Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications

Abstract

WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR–Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.

Key points

  • Cardiovascular disease is a major cause of morbidity and mortality worldwide, prompting the need for a better understanding of the underlying pathogenic mechanisms.

  • Non-canonical WNT signalling involves an evolutionarily conserved and ubiquitous range of pathways affecting fundamental processes such as inflammation, metabolism, cell motility, oxidative stress and homeostasis.

  • Non-canonical WNT signalling is a promising target in vascular disease, influencing vascular oxidative stress, endothelial dysfunction, inflammation, vascular smooth muscle cell phenotypes and cellular insulin resistance, all of which can affect atherosclerosis progression and plaque stability.

  • Non-canonical WNT signalling has putative links to cardiac disease by influencing myocardial oxidative stress, inflammation, repair capacity, energetics and remodelling, including fibrotic or adipose infiltration of the myocardium, all of which can generate the substrate for contractile dysfunction and arrhythmogenic potential.

  • Non-canonical WNT ligands are secreted by adipose tissue and are upregulated in obesity, acting as an endocrine and paracrine link between obesity and cardiovascular complications via adipose tissue–cardiovascular system crosstalk.

  • Non-canonical WNT signalling can be therapeutically targeted at multiple levels and could involve several state-of-the-art technologies; however, more research in this area is required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of non-canonical WNT signalling pathways.
Fig. 2: Non-canonical WNT signalling in atherosclerosis.
Fig. 3: Non-canonical WNT signalling and bidirectional interactions between adipose tissue depots and the cardiovascular system.
Fig. 4: Non-canonical WNT signalling in myocardial disease.
Fig. 5: Potential strategies for therapeutic targeting of non-canonical WNT signalling.

Similar content being viewed by others

References

  1. Manemann, S. M. et al. Recent trends in cardiovascular disease deaths: a state specific perspective. BMC Public Health 21, 1031 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hansson, K. The heart of immunology: immune mechanisms in cardiovascular medicine. Cardiovasc. Res. 117, e166–e168 (2021).

    CAS  PubMed  Google Scholar 

  3. Libby, P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res. 117, 2525–2536 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fredman, G. & MacNamara, K. C. Atherosclerosis is a major human killer and non-resolving inflammation is a prime suspect. Cardiovasc. Res. 117, 2563–2574 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Akoumianakis, I. & Antoniades, C. The interplay between adipose tissue and the cardiovascular system: is fat always bad? Cardiovasc. Res. 113, 999–1008 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Akoumianakis, I. & Antoniades, C. Impaired vascular redox signaling in the vascular complications of obesity and diabetes mellitus. Antioxid. Redox Signal. 30, 333–353 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, J. C. & Bennett, M. Aging and atherosclerosis. Circ. Res. 111, 245–259 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32, 2045–2051 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu, L. et al. NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab349 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tsutsui, H., Kinugawa, S. & Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 301, H2181–H2190 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac fibrosis: the fibroblast awakens. Circ. Res. 118, 1021–1040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kazbanov, I. V., Ten Tusscher, K. H. W. J. & Panfilov, A. V. Effects of heterogeneous diffuse fibrosis on arrhythmia dynamics and mechanism. Sci. Rep. 6, 20835 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Logan, C. Y. & Nusse, R. The Wnt signaling pathway in development and disease. Annu. Rev. Cell Dev. Biol. 20, 781–810 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Akoumianakis, I. et al. Adipose tissue–derived WNT5A regulates vascular redox signaling in obesity via USP17/RAC1-mediated activation of NADPH oxidases. Sci. Transl Med. 11, eaav5055 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laudes, M. Role of WNT signalling in the determination of human mesenchymal stem cells into preadipocytes. J. Mol. Endocrinol. 46, R65–R72 (2011).

    CAS  PubMed  Google Scholar 

  17. Sethi, J. K. & Vidal-puig, A. Wnt signalling and the control of cellular metabolism. Biochem. J. 427, 1–17 (2015).

    Article  Google Scholar 

  18. Zimmerman, Z. F., Moon, R. T. & Chien, A. J. Targeting wnt pathways in disease. Cold Spring Harb. Perspect. Biol. 4, a008086 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dijksterhuis, J. P., Petersen, J. & Schulte, G. WNT/Frizzled signalling: receptor-ligand selectivity with focus on FZD-G protein signalling and its physiological relevance: IUPHAR Review 3. Br. J. Pharmacol. 171, 1195–1209 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi, E. Y. et al. Wnt5a and Wnt11 as acute respiratory distress syndrome biomarkers for severe acute respiratory syndrome coronavirus 2 patients. Eur. Respir. J. 56, 2001531 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Christman, M. A. et al. Wnt5a is expressed in murine and human atherosclerotic lesions. Am. J. Physiol. Heart Circ. Physiol. 294, H2864–H2870 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, J. et al. Wnt5a induces endothelial inflammation via beta-catenin-independent signaling. J. Immunol. 185, 1274–1282 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Bhatt, P. M. & Malgor, R. Wnt5a: a player in the pathogenesis of atherosclerosis and other inflammatory disorders. Atherosclerosis 237, 155–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klaus, A. & Birchmeier, W. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 8, 387–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Wiese, K. E., Nusse, R. & van Amerongen, R. Wnt signalling: conquering complexity. Development 145, dev165902 (2018).

    Article  PubMed  Google Scholar 

  26. Foulquier, S. et al. WNT signaling in cardiac and vascular disease. Pharmacol. Rev. 70, 68–141 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mikels, A. J. & Nusse, R. Wnts as ligands: processing, secretion and reception. Oncogene 25, 7461–7468 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Wada, N. et al. Selective modulation of Wnt ligands and their receptors in adipose tissue by chronic hyperadiponectinemia. PLoS ONE 8, e67712 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marinou, K., Christodoulides, C., Antoniades, C. & Koutsilieris, M. Wnt signaling in cardiovascular physiology. Trends Endocrinol. Metab. 23, 628–636 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Wook-Jin, C. & Bothwell, A. L. M. Canonical and non-canonical Wnt signaling in immune cells. Trends Immunol. 39, 830–847 (2018).

    Article  Google Scholar 

  32. Baksh, D., Boland, G. M. & Tuan, R. S. Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J. Cell. Biochem. 101, 1109–1124 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. James, R. G., Conrad, W. H. & Moon, R. T. β-Catenin-independent Wnt pathways: signals, core proteins, and effectors. Methods Mol. Biol. 468, 131–144 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Farb, M. G. et al. WNT5A-JNK regulation of vascular insulin resistance in human obesity. Vasc. Med. 21, 489–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Semenov, M. V., Habas, R., MacDonald, B. T. & He, X. SnapShot: noncanonical wnt signaling pathways. Cell 131, 1378 (2007).

    Article  PubMed  Google Scholar 

  36. Zhao, Y. et al. Wnt5a promotes inflammatory responses via nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in human dental pulp cells. J. Biol. Chem. 289, 21028–21039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Slusarski, D. C., Corces, V. G. & Moon, R. T. Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature 390, 410–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Crabtree, G. R. & Olson, E. N. NFAT signaling: choreographing the social lives of cells. Cell 109, S67–S79 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Vitezslav Bryja, E. R. A. et al. The extracellular domain of lrp5/6 inhibits noncanonical wnt signaling in vivo. Mol. Biol. Cell 20, 924–936 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. van Amerongen, R., Fuerer, C., Mizutani, M. & Nusse, R. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev. Biol. 369, 101–114 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fu, H.-D. et al. Wnt5a mediated canonical Wnt signaling pathway activation in orthodontic tooth movement: possible role in the tension force-induced bone formation. J. Mol. Histol. 47, 455–466 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Mill, C. et al. Wnt5a-induced Wnt1-inducible secreted protein-1 suppresses vascular smooth muscle cell apoptosis induced by oxidative stress. Arterioscler. Thromb. Vasc. Biol. 34, 2449–2456 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Mani, A. et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315, 1278–1282 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lu, Y. C. et al. Circulating secreted frizzled-related protein 5 (Sfrp5) and wingless-type MMTV integration site family member 5a (Wnt5a) levels in patients with type 2 diabetes mellitus. Diabetes Metab. Res. Rev. 29, 551–556 (2013).

    CAS  PubMed  Google Scholar 

  45. Albanese, I. et al. Role of noncanonical wnt signaling pathway in human aortic valve calcification. Arterioscler. Thromb. Vasc. Biol. 37, 543–552 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Albanese, I., Khan, K., Barratt, B., Al-Kindi, H. & Schwertani, A. Atherosclerotic calcification: Wnt is the hint. J. Am. Heart Assoc. 7, e007356 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Badimon, L. & Borrell-Pages, M. Wnt signaling in the vessel wall. Curr. Opin. Hematol. 24, 230–239 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Förstermann, U. & Sessa, W. C. Nitric oxide synthases: regulation and function. Eur. Heart J. 33, 829–837 (2012).

    Article  PubMed  Google Scholar 

  49. Dubiella, U. et al. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proc. Natl Acad. Sci. USA 110, 8744–8749 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cook-Mills, J. M. et al. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity. Biochem. J. 378, 539–547 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fontayne, A., Dang, P. M.-C., Gougerot-Pocidalo, M.-A. & El Benna, J. Phosphorylation of p47phox sites by PKC α, βΙΙ, δ, and ζ: effect on binding to p22phox and on NADPH oxidase activation. Biochemistry 41, 7743–7750 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Reis, M. & Liebner, S. Wnt signaling in the vasculature. Exp. Cell Res. 319, 1317–1323 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Bretón-Romero, R. et al. Endothelial dysfunction in human diabetes is mediated by Wnt5a-JNK signaling. Arterioscler. Thromb. Vasc. Biol. 36, 561–569 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shiraishi, H. et al. cGMP inhibits GTP cyclohydrolase I activity and biosynthesis of tetrahydrobiopterin in human umbilical vein endothelial cells. J. Pharmacol. Sci. 93, 265–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Takahashi, S. & Mendelsohn, M. E. Synergistic activation of endothelial nitric-oxide synthase (eNOS) by HSP90 and Akt. J. Biol. Chem. 278, 30821–30827 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Murthy, S. et al. Endothelial CaMKII as a regulator of eNOS activity and NO-mediated vasoreactivity. PLoS ONE 12, e0186311 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gómez-Orte, E., Sáenz-Narciso, B., Moreno, S. & Cabello, J. Multiple functions of the noncanonical Wnt pathway. Trends Genet. 29, 545–553 (2013).

    Article  PubMed  Google Scholar 

  58. Masckauchán, T. N. H. et al. Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol. Biol. Cell 17, 5163–5172 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Siman-Tov, R. et al. Circulating Wnt ligands activate the wnt signaling pathway in mature erythrocytes. Arterioscler. Thromb. Vasc. Biol. 41, E243–E264 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Hulin-Curtis, S., Williams, H., Wadey, K. S., Sala-Newby, G. B. & George, S. J. Targeting Wnt/β-catenin activated cells with dominant-negative N-cadherin to reduce neointima formation. Mol. Ther. Methods Clin. Dev. 5, 191–199 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brown, B. A. et al. Aging differentially modulates the Wnt pro-survival signalling pathways in vascular smooth muscle cells. Aging Cell 18, e12844 (2019).

    PubMed  Google Scholar 

  62. Srivastava, R. et al. Impaired LRP6-TCF7L2 activity enhances smooth muscle cell plasticity and causes coronary artery disease. Cell Rep. 13, 746–759 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsaousi, A., Mill, C. & George, S. J. The Wnt pathways in vascular disease. Curr. Opin. Lipidol. 22, 350–357 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. San José, G. et al. Insulin-induced NADPH oxidase activation promotes proliferation and matrix metalloproteinase activation in monocytes/macrophages. Free Radic. Biol. Med. 46, 1058–1067 (2009).

    Article  PubMed  Google Scholar 

  65. Kong, Y.-Z. et al. Macrophage migration inhibitory factor induces MMP-9 expression: implications for destabilization of human atherosclerotic plaques. Atherosclerosis 178, 207–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Fiotti, N. et al. MMP-9 microsatellite polymorphism and susceptibility to carotid arteries atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26, 1330–1336 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Fiotti, N. et al. MMP-9 microsatellite polymorphism: association with the progression of intima-media thickening and constrictive remodeling of carotid atherosclerotic plaques. Atherosclerosis 182, 287–292 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Pandey, S. & Chandravati Wnt signaling cascade in restenosis: a potential therapeutic target of public health relevance in a North American cohort of Nebraska State. Mol. Biol. Rep. 41, 4549–4554 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Woldt, E. et al. The nuclear hormone receptor PPARγ counteracts vascular calcification by inhibiting Wnt5a signalling in vascular smooth muscle cells. Nat. Commun. 3, 1077 (2012).

    Article  PubMed  Google Scholar 

  70. Xin, H., Xin, F., Zhou, S. & Guan, S. The Wnt5a/Ror2 pathway is associated with determination of the differentiation fate of bone marrow mesenchymal stem cells in vascular calcification. Int. J. Mol. Med. 31, 583–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Cheng, S.-L. et al. Vascular smooth muscle LRP6 limits arteriosclerotic calcification in diabetic LDLR-/- mice by restraining noncanonical Wnt signals. Circ. Res. 117, 142–156 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Qin, L. et al. The novel role and underlying mechanism of Wnt5a in regulating cellular cholesterol accumulation. Clin. Exp. Pharmacol. Physiol. 41, 671–678 (2014).

    CAS  PubMed  Google Scholar 

  73. Wang, J. et al. WNT11-conditioned medium promotes angiogenesis through the activation of non-canonical WNT-PKC-JNK signaling pathway. Genes 11, 1277 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  74. Stefater, J. A. et al. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474, 511–515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pashirzad, M. et al. Role of Wnt5a in the pathogenesis of inflammatory diseases. J. Cell. Physiol. 232, 1611–1616 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Tian, F., Mauro, T. M. & Li, Z. The pathological role of Wnt5a in psoriasis and psoriatic arthritis. J. Cell. Mol. Med. 23, 5876–5883 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fiechter, R. H. et al. IL-12p40/IL-23p40 blockade with ustekinumab decreases the synovial inflammatory infiltrate through modulation of multiple signaling pathways including MAPK-ERK and Wnt. Front. Immunol. 12, 611656 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, Y. et al. The role of Ca2+/NFAT in dysfunction and inflammation of human coronary endothelial cells induced by sera from patients with Kawasaki disease. Sci. Rep. 10, 4706 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Morishita, Y. et al. Wnt11 gene therapy with adeno-associated virus 9 improves recovery from myocardial infarction by modulating the inflammatory response. Sci. Rep. 6, 21705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chaussabel, D. et al. Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102, 672–681 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Nau, G. J. et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl Acad. Sci. USA 99, 1503–1508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lehtonen, A. et al. Gene expression profiling during differentiation of human monocytes to macrophages or dendritic cells. J. Leukoc. Biol. 82, 710–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Shao, Y. et al. Biological functions of macrophage-derived Wnt5a, and its roles in human diseases. Oncotarget 7, 67674–67684 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ackers, I. et al. Blocking Wnt5a signaling decreases CD36 expression and foam cell formation in atherosclerosis. Cardiovasc. Pathol. 34, 1–8 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Pereira, C., Schaer, D. J., Bachli, E. B., Kurrer, M. O. & Schoedon, G. Wnt5A/CaMKII signaling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler. Thromb. Vasc. Biol. 28, 504–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Feng, Y. et al. The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. J. Biol. Chem. 293, 19290–19302 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Naskar, D. et al. Wnt5a–Rac1–NF-κB homeostatic circuitry sustains innate immune functions in macrophages. J. Immunol. 192, 4386–4397 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Barbero, G. et al. An autocrine Wnt5a loop promotes NF-κB pathway activation and cytokine/chemokine secretion in melanoma. Cells 8, 1060 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  89. Zhang, C.-J. et al. Wnt5a/Ror2 pathway contributes to the regulation of cholesterol homeostasis and inflammatory response in atherosclerosis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158547 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Ouchi, N. et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329, 454–457 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fuster, J. J. et al. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion. Diabetes 64, 1235–1248 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Ghila, L. et al. Chronically elevated exogenous glucose elicits antipodal effects on the proteome signature of differentiating human IPSC-derived pancreatic progenitors. Int. J. Mol. Sci. 22, 3698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Hotamisligil, G. S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665–668 (1996).

    Article  CAS  PubMed  Google Scholar 

  95. da Costa, R. M. et al. TNF-α induces vascular insulin resistance via positive modulation of PTEN and decreased Akt/eNOS/NO signaling in high fat diet-fed mice. Cardiovasc. Diabetol. 15, 119 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hotamisligil, G. Mechanisms of TNF-α-induced insulin resistance. Exp. Clin. Endocrinol. Diabetes 107, 119–125 (2009).

    Article  Google Scholar 

  97. Shoelson, S. E., Lee, J. & Yuan, M. Inflammation and the IKKβ/IκB/NF-κB axis in obesity- and diet-induced insulin resistance. Int. J. Obes. 27, S49–S52 (2003).

    Article  CAS  Google Scholar 

  98. Iacobellis, G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat. Rev. Endocrinol. 11, 363–371 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Oikonomou, E. K. & Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16, 83–99 (2019).

    Article  PubMed  Google Scholar 

  100. Van Gaal, L. F. Mechanisms linking obesity with cardiovascular disease. Nature 444, 875–880 (2006).

    Article  PubMed  Google Scholar 

  101. Camarena, V. et al. Novel atherogenic pathways from the differential transcriptome analysis of diabetic epicardial adipose tissue. Nutr. Metab. Cardiovasc. Dis. 27, 739–750 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Antonopoulos, A. S. et al. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-γ/Adiponectin Signalling. Circ. Res. 118, 842–855 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Iacobellis, G. & Baroni, M. G. Cardiovascular risk reduction throughout GLP-1 receptor agonist and SGLT2 inhibitor modulation of epicardial fat. J. Endocrinol. Invest. 45, 489–495 (2021).

    Article  PubMed  Google Scholar 

  104. Malavazos, A. E., Goldberger, J. J. & Iacobellis, G. Does epicardial fat contribute to COVID-19 myocardial inflammation? Eur. Heart J. 41, 2333–2333 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Villasante Fricke, A. C. & Iacobellis, G. Epicardial adipose tissue: clinical biomarker of cardio-metabolic risk. Int. J. Mol. Sci. 20, 5989 (2019).

    Article  PubMed Central  Google Scholar 

  106. Akoumianakis, I., Tarun, A. & Antoniades, C. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: identifying novel therapeutic targets. Br. J. Pharmacol. 174, 3411–3424 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Antonopoulos, A. S. et al. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl Med. 9, eaal2658 (2017).

    Article  PubMed  Google Scholar 

  108. Oikonomou, E. K. et al. Standardized measurement of coronary inflammation using cardiovascular computed tomography: integration in clinical care as a prognostic medical device. Cardiovasc. Res. 117, 2677–2689 (2021).

    CAS  PubMed  Google Scholar 

  109. Oikonomou, E. K. et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 392, 929–939 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kotanidis, C. P. & Antoniades, C. Perivascular fat imaging by computed tomography (CT): a virtual guide. Br. J. Pharmacol. 178, 4270–4290 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Wang, B. et al. Sfrp5/Wnt5a and leptin/adiponectin levels in the serum and the periarterial adipose tissue of patients with peripheral arterial occlusive disease. Clin. Biochem. 87, 46–51 (2021).

    Article  CAS  PubMed  Google Scholar 

  112. Catalán, V. et al. Activation of noncanonical wnt signaling through WNT5A in visceral adipose tissue of obese subjects is related to inflammation. J. Clin. Endocrinol. Metab. 99, E1407-17 (2014).

    Article  PubMed  Google Scholar 

  113. Ackers, I. & Malgor, R. Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diabetes Vasc. Dis. Res. 15, 3–13 (2018).

    Article  CAS  Google Scholar 

  114. Fuster, J. J., Ouchi, N., Gokce, N. & Walsh, K. Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ. Res. 118, 1786–1807 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Christodoulides, C., Lagathu, C., Sethi, J. K. & Vidal-Puig, A. Adipogenesis and WNT signalling. Trends Endocrinol. Metab. 20, 16–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  116. Tse, G. Mechanisms of cardiac arrhythmias. J. Arrhythmia 32, 75–81 (2016).

    Article  Google Scholar 

  117. Voorhees, A. P. & Han, H. C. Biomechanics of cardiac function. Compr. Physiol. 5, 1623–1644 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Azevedo, P. S., Polegato, B. F., Minicucci, M. F., Paiva, S. A. R. & Zornoff, L. A. M. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arquivos Bras. Cardiol. 106, 62–69 (2016).

    CAS  Google Scholar 

  119. Lopez, R. et al. Impaired myocardial energetics causes mechanical dysfunction in decompensated failing hearts. Function 1, zqaa018 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Doenst, T., Nguyen, T. D. & Abel, E. D. Cardiac metabolism in heart failure: implications beyond atp production. Circ. Res. 113, 709–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. D’Oria, R. et al. The role of oxidative stress in cardiac disease: from physiological response to injury factor. Oxid. Med. Cell. Longev. 2020, 1–29 (2020).

    Article  Google Scholar 

  122. Abraityte, A. et al. Wnt5a is elevated in heart failure and affects cardiac fibroblast function. J. Mol. Med. 95, 767–777 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Abraityte, A. et al. Wnt5a is associated with right ventricular dysfunction and adverse outcome in dilated cardiomyopathy. Sci. Rep. 7, 3490 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dumotier, B. M. A straightforward guide to the basic science behind arrhythmogenesis. Heart 100, 1907–1915 (2014).

    Article  PubMed  Google Scholar 

  125. Austin, K. M. et al. Molecular mechanisms of arrhythmogenic cardiomyopathy. Nat. Rev. Cardiol. 16, 519–537 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Dawson, K., Aflaki, M. & Nattel, S. Role of the Wnt-Frizzled system in cardiac pathophysiology: a rapidly developing, poorly understood area with enormous potential. J. Physiol. 591, 1409–1432 (2013).

    Article  PubMed  Google Scholar 

  127. Lv, X. et al. Overexpression of miR-27b-3p targeting Wnt3a regulates the signaling pathway of Wnt/β-catenin and attenuates atrial fibrosis in rats with atrial fibrillation. Oxid. Med. Cell. Longev. 2019, 5703764 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Parrotta, E. I. et al. Deciphering the role of wnt and rho signaling pathway in IPSC-derived ARVC cardiomyocytes by in silico mathematical modeling. Int. J. Mol. Sci. 22, 2004 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Guo, F., Yi, X., Li, M., Fu, J. & Li, S. Snail1 is positively correlated with atrial fibrosis in patients with atrial fibrillation and rheumatic heart disease. Exp. Ther. Med. 14, 4231–4237 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Dissanayake, S. K. et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J. Biol. Chem. 282, 17259–17271 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Beljaars, L., Daliri, S., Dijkhuizen, C., Poelstra, K. & Gosens, R. WNT-5A regulates TGF-β-related activities in liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G219–G227 (2017).

    Article  PubMed  Google Scholar 

  132. Kato, T. et al. Endothelial–mesenchymal transition in human atrial fibrillation. J. Cardiol. 69, 706–711 (2017).

    Article  PubMed  Google Scholar 

  133. Hinderer, S. & Schenke-Layland, K. Cardiac fibrosis–a short review of causes and therapeutic strategies. Adv. Drug Deliv. Rev. 146, 77–82 (2019).

    Article  CAS  PubMed  Google Scholar 

  134. Działo, E. et al. WNT3a and WNT5a transported by exosomes activate WNT signaling pathways in human cardiac fibroblasts. Int. J. Mol. Sci. 20, 1436 (2019).

    Article  PubMed Central  Google Scholar 

  135. Hagenmueller, M. et al. Dapper-1 is essential for Wnt5a induced cardiomyocyte hypertrophy by regulating the Wnt/PCP pathway. FEBS Lett. 588, 2230–2237 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, Y. et al. Wnt5a-mediated neutrophil recruitment has an obligatory role in pressure overload-induced cardiac dysfunction. Circulation 140, 487–499 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Anumonwo, J. M. B. & Herron, T. Fatty infiltration of the myocardium and arrhythmogenesis: potential cellular and molecular mechanisms. Front. Physiol. 9, 2 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Lorenzon, A. et al. Wnt/β-catenin pathway in arrhythmogenic cardiomyopathy. Oncotarget 8, 60640–60655 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Abou Ziki, M. D. & Mani, A. The interplay of canonical and noncanonical Wnt signaling in metabolic syndrome. Nutr. Res. 70, 18–25 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Wang, J. et al. Vibration and β-hydroxy-β-methylbutyrate treatment suppresses intramuscular fat infiltration and adipogenic differentiation in sarcopenic mice. J. Cachexia Sarcopenia Muscle 11, 564–577 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wang, S. et al. Nonalcoholic fatty liver disease induced by noncanonical Wnt and its rescue by Wnt3a. FASEB J. 29, 3436–3445 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tuomainen, T. & Tavi, P. The role of cardiac energy metabolism in cardiac hypertrophy and failure. Exp. Cell Res. 360, 12–18 (2017).

    Article  CAS  PubMed  Google Scholar 

  143. Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R. & Abel, E. D. Cardiac energy metabolism in heart failure. Circ. Res. 128, 1487–1513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, X. et al. SGLT2 inhibitors break the vicious circle between heart failure and insulin resistance: targeting energy metabolism. Heart Fail. Rev. 27, 961–980 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Moorer, M. C. & Riddle, R. C. Regulation of osteoblast metabolism by Wnt signaling. Endocrinol. Metab. 33, 318–330 (2018).

    Article  CAS  Google Scholar 

  146. Mo, Y. et al. The role of Wnt signaling pathway in tumor metabolic reprogramming. J. Cancer 10, 3789–3797 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Serrat, R. et al. The non-canonical Wnt/PKC pathway regulates mitochondrial dynamics through degradation of the arm-like domain-containing protein Alex3. PLoS ONE 8, e67773 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Arrázola, M. S., Silva-Alvarez, C. & Inestrosa, N. C. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Front. Cell. Neurosci. 9, 1–13 (2015).

    Article  Google Scholar 

  149. Li, H.-X., Lin, J., Jiang, B. & Yang, X.-J. Wnt11 preserves mitochondrial membrane potential and protects cardiomyocytes against hypoxia through paracrine signaling. J. Cell. Biochem. 121, 1144–1155 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Zhu, L. et al. Upregulation of non-canonical Wnt ligands and oxidative glucose metabolism in NASH induced by methionine-choline deficient diet. Trends Cell Mol. Biol. 13, 47–56 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Heusch, G. Myocardial ischaemia–reperfusion injury and cardioprotection in perspective. Nat. Rev. Cardiol. 17, 773–789 (2020).

    Article  PubMed  Google Scholar 

  152. van der Pol, A., van Gilst, W. H., Voors, A. A. & van der Meer, P. Treating oxidative stress in heart failure: past, present and future. Eur. J. Heart Fail. 21, 425–435 (2019).

    Article  PubMed  Google Scholar 

  153. Kurian, G. A., Rajagopal, R., Vedantham, S. & Rajesh, M. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: revisited. Oxid. Med. Cell. Longev. 2016, 1656450 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Iwata, K. et al. Up-regulation of NOX1/NADPH oxidase following drug-induced myocardial injury promotes cardiac dysfunction and fibrosis. Free Radic. Biol. Med. 120, 277–288 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Scolletta, S. & Biagioli, B. Energetic myocardial metabolism and oxidative stress: let’s make them our friends in the fight against heart failure. Biomed. Pharmacother. 64, 203–207 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Chen, B. et al. Co-expression of Akt1 and Wnt11 promotes the proliferation and cardiac differentiation of mesenchymal stem cells and attenuates hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Biomed. Pharmacother. 108, 508–514 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Nakamura, K. et al. Secreted frizzled-related protein 5 diminishes cardiac inflammation and protects the heart from ischemia/reperfusion injury. J. Biol. Chem. 291, 2566–2575 (2016).

    Article  CAS  PubMed  Google Scholar 

  158. Matsushima, S., Tsutsui, H. & Sadoshima, J. Physiological and pathological functions of NADPH oxidases during myocardial ischemia-reperfusion. Trends Cardiovasc. Med. 24, 202–205 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Akoumianakis, I. et al. Insulin-induced vascular redox dysregulation in human atherosclerosis is ameliorated by dipeptidyl peptidase 4 inhibition. Sci. Transl Med. 12, eaav8824 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhang, P. CaMKII: the molecular villain that aggravates cardiovascular disease. Exp. Ther. Med. 13, 815–820 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liu, J. & Lin, A. Role of JNK activation in apoptosis: a double-edged sword. Cell Res. 15, 36–42 (2005).

    Article  PubMed  Google Scholar 

  162. Blagodatski, A., Poteryaev, D. & Katanaev, V. L. Targeting the Wnt pathways for therapies. Mol. Cell. Ther. 2, 28 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Nusse, R. & Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985–999 (2017).

    Article  CAS  PubMed  Google Scholar 

  164. Naik, P., Marwah, M., Venkataraman, M., Rajawat, G. S. & Nagarsenker, M. Drug Delivery Approaches and Nanosystems. Volume 2: Drug Targeting Aspects of Nanotechnology (Apple Academic, 2017).

  165. Zhang, F., Wen, Y. & Guo, X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum. Mol. Genet. 23, R40–R46 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Crooke, S. T. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid. Ther. 27, 70–77 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Reichert, J. Monoclonal antibodies as innovative therapeutics. Curr. Pharm. Biotechnol. 9, 423–430 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Luo, Y.-L. et al. Macrophage-specific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano 12, 994–1005 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Schulte, G. & Bryja, V. WNT signalling: mechanisms and therapeutic opportunities. Br. J. Pharmacol. 174, 4543–4546 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, J. et al. Deficiency of Rac1 blocks NADPH oxidase activation, inhibits endoplasmic reticulum stress, and reduces myocardial remodeling in a mouse model of type 1 diabetes. Diabetes 59, 2033–2042 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Porte, B., Marguerit, G., Thomasseau, S., Paquet, C. & Hugon, J. Dose-dependent neuroprotective effect of the JNK inhibitor Brimapitide in 5xFAD transgenic mice. Brain Res. 1727, 146587 (2020).

    Article  CAS  PubMed  Google Scholar 

  174. Greenberg, S. et al. Evaluation of the JNK inhibitor, CC-90001, in a phase 1b pulmonary fibrosis trial. Eur. Respir. J. 50, OA474 (2017).

    Google Scholar 

  175. Ebenebe, O., Heather, A. & Erickson, J. The role of CaMKII in atherosclerotic plaque calcification in the ApoE-null mouse. Heart Lung Circ. 26, S65 (2017).

    Article  Google Scholar 

  176. He, Q., Cheng, J. & Wang, Y. Chronic CaMKII inhibition reverses cardiac function and cardiac reserve in HF mice. Life Sci. 219, 122–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Douglas, G. et al. A key role for the novel coronary artery disease gene JCAD in atherosclerosis via shear stress mechanotransduction. Cardiovasc. Res. 116, 1863–1874 (2020).

    Article  CAS  PubMed  Google Scholar 

  178. Weber, C. & Noels, H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17, 1410–1422 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Pirillo, A., Bonacina, F., Norata, G. D. & Catapano, A. L. The interplay of lipids, lipoproteins, and immunity in atherosclerosis. Curr. Atheroscler. Rep. 20, 12 (2018).

    Article  PubMed  Google Scholar 

  180. Silvestre-Roig, C. et al. Atherosclerotic plaque destabilization. Circ. Res. 114, 214–226 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Hansson, G. K. Inflammation, atherosclerosis and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.A. acknowledges support from the British Heart Foundation (CH/F/21/90009, TG/19/2/34831 and RG/F/21/110040), theOxford BHF Centre of Research Excellence (RE/18/3/34214) and the Oxford NIHR Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

I.A. and M.P. researched data for the article. I.A. and C.A. contributed to the discussion of content, and I.A. wrote the manuscript. All the authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Charalambos Antoniades.

Ethics declarations

Competing interests

C.A. is founder, shareholder and director of Caristo Diagnostics, a CT image analysis company. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akoumianakis, I., Polkinghorne, M. & Antoniades, C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 19, 783–797 (2022). https://doi.org/10.1038/s41569-022-00718-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-022-00718-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing