L. & Karabulut, S. Age is a prognostic factor affecting survival in lung cancer patients. Oncol. Lett. 6, 1507–1513 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article  PubMed  Google Scholar 

  67. Anderson, N. M. & Simon, M. C. The tumor microenvironment. Curr. Biol. 30, R921–R925 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Elia, I. & Haigis, M. C. Metabolites and the tumour microenvironment: from cellular mechanisms to systemic metabolism. Nat. Metab. 3, 21–32 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  69. Ding, J. et al. A metabolome atlas of the aging mouse brain. Nat. Commun. 12, 6021 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Duan, T. et al. Dietary restriction protects against diethylnitrosamine-induced hepatocellular tumorigenesis by restoring the disturbed gene expression profile. Sci. Rep. 7, 43745 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  71. Ploeger, J. M., Manivel, J. C., Boatner, L. N. & Mashek, D. G. Caloric restriction prevents carcinogen-initiated liver tumorigenesis in mice. Cancer Prev. Res. 10, 660–670 (2017).

    Article  CAS  Google Scholar 

  72. Murthy, V. K., Oredipe, O. A., Stiles, M. R. & Shipp, J. C. Increased fatty acid uptake, a factor in increased hepatic triacylglycerol synthesis in aging rats. Mech. Ageing Dev. 37, 49–54 (1986).

    CAS  Google Scholar 

  73. Sheedfar, F. et al. Increased hepatic CD36 expression with age is associated with enhanced susceptibility to nonalcoholic fatty liver disease. Aging 6, 281–295 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Slawik, M. & Vidal-Puig, A. J. Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res. Rev. 5, 144–164 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Petrelli, F. et al. Hepatocellular carcinoma in patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis: HCC and steatosis or steatohepatitis. Neoplasia 30, 100809 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Luo, X. et al. The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis. 12, 328 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Day, C. P. & James, O. F. W. Steatohepatitis: a tale of two “hits”? Gastroenterology 114, 842–845 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Dhar, D., Baglieri, J., Kisseleva, T. & Brenner, D. A. Mechanisms of liver fibrosis and its role in liver cancer. Exp. Biol. Med. 245, 96–108 (2020).

    Article  CAS  Google Scholar 

  80. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Lipke, K., Kubis-Kubiak, A. & Piwowar, A. Molecular mechanism of lipotoxicity as an interesting aspect in the development of pathological states — current view of knowledge. Cells 11, 844 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Manukyan, L., Ubhayasekera, S. J., Bergquist, J., Sargsyan, E. & Bergsten, P. Palmitate-induced impairments of β-cell function are linked with generation of specific ceramide species via acylation of sphingosine. Endocrinology 156, 802–812 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Akoumi, A., Haffar, T., Mousterji, M., Kiss, R. S. & Bousette, N. Palmitate mediated diacylglycerol accumulation causes endoplasmic reticulum stress, Plin2 degradation, and cell death in H9C2 cardiomyoblasts. Exp. Cell Res. 354, 85–94 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Paul, B., Lewinska, M. & Andersen, J. B. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep. 4, 100479 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  85. Fekry, B. et al. C16-ceramide is a natural regulatory ligand of p53 in cellular stress response. Nat. Commun. 9, 4149 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  86. Yin, X. et al. A ceramide-binding C1 domain mediates kinase suppressor of Ras membrane translocation. Cell. Physiol. Biochem. 24, 219–230 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Zhu, B., Shi, S., Ma, Y. G., Fan, F. & Yao, Z. Z. Lysophosphatidic acid enhances human hepatocellular carcinoma cell migration, invasion and adhesion through P38 MAPK pathway. Hepatogastroenterology 59, 785–789 (2012).

    CAS  PubMed  Google Scholar 

  88. Angelidis, I. et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 10, 963 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  89. Xiao, M. et al. Functional significance of cholesterol metabolism in cancer: from threat to treatment. Exp. Mol. Med. 55, 1982–1995 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Lee, J. Y., Kim, W. K., Bae, K. H., Lee, S. C. & Lee, E. W. Lipid metabolism and ferroptosis. Biology 10, 184 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Liu, W. et al. Dysregulated cholesterol homeostasis results in resistance to ferroptosis increasing tumorigenicity and metastasis in cancer. Nat. Commun. 12, 5103 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Ma, X. et al. Cholesterol induces CD8+ T cell exhaustion in the tumor microenvironment. Cell Metab. 30, 143–156.e5 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Meunier, P., Aaron, J., Edouard, C. & Vlgnon, G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: a quantitative study of 84 iliac bone biopsies. Clin. Orthop. Relat. Res. 80, 147–154 (1971).

    Article  CAS  PubMed  Google Scholar 

  94. Matsuzawa, Y. et al. Pathophysiology and pathogenesis of visceral fat obesity. Obes. Res. 3, 187s–194s (1995).

    Article  PubMed  Google Scholar 

  95. Olsen, T. S. Lipomatosis of the pancreas in autopsy material and its relation to age and overweight. Acta Pathol. Microbiol. Scand. A 86a, 367–373 (1978).

    CAS  PubMed  Google Scholar 

  96. Cree, M. G. et al. Intramuscular and liver triglycerides are increased in the elderly. J. Clin. Endocrinol. Metab. 89, 3864–3871 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Di Micco, R., Krizhanovsky, V., Baker, D. & d’Adda di Fagagna, F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat. Rev. Mol. Cell Biol. 22, 75–95 (2021).

    Article  PubMed  Google Scholar 

  98. Schmitt, C. A., Wang, B. & Demaria, M. Senescence and cancer — role and therapeutic opportunities. Nat. Rev. Clin. Oncol. 19, 619–636 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  99. Alimirah, F. et al. Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/42MAPK signaling. Cancer Res. 80, 3606–3619 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Zhou, L. & Ruscetti, M. Senescent macrophages: a new “old” player in lung cancer development. Cancer Cell 41, 1201–1203 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Haston, S. et al. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer. Cancer Cell 41, 1242–1260.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Ye, J. et al. Senescent CAFs mediate immunosuppression and drive breast cancer progression. Cancer Discov. 14, 1302–1323 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Belle, J. I. et al. Senescence defines a distinct subset of myofibroblasts that orchestrates immunosuppression in pancreatic cancer. Cancer Discov. 14, 1324–1355 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Takasugi, M., Yoshida, Y., Hara, E. & Ohtani, N. The role of cellular senescence and SASP in tumour microenvironment. FEBS J. 290, 1348–1361 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Aksoy, P., White, T. A., Thompson, M. & Chini, E. N. Regulation of intracellular levels of NAD: a novel role for CD38. Biochem. Biophys. Res. Commun. 345, 1386–1392 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Zeidler, J. D. et al. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. Am. J. Physiol. Cell Physiol. 322, C521–C545 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. Covarrubias, A. J. et al. Senescent cells promote tissue NAD+ decline during ageing via the activation of CD38+ macrophages. Nat. Metab. 2, 1265–1283 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Kilgour, M. K. et al. 1-Methylnicotinamide is an immune regulatory metabolite in human ovarian cancer. Sci. Adv. 7, eabe1174 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Ma, Y. et al. NNMT/1-MNA promote cell-cycle progression of breast cancer by targeting UBC12/Cullin-1-mediated degradation of P27 proteins. Adv. Sci. 11, e2305907 (2024).

    Article  Google Scholar 

  110. Chini, C. et al. The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD+ decline. Biochem. Biophys. Res. Commun. 513, 486–493 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Maus, M. et al. Iron accumulation drives fibrosis, senescence and the senescence-associated secretory phenotype. Nat. Metab. 5, 2111–2130 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Shi, R., Hou, W., Wang, Z.-Q. & Xu, X. Biogenesis of iron–sulfur clusters and their role in DNA metabolism. Front. Cell Dev. Biol. 9, 735678 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  113. Majmundar, A. J., Wong, W. J. & Simon, M. C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40, 294–309 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Ward, N. P., Kang, Y. P., Falzone, A., Boyle, T. A. & DeNicola, G. M. Nicotinamide nucleotide transhydrogenase regulates mitochondrial metabolism in NSCLC through maintenance of Fe-S protein function. J. Exp. Med. 217, e20191689 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Winterbourn, C. C. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol. Lett. 8283, 969–974 (1995).

    Article  PubMed  Google Scholar 

  116. Lee, P., Chandel, N. S. & Simon, M. C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268–283 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Wiley, C. D. et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab. 33, 1124–1136.e5 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Fernandez-Rebollo, E. et al. Senescence-associated metabolomic phenotype in primary and iPSC-derived mesenchymal stromal cells. Stem Cell Rep. 14, 201–209 (2020).

    Article  CAS  Google Scholar 

  119. Xing, Y., Xuan, F., Wang, K. & Zhang, H. Aging under endocrine hormone regulation. Front. Endocrinol. 14, 1223529 (2023).

    Article  Google Scholar 

  120. Franceschi, C. et al. Inflamm-aging: an evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Gomes, A. P. et al. Age-induced accumulation of methylmalonic acid promotes tumour progression. Nature 585, 283–287 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  122. Koelman, L., Pivovarova-Ramich, O., Pfeiffer, A. F. H., Grune, T. & Aleksandrova, K. Cytokines for evaluation of chronic inflammatory status in ageing research: reliability and phenotypic characterisation. Immun. Ageing 16, 11 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  123. Giovannini, S. et al. Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha as predictors of mortality in frail, community-living elderly individuals. J. Am. Geriatr. Soc. 59, 1679–1685 (2011).

    Article  PubMed Central  PubMed  Google Scholar 

  124. Liu, Z. et al. Immunosenescence: molecular mechanisms and diseases. Signal Transduct. Target. Ther. 8, 200 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  125. Senn, J. J., Klover, P. J., Nowak, I. A. & Mooney, R. A. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51, 3391–3399 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Mohallem, R. & Aryal, U. K. Regulators of TNFα mediated insulin resistance elucidated by quantitative proteomics. Sci. Rep. 10, 20878 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Niswender, K. D. et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 52, 227–231 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Xuekai, L. et al. Advances in reprogramming of energy metabolism in tumor T cells. Front. Immunol. 15, 1347181 (2024).

    Article  PubMed Central  PubMed  Google Scholar 

  129. Han, S., Georgiev, P., Ringel, A. E., Sharpe, A. H. & Haigis, M. C. Age-associated remodeling of T cell immunity and metabolism. Cell Metab. 35, 36–55 (2023).

    Article  CAS  PubMed  Google Scholar 

  130. Park, M. D. et al. Hematopoietic aging promotes cancer by fueling IL-1α–driven emergency myelopoiesis. Science 386, eadn0327 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Menjivar, R. E. et al. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife 12, e80721 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  132. Schofield, J. H. et al. Acod1 expression in cancer cells promotes immune evasion through the generation of inhibitory peptides. Cell Rep. 43, 113984 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  133. Alaluf, E. et al. Heme oxygenase-1 orchestrates the immunosuppressive program of tumor-associated macrophages. JCI Insight 5, e133929 (2020).

    PubMed Central  PubMed  Google Scholar 

  134. Folkerd, E. J. & Dowsett, M. Influence of sex hormones on cancer progression. J. Clin. Oncol. 28, 4038–4044 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Sepich-Poore, G. D. et al. The microbiome and human cancer. Science 371, eabc4552 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Nagy, S., Petrosky, S. N., Demory Beckler, M. & Kesselman, M. M. The impact of modern dietary practices on cancer risk and progression: a systematic review. Cureus 15, e46639 (2023).

    PubMed Central  PubMed  Google Scholar 

  137. Bana, B. & Cabreiro, F. The microbiome and aging. Annu. Rev. Genet. 53, 239–261 (2019).

    Article  CAS  PubMed  Google Scholar 

  138. Kim, M. & Benayoun, B. A. The microbiome: an emerging key player in aging and longevity. Transl. Med. Aging 4, 103–116 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  139. Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  140. Pang, S. et al. Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. Nat. Aging 3, 436–449 (2023).

    Article  PubMed  Google Scholar 

  141. Covarrubias, A. J., Perrone, R., Grozio, A. & Verdin, E. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119–141 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Chellappa, K. et al. NAD precursors cycle between host tissues and the gut microbiome. Cell Metab. 34, 1947–1959.e5 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Shats, I. et al. Bacteria boost mammalian host NAD metabolism by engaging the deamidated biosynthesis pathway. Cell Metab. 31, 564–579.e7 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Chowdhry, S. et al. NAD metabolic dependency in cancer is shaped by gene amplification and enhancer remodelling. Nature 569, 570–575 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  145. Nagpal, R. et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr. Healthy Aging 4, 267–285 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  146. Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  147. Hopkins, M. J., Sharp, R. & Macfarlane, G. T. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48, 198–205 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. Hou, K. et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 7, 135 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  149. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  150. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Wong, L. M. et al. Comparative analysis of age- and gender-associated microbiome in lung adenocarcinoma and lung squamous cell carcinoma. Cancers 12, 1447 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  152. Gomes, A. P. et al. Altered propionate metabolism contributes to tumour progression and aggressiveness. Nat. Metab. 4, 435–443 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  153. Sahm, F. et al. The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res. 73, 3225–3234 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Kesarwani, P. et al. Quinolinate promotes macrophage-induced immune tolerance in glioblastoma through the NMDAR/PPARγ signaling axis. Nat. Commun. 14, 1459 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Morris, M. S., Jacques, P. F., Rosenberg, I. H. & Selhub, J. Elevated serum methylmalonic acid concentrations are common among elderly Americans. J. Nutr. 132, 2799–2803 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Tejero, J., Lazure, F. & Gomes, A. P. Methylmalonic acid in aging and disease. Trends Endocrinol. Metab. 35, 188–200 (2024).

    Article  CAS  PubMed  Google Scholar 

  157. Wang, S. et al. Mitochondria-derived methylmalonic acid, a surrogate biomarker of mitochondrial dysfunction and oxidative stress, predicts all-cause and cardiovascular mortality in the general population. Redox Biol. 37, 101741 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  158. Riphagen, I. J. et al. Methylmalonic acid, vitamin B12, renal function, and risk of all-cause mortality in the general population: results from the prospective Lifelines-MINUTHE study. BMC Med. 18, 380 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  159. Tejero, J. D. et al. Methylmalonic acid induces metabolic abnormalities and exhaustion in CD8+ T cells to suppress anti-tumor immunity. Oncogene 44, 105–114 (2025).

    Article  CAS  PubMed  Google Scholar 

  160. Singh, P. et al. Taurine deficiency as a driver of aging. Science 380, eabn9257 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  161. Saleh, Z. et al. Alterations in metabolic pathways: a bridge between aging and weaker innate immune response. Front. Aging 5, 1358330 (2024).

    Article  PubMed Central  PubMed  Google Scholar 

  162. Bae, M., Ahmed, K. & Yim, J. E. Beneficial effects of taurine on metabolic parameters in animals and humans. J. Obes. Metab. Syndr. 31, 134–146 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  163. Kassis, A. et al. Nutritional and lifestyle management of the aging journey: a narrative review. Front. Nutr. 9, 1087505 (2022).

    Article  PubMed  Google Scholar 

  164. Gallagher, J. C. Vitamin D and aging. Endocrinol. Metab. Clin. N. Am. 42, 319–332 (2013).

    Article  Google Scholar 

  165. Stover, P. J. Vitamin B12 and older adults. Curr. Opin. Clin. Nutr. Metab. Care 13, 24–27 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Gao, C.-F. et al. Proliferation and invasion: plasticity in tumor cells. Proc. Natl Acad. Sci. USA 102, 10528–10533 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  167. Lewis, D. A. & Ly, T. Cell cycle entry control in naïve and memory CD8+ T cells. Front. Cell Dev. Biol. 9, 727441 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  168. Williams, J. D. et al. Tumor autonomous effects of vitamin D deficiency promote breast cancer metastasis. Endocrinology 157, 1341–1347 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  169. Mariean, C. R., Tiucă, O. M., Mariean, A. & Cotoi, O. S. Cancer cachexia: new insights and future directions. Cancers 15, 5590 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  170. Baracos, V. E., Martin, L., Korc, M., Guttridge, D. C. & Fearon, K. C. H. Cancer-associated cachexia. Nat. Rev. Dis. Prim. 4, 17105 (2018).

    Article  PubMed  Google Scholar 

  171. Ali, S. & Garcia, J. M. Sarcopenia, cachexia and aging: diagnosis, mechanisms and therapeutic options — a mini-review. Gerontology 60, 294–305 (2014).

    Article  CAS  PubMed  Google Scholar 

  172. Geppert, J. et al. Aging aggravates cachexia in tumor-bearing mice. Cancers 14, 90 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  173. Geppert, J. & Rohm, M. Cancer cachexia: biomarkers and the influence of age. Mol. Oncol. 18, 2070–2086 (2024).

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Rohm, M., Zeigerer, A., Machado, J. & Herzig, S. Energy metabolism in cachexia. EMBO Rep. 20, e47258 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  175. Pala, F. et al. Distinct metabolic states govern skeletal muscle stem cell fates during prenatal and postnatal myogenesis. J. Cell Sci. 131, jcs212977 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  176. Gerstberger, S., Jiang, Q. & Ganesh, K. Metastasis. Cell 186, 1564–1579 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  177. Drapela, S. & Gomes, A. P. Metabolic requirements of the metastatic cascade. Curr. Opin. Syst. Biol. 28, 100381 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  178. Bergers, G. & Fendt, S. M. The metabolism of cancer cells during metastasis. Nat. Rev. Cancer 21, 162–180 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  179. Fontana, R., Mestre-Farrera, A. & Yang, J. Update on epithelial-mesenchymal plasticity in cancer progression. Annu. Rev. Pathol. 19, 133–156 (2024).

    Article  CAS  PubMed  Google Scholar 

  180. Kai, F., Drain, A. P. & Weaver, V. M. The extracellular matrix modulates the metastatic journey. Dev. Cell 49, 332–346 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  181. Larsen, M., Artym, V. V., Green, J. A. & Yamada, K. M. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr. Opin. Cell Biol. 18, 463–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Marsico, G., Russo, L., Quondamatteo, F. & Pandit, A. Glycosylation and integrin regulation in cancer. Trends Cancer 4, 537–552 (2018).

    Article  CAS  PubMed  Google Scholar 

  183. Yki-Järvinen, H. et al. Increased glutamine:fructose-6-phosphate amidotransferase activity in skeletal muscle of patients with NIDDM. Diabetes 45, 302–307 (1996).

    Article  PubMed  Google Scholar 

  184. Clark, R. J. et al. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J. Biol. Chem. 278, 44230–44237 (2003).

    Article  CAS  PubMed  Google Scholar 

  185. Andres, R. Aging and diabetes. Med. Clin. N. Am. 55, 835–846 (1971).

    Article  CAS  PubMed  Google Scholar 

  186. Shimokata, H. et al. Age as independent determinant of glucose tolerance. Diabetes 40, 44–51 (1991).

    Article  CAS  PubMed  Google Scholar 

  187. Zavaroni, I. et al. Effect of age and environmental factors on glucose tolerance and insulin secretion in a worker population. J. Am. Geriatr. Soc. 34, 271–275 (1986).

    Article  CAS  PubMed  Google Scholar 

  188. Maneatis, T., Condie, R. & Reaven, G. Effect of age on plasma glucose and insulin responses to a test mixed meal. J. Am. Geriatr. Soc. 30, 178–182 (1982).

    Article  CAS  PubMed  Google Scholar 

  189. Kim, C. S., Park, S. & Kim, J. The role of glycation in the pathogenesis of aging and its prevention through herbal products and physical exercise. J. Exerc. Nutr. Biochem. 21, 55–61 (2017).

    Article  Google Scholar 

  190. Batkulwar, K. et al. Advanced glycation end products modulate amyloidogenic APP processing and tau phosphorylation: a mechanistic link between glycation and the development of Alzheimer’s disease. ACS Chem. Neurosci. 9, 988–1000 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Sasaki, N. et al. Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am. J. Pathol. 153, 1149–1155 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  192. Singh, V. P., Bali, A., Singh, N. & Jaggi, A. S. Advanced glycation end products and diabetic complications. Korean J. Physiol. Pharmacol. 18, 1–14 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  193. Theodore, C. et al. Treatment of high-risk gestational trophoblastic disease with chemotherapy combinations containing cisplatin and etoposide. Cancer 64, 1824–1828 (1989).

    Article  CAS  PubMed  Google Scholar 

  194. Deng, R. et al. Glucose-derived AGEs promote migration and invasion of colorectal cancer by up-regulating Sp1 expression. Biochim. Biophys. Acta Gen. Subj. 1861, 1065–1074 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Pan, S. et al. Advanced glycation end products correlate with breast cancer metastasis by activating RAGE/TLR4 signaling. BMJ Open Diabetes Res. Care 10, e002697 (2022).

    Article  PubMed Central  PubMed  Google Scholar 

  196. Alicea, G. M. et al. Age-related increases in IGFBP2 increase melanoma cell invasion and lipid synthesis. Cancer Res. Commun. 4, 1908–1918 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  197. Podolsky, M. J. et al. Age-dependent regulation of cell-mediated collagen turnover. JCI Insight 5, e137519 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  198. Stearns-Reider, K. M. et al. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell 16, 518–528 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  199. Poynard, T. et al. Prevalence of liver fibrosis and risk factors in a general population using non-invasive biomarkers (FibroTest). BMC Gastroenterol. 10, 40 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  200. De Martino, D. & Bravo-Cordero, J. J. Collagens in cancer: structural regulators and guardians of cancer progression. Cancer Res. 83, 1386–1392 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  201. Winkler, J., Abisoye-Ogunniyan, A., Metcalf, K. J. & Werb, Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat. Commun. 11, 5120 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. Lobel, G. P., Jiang, Y. & Simon, M. C. Tumor microenvironmental nutrients, cellular responses, and cancer. Cell Chem. Biol. 30, 1015–1032 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  203. Olivares, O. et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat. Commun. 8, 16031 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Saha, M. et al. Sustained AMPK activation and proline metabolism play critical roles in the survival of matrix-deprived transformed cells. Front. Cell Dev. Biol. 9, 771366 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  205. Elia, I. et al. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat. Commun. 8, 15267 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  206. Kuehne, A. et al. An integrative metabolomics and transcriptomics study to identify metabolic alterations in aged skin of humans in vivo. BMC Genom. 18, 169 (2017).

    Article  Google Scholar 

  207. Wang, X. et al. Targeted metabolomic profiling reveals association between altered amino acids and poor functional recovery after stroke. Front. Neurol. 10, 1425 (2019).

    Article  PubMed  Google Scholar 

  208. Choudhury, D. et al. Proline restores mitochondrial function and reverses aging hallmarks in senescent cells. Cell Rep. 43, 113738 (2024).

    Article  CAS  PubMed  Google Scholar 

  209. Uchitomi, R. et al. Metabolomic analysis of skeletal muscle in aged mice. Sci. Rep. 9, 10425 (2019).

    Article  PubMed Central  PubMed  Google Scholar 

  210. Pilley, S. E. et al. Loss of attachment promotes proline accumulation and excretion in cancer cells. Sci. Adv. 9, eadh2023 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  211. Loayza-Puch, F. et al. Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature 530, 490–494 (2016).

    Article  CAS  PubMed  Google Scholar 

  212. Piskounova, E. et al. Oxidative stress inhibits distant metastasis by human melanoma cells. Nature 527, 186–191 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  213. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  214. Ilter, D. et al. NADK-mediated de novo NADP(H) synthesis is a metabolic adaptation essential for breast cancer metastasis. Redox Biol. 61, 102627 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  215. Carr, A. C. & Lykkesfeldt, J. Does aging affect vitamin C status relative to intake? Findings from NHANES 2017-2018. Nutrients 15, 892 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  216. Yang, C. S., Chou, S. T., Liu, L., Tsai, P. J. & Kuo, J. S. Effect of ageing on human plasma glutathione concentrations as determined by high-performance liquid chromatography with fluorimetric detection. J. Chromatogr. B Biomed. Appl. 674, 23–30 (1995).

    Article  CAS  PubMed  Google Scholar 

  217. Detcheverry, F., Senthil, S., Narayanan, S. & Badhwar, A. Changes in levels of the antioxidant glutathione in brain and blood across the age span of healthy adults: a systematic review. Neuroimage Clin. 40, 103503 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  218. Hoey, L., Strain, J. J. & McNulty, H. Studies of biomarker responses to intervention with vitamin B-12: a systematic review of randomized controlled trials. Am. J. Clin. Nutr. 89, 1981s–1996s (2009).

    Article  CAS  PubMed  Google Scholar 

  219. Bansal, A. & Simon, M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell Biol. 217, 2291–2298 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  220. Cascio, G. et al. Transcriptional isoforms of NAD+ kinase regulate oxidative stress resistance and melanoma metastasis. Redox Biol. 76, 103289 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  221. Leong, S. P., Naxerova, K., Keller, L., Pantel, K. & Witte, M. Molecular mechanisms of cancer metastasis via the lymphatic versus the blood vessels. Clin. Exp. Metastasis 39, 159–179 (2022).

    Article  CAS  PubMed  Google Scholar 

  222. Mann, J. et al. Ferroptosis inhibition by oleic acid mitigates iron-overload-induced injury. Cell Chem. Biol. 31, 249–264.e7 (2024).

    Article  CAS  PubMed  Google Scholar 

  223. Bekkhus, T., Olofsson, A., Sun, Y., Magnusson, P. U. & Ulvmar, M. H. Stromal transdifferentiation drives lipomatosis and induces extensive vascular remodeling in the aging human lymph node. J. Pathol. 259, 236–253 (2023).

    Article  CAS  PubMed  Google Scholar 

  224. Ali, S. et al. Age-associated changes in circulatory fatty acids: new insights on adults and long-lived individuals. Geroscience 45, 781–796 (2023).

    Article  CAS  PubMed  Google Scholar 

  225. Gao, Y. et al. Metastasis organotropism: redefining the congenial soil. Dev. Cell 49, 375–391 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. Schild, T., Low, V., Blenis, J. & Gomes, A. P. Unique metabolic adaptations dictate distal organ-specific metastatic colonization. Cancer Cell 33, 347–354 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  227. Crist, S. B. et al. Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nat. Cell Biol. 24, 538–553 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. Chen, M.-T. et al. Comparison of patterns and prognosis among distant metastatic breast cancer patients by age groups: a SEER population-based analysis. Sci. Rep. 7, 9254 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  229. Frankel, T. L. et al. Predicting the development of brain metastases in patients with local/regional melanoma. J. Surg. Oncol. 109, 770–774 (2014).

    Article  PubMed  Google Scholar 

  230. Wu, A. M. L. et al. Aging and CNS myeloid cell depletion attenuate breast cancer brain metastasis. Clin. Cancer Res. 27, 4422–4434 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  231. He, L., Ding, Y., Zhou, X., Li, T. & Yin, Y. Serine signaling governs metabolic homeostasis and health. Trends Endocrinol. Metab. 34, 361–372 (2023).

    Article  CAS  PubMed  Google Scholar 

  232. Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M. & Melino, G. Serine and glycine metabolism in cancer. Trends Biochem. Sci. 39, 191–198 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  233. Ngo, B. et al. Limited environmental serine and glycine confer brain metastasis sensitivity to PHGDH inhibition. Cancer Discov. 10, 1352–1373 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  234. Potier, B. et al. Contribution of the d-serine-dependent pathway to the cellular mechanisms underlying cognitive aging. Front. Aging Neurosci. 2, 1 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  235. Calcia, M. A. et al. Plasma levels of D-serine in Brazilian individuals with schizophrenia. Schizophr. Res. 142, 83–87 (2012).

    Article  PubMed  Google Scholar 

  236. Mothet, J. P. et al. A critical role for the glial-derived neuromodulator D-serine in the age-related deficits of cellular mechanisms of learning and memory. Aging Cell 5, 267–274 (2006).

    Article  CAS  PubMed  Google Scholar 

  237. Madeira, C. et al. d-serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl. Psychiatry 5, e561 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  238. Shleper, M., Kartvelishvily, E. & Wolosker, H. D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J. Neurosci. 25, 9413–9417 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  239. Liu, F. C. et al. Exploring the aging process of cognitively healthy adults by analyzing cerebrospinal fluid metabolomics using liquid chromatography-tandem mass spectrometry. BMC Geriatr. 23, 217 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  240. St Paul, M. et al. Coenzyme A fuels T cell anti-tumor immunity. Cell Metab. 33, 2415–2427.e6 (2021).

    Article  Google Scholar 

  241. Miallot, R. et al. The coenzyme A precursor pantethine enhances antitumor immunity in sarcoma. Life Sci. Alliance 6, e202302200 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  242. Altea-Manzano, P. et al. A palmitate-rich metastatic niche enables metastasis growth via p65 acetylation resulting in pro-metastatic NF-κB signaling. Nat. Cancer 4, 344–364 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  243. Kim, S. J., Cheresh, P., Jablonski, R. P., Williams, D. B. & Kamp, D. W. The role of mitochondrial DNA in mediating alveolar epithelial cell apoptosis and pulmonary fibrosis. Int. J. Mol. Sci. 16, 21486–21519 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  244. Zhou, L., Zhang, H., Davies, K. J. A. & Forman, H. J. Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biol. 14, 35–40 (2018).

    Article  PubMed  Google Scholar 

  245. Korfei, M., MacKenzie, B. & Meiners, S. The ageing lung under stress. Eur. Respir. Rev. 29, 200126 (2020).

    Article  PubMed Central  PubMed  Google Scholar 

  246. Sosa, M. S., Bragado, P. & Aguirre-Ghiso, J. A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer 14, 611–622 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  247. Risson, E., Nobre, A. R., Maguer-Satta, V. & Aguirre-Ghiso, J. A. The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nat. Cancer 1, 672–680 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  248. Fane, M. E. et al. Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature 606, 396–405 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  249. Turrell, F. K. et al. Age-associated microenvironmental changes highlight the role of PDGF-C in ER+ breast cancer metastatic relapse. Nat. Cancer 4, 468–484 (2023).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  250. Fox, D. B. et al. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat. Metab. 2, 318–334 (2020).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  251. Harper, E. I. et al. Another wrinkle with age: aged collagen and intra-peritoneal metastasis of ovarian cancer. Aging Cancer 3, 116–129 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  252. Thigpen, T. et al. Age as a prognostic factor in ovarian carcinoma. The Gynecologic Oncology Group experience. Cancer 71, 606–614 (1993).

    Article  CAS  PubMed  Google Scholar 

  253. Deng, F. et al. Age is associated with prognosis in serous ovarian carcinoma. J. Ovarian Res. 10, 36 (2017).

    Article  PubMed Central  PubMed  Google Scholar 

  254. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  255. Ladanyi, A. et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene 37, 2285–2301 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  256. Moraes, D. et al. The transcriptomic landscape of age-induced changes in human visceral fat and the predicted omentum-liver connectome in males. Biomedicines 11, 1446 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  257. Aebi, M. Spinal metastasis in the elderly. Eur. Spine J. 12, S202–S213 (2003).

    Article  PubMed Central  PubMed  Google Scholar 

  258. Hu, Z. et al. Prevalence and risk factors of bone metastasis and the development of bone metastatic prognostic classification system: a pan-cancer population study. Aging 15, 13134–13149 (2023).

    Article  PubMed Central  PubMed  Google Scholar 

  259. Schwarcz, H. P., Agur, K. & Jantz, L. M. A new method for determination of postmortem interval: citrate content of bone. J. Forensic Sci. 55, 1516–1522 (2010).

    Article  PubMed  Google Scholar 

  260. Hu, Y. Y., Rawal, A. & Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl Acad. Sci. USA 107, 22425–22429 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  261. Costello, L. C., Franklin, R. B., Reynolds, M. A. & Chellaiah, M. The important role of osteoblasts and citrate production in bone formation: “Osteoblast citration” as a new concept for an old relationship. Open Bone J. https://doi.org/10.2174/1876525401204010027 (2012).

  262. Chen, H. et al. Bone and plasma citrate is reduced in osteoporosis. Bone 114, 189–197 (2018).

    Article  CAS  PubMed  Google Scholar 

  263. Lv, Z., Shi, W. & Zhang, Q. Role of essential amino acids in age-induced bone loss. Int. J. Mol. Sci. 23, 11281 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  264. Pouikli, A. et al. Chromatin remodeling due to degradation of citrate carrier impairs osteogenesis of aged mesenchymal stem cells. Nat. Aging 1, 810–825 (2021).

    Article  PubMed Central  PubMed  Google Scholar 

  265. Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).

    Article  CAS  PubMed  Google Scholar 

  266. Ambrosi, T. H. et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771–784.e6 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  267. Giaquinto, A. N. et al. Cancer statistics for African American/Black people 2022. CA Cancer J. Clin. 72, 202–229 (2022).

    PubMed  Google Scholar 

  268. Levine, M. E. & Crimmins, E. M. Evidence of accelerated aging among African Americans and its implications for mortality. Soc. Sci. Med. 118, 27–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  269. Augustus, G. J. & Ellis, N. A. Colorectal cancer disparity in African Americans: risk factors and carcinogenic mechanisms. Am. J. Pathol. 188, 291–303 (2018).

    Article  PubMed Central  PubMed  Google Scholar 

  270. Yedjou, C. G. et al. Health and racial disparity in breast cancer. Adv. Exp. Med. Biol. 1152, 31–49 (2019).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  271. Siddharth, S. & Sharma, D. Racial disparity and triple-negative breast cancer in African-American women: a multifaceted affair between obesity, biology, and socioeconomic determinants. Cancers 10, 514 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  272. Mitchell, S. L. et al. Characterization of mitochondrial haplogroups in a large population-based sample from the United States. Hum. Genet. 133, 861–868 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  273. Wallace, D. C. A mitochondrial bioenergetic etiology of disease. J. Clin. Invest. 123, 1405–1412 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  274. Tranah, G. J. et al. Mitochondrial DNA variation in human metabolic rate and energy expenditure. Mitochondrion 11, 855–861 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  275. Lee, W. T. et al. Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns. Cell Death Discov. 3, 17062 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  276. Kelly, R. D. et al. Mitochondrial DNA haplotypes define gene expression patterns in pluripotent and differentiating embryonic stem cells. Stem Cell 31, 703–716 (2013).

    Article  CAS  Google Scholar 

  277. Bilal, E. et al. Mitochondrial DNA haplogroup D4a is a marker for extreme longevity in Japan. PLoS ONE 3, e2421 (2008).

    Article  PubMed Central  PubMed  Google Scholar 

  278. Kim, S., Myers, L., Ravussin, E., Cherry, K. E. & Jazwinski, S. M. Single nucleotide polymorphisms linked to mitochondrial uncoupling protein genes UCP2 and UCP3 affect mitochondrial metabolism and healthy aging in female nonagenarians. Biogerontology 17, 725–736 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  279. Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).

    Article  CAS  PubMed  Google Scholar 

  280. Chattopadhyay, M. et al. The portrait of liver cancer is shaped by mitochondrial genetics. Cell Rep. 38, 110254 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  281. Brinker, A. E. et al. Mitochondrial haplotype alters mammary cancer tumorigenicity and metastasis in an oncogenic driver-dependent manner. Cancer Res. 77, 6941–6949 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  282. Ganly, I. et al. Mitonuclear genotype remodels the metabolic and microenvironmental landscape of Hürthle cell carcinoma. Sci. Adv. 8, eabn9699 (2022).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  283. Mahmood, M. et al. Mitochondrial DNA mutations drive aerobic glycolysis to enhance checkpoint blockade response in melanoma. Nat. Cancer 5, 659–672 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  284. Brinker, A. E. et al. Mitochondrial haplotype of the host stromal microenvironment alters metastasis in a non-cell autonomous manner. Cancer Res. 80, 1118–1129 (2020).

    Article  CAS  PubMed  Google Scholar 

  285. Picard, M. et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl Acad. Sci. USA 112, E6614–E6623 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  286. Obradović, M. M. S. et al. Glucocorticoids promote breast cancer metastasis. Nature 567, 540–544 (2019).

    Article  PubMed  Google Scholar 

  287. He, X. Y. et al. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 42, 474–486.e12 (2024).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  288. Yiallouris, A. et al. Adrenal aging and its implications on stress responsiveness in humans. Front. Endocrinol. 10, 54 (2019).

    Article  Google Scholar 

  289. Piazza, J. R., Almeida, D. M., Dmitrieva, N. O. & Klein, L. C. Frontiers in the use of biomarkers of health in research on stress and aging. J. Gerontol. B 65B, 513–525 (2010).

    Article  Google Scholar 

  290. Choi, S. et al. Corticosterone inhibits GAS6 to govern hair follicle stem-cell quiescence. Nature 592, 428–432 (2021).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  291. Aguilera, G. HPA axis responsiveness to stress: implications for healthy aging. Exp. Gerontol. 46, 90–95 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to members of the Gomes laboratory for the critical discussions on this topic and to J. Cleveland for the critical reading and editing of this Perspective. The Gomes laboratory is supported by the New Innovator Award from the Office of the Director of the National Institutes of Health (DP2AG0776980), an American Cancer Society Research Scholar Award (RSG-22-164-01-MM), the National Institute on Aging (R21AG083720), the National Cancer Institute (R01CA279023), the Florida Health Department Bankhead-Coley Research Program (24B03), the Florida Breast Cancer Research Foundation, the Phi Beta Psi Sorority, and the National Cancer Institute Comprehensive Cancer Center Grant P30 CA076292.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Ana P. Gomes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cancer thanks Christian Frezza, who co-reviewed along with Andromachi Pouikli, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Aerobic glycolysis

A metabolic process whereby cells favour glycolysis over oxidative phosphorylation, by converting glucose into lactate for energy production, even in the presence of oxygen.

Conplastic mouse strains

Mouse strains that have identical genomic DNA but different mitochondrial DNA (mtDNA), often produced by repeatedly backcrossing females carrying the mtDNA of interest with males of the desired nuclear DNA background.

Cryptic promoters

Promoter sequences that are normally hidden by heterochromatin, but which can become uncovered when chromatin is disrupted to initiate transcription, often driving the expression of alternative mRNA transcripts.

Enantiomer

One of a pair of molecules that share the same molecular composition, but which are spatially arranged to be mirror images of each other.

Endoplasmic reticulum (ER) stress

The accumulation of misfolded proteins within the ER caused by reactive oxygen species, hypoxia, various nutrient levels, or other factors that trigger the unfolded protein response to re-establish proteostasis.

Epigenetic erosion

The decline in the stability and/or maintenance of epigenetic marks over time, often observed during ageing.

Folate cycle

A metabolic pathway that utilizes dietary folate to support one-carbon metabolism, fueling nucleotide synthesis and methylation processes.

Haplogroups

Groups of people defined by a set of genetic markers inherited from a common ancestor, usually associated with a specific geographical region.

Haplotypes

Groups of genetic markers, such as single-nucleotide polymorphisms, that are usually inherited as a unit owing to their close proximity on a chromosome or mitochondrial DNA and are used to track genetic variation patterns within populations.

Hyperinsulinaemia

A condition wherein insulin levels in the blood are chronically elevated, often associated with insulin resistance and diabetes.

Hypothalamic–pituitary–adrenal axis

A communication system between the hypothalamus, the pituitary gland of the brain, and the adrenal glands that occurs via hormones to regulate the reaction of the body to stress.

Iron–sulfur cluster

Molecules composed of iron and sulfur found in proteins that are essential for various biological processes such as the functioning of the electron transport chain and various enzymatic activities.

Osteoporosis

A disease defined by reduced bone density often caused by an imbalance between bone formation and resorption and typically associated with older age.

Oxidative phosphorylation

(OXPHOS). The cellular process that harnesses the reduction of oxygen to generate ATP.

Single-nucleotide polymorphisms

(SNPs). DNA point mutations in a single nucleotide, which may or may not lead to phenotypic traits, and are commonly used as markers in population genetics to track inheritance.

Transcriptional elongation

A step during gene expression wherein RNA polymerase II moves along the DNA template to create a nascent RNA transcript.

Tricarboxylic acid cycle

A metabolic pathway that generates electron carriers NADH and flavin adenine dinucleotide (FADH2) by breaking down acetyl-coenzyme A derived from glucose and fatty acids, also known as the Krebs cycle or citric acid cycle.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazure, F., Gomes, A.P. Cancer progression through the lens of age-induced metabolic reprogramming. Nat Rev Cancer 25, 801–817 (2025). https://doi.org/10.1038/s41568-025-00845-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41568-025-00845-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer