Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational modelling of cardiovascular pathophysiology to risk stratify commercial spaceflight

Abstract

For more than 60 years, humans have travelled into space. Until now, the majority of astronauts have been professional, government agency astronauts selected, in part, for their superlative physical fitness and the absence of disease. Commercial spaceflight is now becoming accessible to members of the public, many of whom would previously have been excluded owing to unsatisfactory fitness or the presence of cardiorespiratory diseases. While data exist on the effects of gravitational and acceleration (G) forces on human physiology, data on the effects of the aerospace environment in unselected members of the public, and particularly in those with clinically significant pathology, are limited. Although short in duration, these high acceleration forces can potentially either impair the experience or, more seriously, pose a risk to health in some individuals. Rather than expose individuals with existing pathology to G forces to collect data, computational modelling might be useful to predict the nature and severity of cardiovascular diseases that are of sufficient risk to restrict access, require modification, or suggest further investigation or training before flight. In this Review, we explore state-of-the-art, zero-dimensional, compartmentalized models of human cardiovascular pathophysiology that can be used to simulate the effects of acceleration forces, homeostatic regulation and ventilation–perfusion matching, using data generated by long-arm centrifuge facilities of the US National Aeronautics and Space Administration and the European Space Agency to risk stratify individuals and help to improve safety in commercial suborbital spaceflight.

Key points

  • Commercial suborbital spaceflight (CSOS) is a relatively new enterprise that, unlike traditional aviation, involves considerable acceleration (G) forces, which represents a new challenge for operators and aviation authorities who are required to develop medical safety guidelines.

  • Physiologically, CSOS participants are unlike professional astronauts, and the effects of increased G forces in these individuals are largely unknown, particularly in those with ageing or diseased cardiovascular systems.

  • Computational modelling is being used to simulate the effects of CSOS on the human cardiovascular system in various diseased and comorbid states to assess tolerance to increased G and to help to develop an evidence base to support medical guideline development.

  • Zero-dimensional, electrical analogue models are apposite for this objective, with a fully transient analysis and representation of homeostatic regulation mechanisms, species (oxygen and carbon dioxide) transport and directional G loading, which can be represented with capacitors.

  • Challenges include how clinical data are integrated and interpreted in the model and how model outputs will be validated, because exposing potentially high-risk individuals to extreme G forces might be unsafe and, therefore, unethical.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gravitational and acceleration forces on earth and during CSOS.
Fig. 2: Representative G profiles for two variants of CSOS craft.
Fig. 3: Modelling the human cardiovascular system.

Similar content being viewed by others

References

  1. Morris, P. D. et al. Computational fluid dynamics modelling in cardiovascular medicine. Heart 102, 18–28 (2016). This article describes the general approach of various orders of modelling in the context of cardiovascular physiology and disease.

    Article  PubMed  Google Scholar 

  2. International Civil Aviation Organization. Manual of Civil Aviation Medicine. 3rd edn Ch. III-1-1. Doc. 8984 (ICAO, 2012).

  3. International Air Transport Association. IATA Medical Manual for Aviation. 12th edn Ch. 6.1.6 (IATA, 2020).

  4. Federal Aviation Administration. Human space flight. FAA www.faa.gov/space/human_spaceflight (2024).

  5. Space Industry Act 2018. Legislation.gov.uk www.legislation.gov.uk/ukpga/2018/5/contents (2024).

  6. The Space Industry Regulations 2021. Legislation.gov.uk www.legislation.gov.uk/uksi/2021/792/contents (2024).

  7. Spalart, P. R. & Venkatakrishnan, V. On the role and challenges of CFD in the aerospace industry. Aeronautical J. 120, 209–232 (2016).

    Article  Google Scholar 

  8. Sjostrand, T. Volume and distribution of blood and their significance in regulating the circulation. Physiol. Rev. 33, 202–228 (1953).

    Article  CAS  PubMed  Google Scholar 

  9. Maw, G. J., Mackenzie, I. L. & Taylor, N. A. Redistribution of body fluids during postural manipulations. Acta Physiol. Scand. 155, 157–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Leverett, S. D. Jr, Burton, R. R., Crossley, R. J., Michaelson, E. D. & Shubrooks, S. J. Jr. Physiologic responses to high, sustained +Gz acceleration. Defense Technical Information Center. apps.dtic.mil/sti/citations/AD0777604 (1973).

  11. Howard, P. in A Textbook of Aviation Physiology (ed. Gillies, J. A.) 551–687 (Pergamon Press, 1965).

  12. McKenzie, I. & Gillingham, K. K. Incidence of cardiac dysrhythmias occurring during centrifuge training. Aviat. Space Environ. Med. 64, 687–691 (1993).

    CAS  PubMed  Google Scholar 

  13. Whinnery, A. M., Whinnery, J. E. & Hickman, J. R. High +Gz centrifuge training: the electrocardiographic response to +Gz-induced loss of consciousness. Aviat. Space Environ. Med. 61, 609–614 (1990).

    CAS  PubMed  Google Scholar 

  14. Wang, Y. X., Xu, L., Wei, W. B. & Jonas, J. B. Intraocular pressure and its normal range adjusted for ocular and systemic parameters. The Beijing Eye Study 2011. PLoS ONE 13, e0196926 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cochran, L. B., Gard, P.W. & Norsworthy, M. E. Variations in Human G Tolerance to Positive Acceleration (US Naval School of Aviation Medicine, 1954).

  16. Whinnery, T., Forster, E. M. & Rogers, P. B. The +Gz recovery of consciousness curve. Extrem. Physiol. Med. 3, 9 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tripp, L. D. et al. +Gz acceleration loss of consciousness: time course of performance deficits with repeated experience. Hum. Factors 48, 109–120 (2006).

    Article  PubMed  Google Scholar 

  18. Whinnery, T. & Forster, E. M. The +Gz-induced loss of consciousness curve. Extrem. Physiol. Med. 2, 19 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Green, N. D. C. in Ernsting’s Aviation Medicine Ch. 7 (eds Gradwell, D. P. & Rainford, D.) 131–156 (CRC Press, 2016).

  20. Nishida, Y. et al. Effects and biological limitations of +Gz acceleration on the autonomic functions-related circulation in rats. J. Physiol. Sci. 66, 447–462 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Eiken, O., Keramidas, M. E., Taylor, N. A. & Gronkvist, M. Intraocular pressure and cerebral oxygenation during prolonged headward acceleration. Eur. J. Appl. Physiol. 117, 61–72 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Park, M., Yoo, S., Seol, H., Kim, C. & Hong, Y. Unpredictability of fighter pilots’ g duration tolerance by anthropometric and physiological characteristics. Aerosp. Med. Hum. Perform. 86, 397–401 (2015).

    Article  PubMed  Google Scholar 

  23. Webb, J. T., Oakley, C. J. & Meeker, L. J. Unpredictability of fighter pilot G tolerance using anthropometric and physiologic variables. Aviat. Space Environ. Med. 62, 128–135 (1991).

    CAS  PubMed  Google Scholar 

  24. Tu, M. Y. et al. Roles of physiological responses and anthropometric factors on the gravitational force tolerance for occupational hypergravity exposure. Int. J. Environ. Res. Public. Health 17, 8061 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nunneley, S. A. & Stribley, R. F. Heat and acute dehydration effects on acceleration response in man. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 47, 197–200 (1979).

    CAS  PubMed  Google Scholar 

  26. Mills, W. D., Greenhaw, R. M. & Wang, J. M. P. A medical review of fatal high-G U.S. aerobatic accidents. Aerosp. Med. Hum. Perform. 90, 959–965 (2019).

    Article  PubMed  Google Scholar 

  27. Eiken, O., Mekjavic, I., Sundblad, P. & Kolegard, R. G tolerance vis-a-vis pressure-distension and pressure-flow relationships of leg arteries. Eur. J. Appl. Physiol. 112, 3619–3627 (2012).

    Article  PubMed  Google Scholar 

  28. Sundblad, P., Kolegard, R., Migeotte, P. F., Deliere, Q. & Eiken, O. The arterial baroreflex and inherent G tolerance. Eur. J. Appl. Physiol. 116, 1149–1157 (2016).

    Article  PubMed  Google Scholar 

  29. Pollock, R. D. et al. Hemodynamic responses and G protection afforded by three different anti-G systems. Aerosp. Med. Hum. Perform. 90, 925–933 (2019).

    Article  PubMed  Google Scholar 

  30. Shubrooks, S. J. Jr Positive-pressure breathing as a protective technique during +Gz acceleration. J. Appl. Physiol. 35, 294–298 (1973).

    Article  PubMed  Google Scholar 

  31. Glaister, D. H. The Effects of Gravity and Acceleration on the Lung. The Advisory Group for Aerospace Research and Development (NATO, 1970).

  32. Ryan, E. A., Kerr, W. K. & Franks, W. R. Some physiological findings on normal men subjected to negative g. J. Aviat. Med. 21, 173–194 (1950).

    CAS  PubMed  Google Scholar 

  33. Lehr, A. K. et al. Previous exposure to negative Gz reduces relaxed +Gz tolerance. Aviat. Space Environ. Med. 63, 405 (1992).

    Google Scholar 

  34. Prior, A. R. J., Adcock, T. R. & McCarthy, G. W. In-flight arterial blood pressure changes during −Gz to +Gz manoeuvring. Aviat. Space Environ. Med. 64, 428 (1993).

    Google Scholar 

  35. Menden, T. et al. Dynamic lung behavior under high G acceleration monitored with electrical impedance tomography. Physiol. Meas. 42, 094001 (2021).

    Article  Google Scholar 

  36. Pollock, R. D. et al. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp. Med. Hum. Perform. 92, 633–641 (2021).

    Article  PubMed  Google Scholar 

  37. Sandler, H. Cineradiographic observations of human subjects during transverse accelerations of +5Gx and +10Gx. Aerosp. Med. 37, 445–448 (1966).

    CAS  PubMed  Google Scholar 

  38. Lindberg, E. F., Marshall, H. W., Sutterer, W. F., Mc, G. T. & Wood, E. H. Studies of cardiac output and circulatory pressures in human beings during forward acceleration. Aerosp. Med. 33, 81–91 (1962).

    CAS  PubMed  Google Scholar 

  39. Rogge, J. D., Meyer, J. F. & Brown, W. K. Comparison of the incidence of cardiac arrhythmias during +Gx acceleration, treadmill exercise and tilt table testing. Aerosp. Med. 40, 1–5 (1969).

    CAS  PubMed  Google Scholar 

  40. Suresh, R., Blue, R. S., Mathers, C. H., Castleberry, T. L. & Vanderploeg, J. M. Dysrhythmias in laypersons during centrifuge-simulated suborbital spaceflight. Aerosp. Med. Hum. Perform. 88, 1008–1015 (2017).

    Article  PubMed  Google Scholar 

  41. Torphy, D. E., Leverett, S. D. Jr & Lamb, L. E. Cardiac arrhythmias occurring during acceleration. Aerosp. Med. 37, 52–58 (1966).

    CAS  PubMed  Google Scholar 

  42. Pollock, R. D., Hodkinson, P. D., Smith, T. G. & Oh, G. The x, y and z of human physiological responses to acceleration. Exp. Physiol. 106, 2367–2384 (2021).

    Article  PubMed  Google Scholar 

  43. Smith, T. G. et al. Physiological effects of centrifuge-simulated suborbital spaceflight. Aerosp. Med. Hum. Perform. 93, 830–839 (2022).

    Article  PubMed  Google Scholar 

  44. Blue, R. S., Riccitello, J. M., Tizard, J., Hamilton, R. J. & Vanderploeg, J. M. Commercial spaceflight participant G-force tolerance during centrifuge-simulated suborbital flight. Aviat. Space Environ. Med. 83, 929–934 (2012).

    Article  PubMed  Google Scholar 

  45. Blue, R. S. et al. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition. Aviat. Space Environ. Med. 85, 721–729 (2014).

    Article  PubMed  Google Scholar 

  46. Blue, R. S., Reyes, D. P., Castleberry, T. L. & Vanderploeg, J. M. Centrifuge-simulated suborbital spaceflight in subjects with cardiac implanted devices. Aerosp. Med. Hum. Perform. 86, 410–413 (2015).

    Article  PubMed  Google Scholar 

  47. Blue, R. S., Blacher, E., Castleberry, T. L. & Vanderploeg, J. M. Centrifuge-simulated suborbital spaceflight in a subject with cardiac malformation. Aerosp. Med. Hum. Perform. 86, 999–1003 (2015).

    Article  PubMed  Google Scholar 

  48. Levin, D. R., Blue, R. S., Castleberry, T. L. & Vanderploeg, J. M. Tolerance of centrifuge-simulated suborbital spaceflight in subjects with implanted insulin pumps. Aerosp. Med. Hum. Perform. 86, 407–409 (2015).

    Article  PubMed  Google Scholar 

  49. Suresh, R., Blue, R. S., Mathers, C., Castleberry, T. L. & Vanderploeg, J. M. Sustained accelerated idioventricular rhythm in a centrifuge-simulated suborbital spaceflight. Aerosp. Med. Hum. Perform. 88, 789–793 (2017).

    Article  PubMed  Google Scholar 

  50. Center of Excellence for Commercial Space Transportation. Flight crew medical standards and spaceflight participant medical acceptance guidelines for commercial space flight. COECST coe-cst.org/wp-content/uploads/2019/02/Vanderploeg-183-flight-crew-medical-standards.pdf (2012).

  51. Stepanek, J., Blue, R. S. & Parazynski, S. Space medicine in the era of civilian spaceflight. N. Engl. J. Med. 380, 1053–1060 (2019).

    Article  PubMed  Google Scholar 

  52. Rowe, W. J. The Apollo 15 space syndrome. Circulation 97, 119–120 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Lee, S. M. C., Stenger, M. B., Laurie, S. S. & Macias, B. R. Risk of cardiac rhythm problems during spaceflight. NASA Technical Reports Server ntrs.nasa.gov/citations/20170005625 (2017).

  54. Hamilton, D. R. in Principles of Clinical Medicine for Space Flight Ch. 16 (eds Barratt, M. R. & Pool, S. L.) 317–359 (Springer, 2008).

  55. Aunon-Chancellor, S. M., Pattarini, J. M., Moll, S. & Sargsyan, A. Venous thrombosis during spaceflight. N. Engl. J. Med. 382, 89–90 (2020).

    Article  PubMed  Google Scholar 

  56. Rehnberg, L. et al. Three methods of manual external chest compressions during microgravity simulation. Aviat. Space Environ. Med. 85, 687–693 (2014).

    Article  PubMed  Google Scholar 

  57. Braunecker, S., Douglas, B. & Hinkelbein, J. Comparison of different techniques for in microgravity – a simple mathematic estimation of cardiopulmonary resuscitation quality for space environment. Am. J. Emerg. Med. 33, 920–924 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics 1st edn (Pergamon Press, 1966).

  59. McCormick, M., Nordsletten, D. A., Kay, D. & Smith, N. P. Simulating left ventricular fluid–solid mechanics through the cardiac cycle under LVAD support. J. Comput. Phys. 244, 80–96 (2013).

    Article  Google Scholar 

  60. Nordsletten, D. et al. Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function. Int. J. Numer. Method. Biomed. Eng. 27, 1017–1039 (2011).

    Article  Google Scholar 

  61. Smith, N. et al. euHeart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. Interface Focus. 1, 349–364 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Marsden, A. L. & Kung, E. in Computational Bioengineering Ch. 7 (ed. Zhang, G.) 163–190 (CRC Press, 2015).

  63. Gallo, C., Ridolfi, L. & Scarsoglio, S. Cardiovascular deconditioning during long-term spaceflight through multiscale modeling. npj Microgravity 6, 27 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mohammadyari, P., Gadda, G. & Taibi, A. Modelling physiology of haemodynamic adaptation in short-term microgravity exposure and orthostatic stress on Earth. Sci. Rep. 11, 4672 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boileau, E. et al. A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. Method. Biomed. Eng. 31, e02732 (2015).

    Article  Google Scholar 

  66. Hughes, T. J. R. & Lubliner, J. On the one-dimensional theory of blood flow in the larger vessels. Math. Biosci. 18, 161–170 (1973).

    Article  Google Scholar 

  67. Sherwin, S. J., Franke, V., Peiró, J. & Parker, K. One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47, 217–250 (2003).

    Article  Google Scholar 

  68. van de Vosse, F. N. & Stergiopulos, N. Pulse wave propagation in the arterial tree. Annu. Rev. Fluid Mech. 43, 467–499 (2011).

    Article  Google Scholar 

  69. Frank, O. The basic shape of the arterial pulse. First treatise: mathematical analysis. 1899. J. Mol. Cell. Cardiol. 22, 255–277 (1990).

    Article  CAS  PubMed  Google Scholar 

  70. Sagawa, K., Lie, R. K. & Schaefer, J. Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses” Zeitschrift fur Biologie 37: 483-526 (1899). J. Mol. Cell. Cardiol. 22, 253–254 (1990).

    Article  CAS  PubMed  Google Scholar 

  71. Shi, Y., Lawford, P. & Hose, R. Review of zero-D and 1-D models of blood flow in the cardiovascular system. Biomed. Eng. Online 10, 33 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  73. Whittle, R. S. & Diaz-Artiles, A. Gravitational effects on carotid and jugular characteristics in graded head-up and head-down tilt. J. Appl. Physiol. 134, 217–229 (2023).

    Article  PubMed  Google Scholar 

  74. Smith, N. P. A computational study of the interaction between coronary blood flow and myocardial mechanics. Physiol. Meas. 25, 863–877 (2004).

    Article  PubMed  Google Scholar 

  75. Huberts, W. et al. What is needed to make cardiovascular models suitable for clinical decision support? A viewpoint paper. J. Comput. Sci. 24, 68–84 (2018). This paper summarizes the challenges for patient-tailored treatment planning using computational approaches, illustrated using two clinical cases.

    Article  Google Scholar 

  76. Saltelli, A. et al. Global Sensitivity Analysis. The Primer (Wiley, 2008).

  77. Eck, V. G. et al. A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications. Int. J. Numer. Method. Biomed. Eng. 32, e02755 (2016).

    Article  Google Scholar 

  78. Halliday, I. & Morris, P. D. Modelling the effects of gravitational forces on cardiovascular pathophysiology: the potential role of electrical analogue models. Executive summary. UK Civil Aviation Authority. www.caa.co.uk/space/about-us/human-spaceflight-research (2024).

  79. Heldt, T., Shim, E. B., Kamm, R. D. & Mark, R. G. Computational modeling of cardiovascular response to orthostatic stress. J. Appl. Physiol. 92, 1239–1254 (2002). This paper describes a whole-body pulsatile model of the tilt-test response, including closed loop regulation and limited comparison with returning astronaut data.

    Article  PubMed  Google Scholar 

  80. Olufsen, M. S. et al. Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J. Appl. Physiol. 99, 1523–1537 (2005).

    Article  PubMed  Google Scholar 

  81. Kim, Y. S. et al. Effects of aging on the cerebrovascular orthostatic response. Neurobiol. Aging 32, 344–353 (2011).

    Article  PubMed  Google Scholar 

  82. Keijsers, J. M. T. Numerical analysis of the hemodynamic response to orthostatic stress. Thesis, Technische Universiteit Eindhoven (2017).

  83. Blanc, J. J. Syncope: definition, epidemiology, and classification. Cardiol. Clin. 33, 341–345 (2015).

    Article  PubMed  Google Scholar 

  84. Claydon, V. E., Steeves, J. D. & Krassioukov, A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord. 44, 341–351 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Rutan, G. H. et al. Orthostatic hypotension in older adults. The Cardiovascular Health Study. CHS Collaborative Research Group. Hypertension 19, 508–519 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Buckey, J. C. Jr. et al. Orthostatic intolerance after spaceflight. J. Appl. Physiol. 81, 7–18 (1996).

    Article  PubMed  Google Scholar 

  87. van Loon, L. M., Steins, A., Schulte, K. M., Gruen, R. & Tucker, E. M. Computational modeling of orthostatic intolerance for travel to Mars. npj Microgravity 8, 34 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Keith Sharp, M., Batzel, J. J. & Montani, J. P. Space physiology IV: mathematical modeling of the cardiovascular system in space exploration. Eur. J. Appl. Physiol. 113, 1919–1937 (2013). This paper is a review of models of (patho)physiological processes important for the CSOS application, covering literature up to 2013.

    Article  CAS  PubMed  Google Scholar 

  89. Boyers, D. G., Cuthbertson, J. G. & Luetscher, J. A. Simulation of the human cardiovascular system: a model with normal responses to change of posture, blood loss, transfusion, and autonomic blockade. Simulation 18, 197–206 (1972).

    Article  Google Scholar 

  90. Avula, X. J. & Oestreicher, H. L. Mathematical model of the cardiovascular system under acceleration stress. Aviat. Space Environ. Med. 49, 279–286 (1978).

    CAS  PubMed  Google Scholar 

  91. White, R. J. & Blomqvist, C. G. Central venous pressure and cardiac function during spaceflight. J. Appl. Physiol. 85, 738–746 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Snyder, M. F. & Rideout, V. C. Computer simulation studies of the venous circulation. IEEE Trans. Biomed. Eng. 16, 325–334 (1969).

    Article  CAS  PubMed  Google Scholar 

  93. Hyndman, B. W. A digital simulation of the human cardiovascular system. INFOR 10, 8–35 (1972).

    Google Scholar 

  94. Croston, R. C. & Fitzjerrell, D. G. Cardiovascular model for the simulation of exercise, lower body negative pressure, and tilt experiments. Model. Simul. 5, 471–476 (1974).

    Google Scholar 

  95. Mynard, J. P., Davidson, M. R., Penny, D. J. & Smolich, J. J. A simple, versatile valve model for use in lumped parameter and one-dimensional cardiovascular models. Int. J. Numer. Method. Biomed. Eng. 28, 626–641 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Korakianitis, T. & Shi, Y. A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction. Med. Eng. Phys. 28, 613–628 (2006). This paper reports a widely used, mathematically succinct description of cardiac pulsation.

    Article  PubMed  Google Scholar 

  97. Walley, K. R. Left ventricular function: time-varying elastance and left ventricular aortic coupling. Crit. Care 20, 270 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Arts, T., Bovendeerd, P. H., Prinzen, F. W. & Reneman, R. S. Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys. J. 59, 93–102 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bovendeerd, P. H., Borsje, P., Arts, T. & van De Vosse, F. N. Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study. Ann. Biomed. Eng. 34, 1833–1845 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Archer, G. T. Computational modelling in the management of patients with aortic valve stenosis. Thesis, University of Sheffield (2020).

  101. Stergiopulos, N., Westerhof, B. E. & Westerhof, N. Total arterial inertance as the fourth element of the windkessel model. Am. J. Physiol. 276, H81–H88 (1999).

    CAS  PubMed  Google Scholar 

  102. Azhari, H. Basics of Biomedical Ultrasound for Engineers (Wiley, 2010).

  103. Diaz-Artiles, A., Heldt, T. & Young, L. R. Computational model of cardiovascular response to centrifugation and lower body cycling exercise. J. Appl. Physiol. 127, 1453–1468 (2019). This paper describes a modelling study and also reports carefully curated experimental data on centrifugation combined with exercise used for model validation.

    Article  CAS  PubMed  Google Scholar 

  104. Blomqvist, C. G. & Stone, H. L. in Handbook of Physiology, Section 2: The Cardiovascular System Vol. III, Pt 2, Ch. 28 (eds Hamilton, W. F. & Dow, P.) 1025–1063 (Williams & Wilkins, 1983).

  105. Beneken, J. & DeWit, B. in Physical Bases of Circulatory Transport: Regulation and Exchange. Ch. 1 (eds Reeve, E. B. & Guyton, A. C.) 1–45 (Saunders, 1967).

  106. Srinivasan, R. S., Simanook, K. E. & Charles, J. B. Computer simulation analysis of the effects of countermeasures for re-entry orthostatic intolerance. Physiologist 35, S165–S168 (1992).

    CAS  PubMed  Google Scholar 

  107. Broskey, J. & Sharp, M. K. Evaluation of mechanisms of postflight orthostatic intolerance with a simple cardiovascular system model. Ann. Biomed. Eng. 35, 1800–1811 (2007).

    Article  PubMed  Google Scholar 

  108. Coats, B. W. & Sharp, M. K. Simulated stand tests and centrifuge training to prevent orthostatic intolerance on Earth, moon, and Mars. Ann. Biomed. Eng. 38, 1119–1131 (2010). This paper describes the application of a cardiovascular, non-pulsatile, seven compartment model to compare centrifuge and gravitational conditions in male and female individuals, including capillary filtration effects.

    Article  PubMed  Google Scholar 

  109. Etter, K. E., Goswami, N. & Sharp, M. K. Modelling of cardiovascular response to graded orthostatic stress: role of capillary filtration. Eur. J. Clin. Invest. 41, 807–819 (2011).

    Article  PubMed  Google Scholar 

  110. Olufsen, M. S. et al. Modeling baroreflex regulation of heart rate during orthostatic stress. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1355–R1368 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Olufsen, M. S., Alston, A. V., Tran, H. T., Ottesen, J. T. & Novak, V. Modeling heart rate regulation – part I: Sit-to-stand versus head-up tilt. Cardiovasc. Eng. 8, 73–87 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Green, J. F. & Miller, N. C. A model describing the response of the circulatory system to acceleration stress. Ann. Biomed. Eng. 1, 455–467 (1973).

    Article  CAS  PubMed  Google Scholar 

  113. Ottesen, J. T., Novak, V. & Olufsen, M. S. in Mathematical Modeling and Validation in Physiology: Applications to the Cardiovascular and Respiratory Systems. Ch. 10 (eds Batzel, J. J., Bachar, M. & Kappel, F.) 177–213 (Springer, 2013). This chapter reports the patient-specific model validation under sit-to-stand and head-up tilt conditions, including sensitivity analysis and non-linear optimization.

  114. Ursino, M. & Magosso, E. Role of short-term cardiovascular regulation in heart period variability: a modeling study. Am. J. Physiol. Heart Circ. Physiol. 284, H1479–H1493 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Ursino, M. & Lodi, C. A. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model. Am. J. Physiol. 274, H1715–H1728 (1998).

    CAS  PubMed  Google Scholar 

  116. Ursino, M. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am. J. Physiol. 275, H1733–H1747 (1998). This paper reports a physiologically complete description of the baroreflex regulation mechanism for the CSOS application.

    CAS  PubMed  Google Scholar 

  117. Melchior, F. M., Srinivasan, R. S. & Charles, J. B. Mathematical modeling of human cardiovascular system for simulation of orthostatic response. Am. J. Physiol. Heart Circ. Physiol. 262, H1920–H1933 (1992). This is a landmark paper that sets out a potential modelling strategy encompassing regulation, mathematical modelling and application to short-term orthostatic responses of the cardiovascular system.

    Article  CAS  Google Scholar 

  118. Leaning, M. S., Pullen, H. E., Carson, E. R. & Finkelstein, L. Modelling a complex biological system: the human cardiovascular system – 1. Methodology and model description. Trans. Inst. Meas. Control. 5, 71–86 (1983).

    Article  Google Scholar 

  119. Leaning, M. S. et al. Modelling a complex biological system: the human cardiovascular system – 2. Model validation, reduction and development. Trans. Inst. Meas. Control. 5, 87–98 (1983).

    Article  Google Scholar 

  120. Peterson, K., Ozawa, E. T., Pantalos, G. M. & Sharp, M. K. Numerical simulation of the influence of gravity and posture on cardiac performance. Ann. Biomed. Eng. 30, 247–259 (2002).

    Article  PubMed  Google Scholar 

  121. Heldt, T., Long, B., Verghese, G. C., Szolovits, P. & Mark, R. G. Integrating data, models, and reasoning in critical care. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2006, 350–353 (2006).

    Article  PubMed  Google Scholar 

  122. Whittle, R. S. & Diaz-Artiles, A. Modeling individual differences in cardiovascular response to gravitational stress using a sensitivity analysis. J. Appl. Physiol. 130, 1983–2001 (2021). This paper is the first to provide a sensitivity analysis of a model for assessing the cardiovascular response to gravitational loading conditions.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Jaron, D., Moore, T. W. & Chu, C. L. A cardiovascular model for studying impairment of cerebral function during +Gz stress. Aviat. Space Environ. Med. 55, 24–31 (1984).

    CAS  PubMed  Google Scholar 

  124. Jaron, D., Moore, T. W. & Bai, J. Cardiovascular responses to acceleration stress: a computer simulation. Proc. IEEE 76, 700–707 (1988). This is a report of modelling the effects of acceleration stress on peripheral and central vision, including the venous system, physiological compensatory mechanisms, and the effects of protective devices and manoeuvres.

    Article  Google Scholar 

  125. Al-Dahan, M. I., Leaning, M. S., Carson, E. R., Hill, D. W. & Finkelstein, L. The validation of complex, unidentifiable models of the cardiovascular system. IFAC Proc. Vol. 18, 1213–1218 (1985).

    Article  Google Scholar 

  126. Ursino, M. & Magosso, E. Acute cardiovascular response to isocapnic hypoxia. I. A mathematical model. Am. J. Physiol. Heart Circ. Physiol. 279, H149–H165 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Ellwein, L. M. et al. Patient-specific modeling of cardiovascular and respiratory dynamics during hypercapnia. Math. Biosci. 241, 56–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Fernandes, L. G., Trenhago, P. R., Feijoo, R. A. & Blanco, P. J. Integrated cardiorespiratory system model with short timescale control mechanisms. Int. J. Numer. Method. Biomed. Eng. 37, e3332 (2021).

    Article  PubMed  Google Scholar 

  129. Fresiello, L., Meyns, B., Di Molfetta, A. & Ferrari, G. A model of the cardiorespiratory response to aerobic exercise in healthy and heart failure conditions. Front. Physiol. 7, 189 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Summers, R. L., Platts, S., Myers, J. G. & Coleman, T. G. Theoretical analysis of the mechanisms of a gender differentiation in the propensity for orthostatic intolerance after spaceflight. Theor. Biol. Med. Model. 7, 8 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Calvo, M. et al. Model-based analysis of the autonomic response to head-up tilt testing in Brugada syndrome. Comput. Biol. Med. 103, 82–92 (2018).

    Article  PubMed  Google Scholar 

  132. Fonoberova, M. et al. A computational physiology approach to personalized treatment models: the beneficial effects of slow breathing on the human cardiovascular system. Am. J. Physiol. Heart Circ. Physiol. 307, H1073–H1091 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Baraikan, A. A. et al. Modelling the hemodynamics of coronary ischemia. Fluids 8, 159 (2023).

    Article  Google Scholar 

  134. Bjordalsbakke, N. L., Sturdy, J. T., Hose, D. R. & Hellevik, L. R. Parameter estimation for closed-loop lumped parameter models of the systemic circulation using synthetic data. Math. Biosci. 343, 108731 (2022).

    Article  PubMed  Google Scholar 

  135. Hann, C. E. et al. Unique parameter identification for cardiac diagnosis in critical care using minimal data sets. Comput. Methods Prog. Biomed. 99, 75–87 (2010).

    Article  CAS  Google Scholar 

  136. Le Rolle, V. L., Hernández, A. I., Richard, P.-Y. & Carrault, G. An autonomic nervous system model applied to the analysis of orthostatic tests. Model. Simul. Eng. 2008, 2 (2008).

    Google Scholar 

  137. Melchior, F. M., Srinivasan, R. S., Thullier, P. H. & Clere, J. M. Simulation of cardiovascular response to lower body negative pressure from 0 to −40 mmHg. J. Appl. Physiol. 77, 630–640 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Pant, S. et al. Inverse problems in reduced order models of cardiovascular haemodynamics: aspects of data assimilation and heart rate variability. J. R. Soc. Interface 14, 20160513 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Pappalardo, F. et al. Toward a regulatory pathway for the use of in silico trials in the CE marking of medical devices. IEEE J. Biomed. Health Inform. 26, 5282–5286 (2022).

    Article  PubMed  Google Scholar 

  140. Bubak, M. et al. The EurValve model execution environment. Interface Focus. 11, 20200006 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Coveney, P. V., Groen, D. & Hoekstra, A. G. Reliability and reproducibility in computational science: implementing validation, verification and uncertainty quantification in silico. Philos. Trans. A Math. Phys. Eng. Sci. 379, 20200409 (2021).

    PubMed  Google Scholar 

  142. American Society of Medical Engineers. Assessing Credibility of Computational Modeling Through Verification and Validation: Application to Medical Devices. VV40 - 2018 (ASME, 2018).

  143. Tatka, L. T., Smith, L. P., Hellerstein, J. L. & Sauro, H. M. Adapting modeling and simulation credibility standards to computational systems biology. J. Transl. Med. 21, 501 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Schölzel, C., Blesius, V., Ernst, G. & Dominik, A. Characteristics of mathematical modeling languages that facilitate model reuse in systems biology: a software engineering perspective. npj Syst. Biol. Appl. 7, 27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Hunter, P. & Nielsen, P. A strategy for integrative computational physiology. Physiology 20, 316–325 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Guyton, A. C., Coleman, T. G. & Granger, H. J. Circulation: overall regulation. Annu. Rev. Physiol. 34, 13–46 (1972).

    Article  CAS  PubMed  Google Scholar 

  147. Hester, R. L. et al. HumMod: a modeling environment for the simulation of integrative human physiology. Front. Physiol. 2, 12 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Crozier, A. et al. The relative role of patient physiology and device optimisation in cardiac resynchronisation therapy: a computational modelling study. J. Mol. Cell. Cardiol. 96, 93–100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chaudhuri, K., Pletzer, A. & Smith, N. P. A predictive patient-specific computational model of coronary artery bypass grafts for potential use by cardiac surgeons to guide selection of graft configurations. Front. Cardiovasc. Med. 9, 953109 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Abdelrahman, K. M. et al. Coronary computed tomography angiography from clinical uses to emerging technologies: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 76, 1226–1243 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Eslami, P. et al. Physiology and coronary artery disease: emerging insights from computed tomography imaging based computational modeling. Int. J. Cardiovasc. Imaging 36, 2319–2333 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Siika, A., Lindquist Liljeqvist, M., Hultgren, R., Gasser, T. C. & Roy, J. Aortic lumen area is increased in ruptured abdominal aortic aneurysms and correlates to biomechanical rupture risk. J. Endovasc. Ther. 25, 750–756 (2018).

    Article  PubMed  Google Scholar 

  153. Vascops. A4clinics RE. Vascops www.vascops.com (2024).

  154. HeartFlow. Revolutionizing precision heart care. Heartflow www.heartflow.com (2024).

  155. Niederer, S. A., Lumens, J. & Trayanova, N. A. Computational models in cardiology. Nat. Rev. Cardiol. 16, 100–111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pappalardo, F., Russo, G., Tshinanu, F. M. & Viceconti, M. In silico clinical trials: concepts and early adoptions. Brief. Bioinform. 20, 1699–1708 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Viceconti, M. et al. In silico trials: verification, validation and uncertainty quantification of predictive models used in the regulatory evaluation of biomedical products. Methods 185, 120–127 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Driessen, R. S. et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis. J. Am. Coll. Cardiol. 73, 161–173 (2019).

    Article  PubMed  Google Scholar 

  159. US Food and Drug Administration. Promoting innovation in medical product assessment: a risk-based framework for evaluating computational models for regulatory decision-making. FDA www.fda.gov/drugs/spotlight-cder-science/promoting-innovation-medical-product-assessment-risk-based-framework-evaluating-computational-models (2020).

  160. Markl, M. et al. Advanced flow MRI: emerging techniques and applications. Clin. Radiol. 71, 779–795 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Krittian, S. B. et al. A finite-element approach to the direct computation of relative cardiovascular pressure from time-resolved MR velocity data. Med. Image Anal. 16, 1029–1037 (2012).

    Article  PubMed  Google Scholar 

  162. Sokolski, M. et al. Comparison of invasive and non-invasive measurements of haemodynamic parameters in patients with advanced heart failure. J. Cardiovasc. Med. 12, 773–778 (2011).

    Article  Google Scholar 

  163. Saugel, B. et al. Continuous noninvasive pulse wave analysis using finger cuff technologies for arterial blood pressure and cardiac output monitoring in perioperative and intensive care medicine: a systematic review and meta-analysis. Br. J. Anaesth. 125, 25–37 (2020).

    Article  PubMed  Google Scholar 

  164. Truijen, J., Bundgaard-Nielsen, M. & van Lieshout, J. J. A definition of normovolaemia and consequences for cardiovascular control during orthostatic and environmental stress. Eur. J. Appl. Physiol. 109, 141–157 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Mosqueda-Garcia, R., Furlan, R., Tank, J. & Fernandez-Violante, R. The elusive pathophysiology of neurally mediated syncope. Circulation 102, 2898–2906 (2000).

    Article  CAS  PubMed  Google Scholar 

  166. Hinghofer-Szalkay, H. Gravity, the hydrostatic indifference concept and the cardiovascular system. Eur. J. Appl. Physiol. 111, 163–174 (2011).

    Article  PubMed  Google Scholar 

  167. Skytioti, M., Sovik, S. & Elstad, M. Respiratory pump maintains cardiac stroke volume during hypovolemia in young, healthy volunteers. J. Appl. Physiol. 124, 1319–1325 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. McDonagh, T. A. et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Conte, M. S. et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. Eur. J. Vasc. Endovasc. Surg. 58, 3S–125S.e40 (2019).

    Article  Google Scholar 

  170. Guerin, C. et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 368, 2159–2168 (2013).

    Article  CAS  PubMed  Google Scholar 

  171. Hargens, A. R. & Richardson, S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir. Physiol. Neurobiol. 169, S30–S33 (2009).

    Article  PubMed  Google Scholar 

  172. Hughson, R. L., Helm, A. & Durante, M. Heart in space: effect of the extraterrestrial environment on the cardiovascular system. Nat. Rev. Cardiol. 15, 167–180 (2018).

    Article  PubMed  Google Scholar 

  173. Thornton, W. E., Moore, T. P. & Pool, S. L. Fluid shifts in weightlessness. Aviat. Space Environ. Med. 58, A86–A90 (1987).

    CAS  PubMed  Google Scholar 

  174. Moore, T. P. & Thornton, W. E. Space shuttle inflight and postflight fluid shifts measured by leg volume changes. Aviat. Space Environ. Med. 58, A91–A96 (1987).

    CAS  PubMed  Google Scholar 

  175. Kirsch, K. A., Baartz, F. J., Gunga, H. C. & Rocker, L. Fluid shifts into and out of superficial tissues under microgravity and terrestrial conditions. Clin. Investig. 71, 687–689 (1993).

    Article  CAS  PubMed  Google Scholar 

  176. Olabi, A. A., Lawless, H. T., Hunter, J. B., Levitsky, D. A. & Halpern, B. P. The effect of microgravity and space flight on the chemical senses. J. Food Sci. 67, 468–478 (2002).

    Article  CAS  PubMed  Google Scholar 

  177. Inglesby, D. C. et al. Spaceflight-associated changes in the opacification of the paranasal sinuses and mastoid air cells in astronauts. JAMA Otolaryngol. Head. Neck Surg. 146, 571–577 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Goodman, L. S. & LeSage, S. Impairment of cardiovascular and vasomotor responses during tilt table simulation of “push-pull” maneuvers. Aviat. Space Environ. Med. 73, 971–979 (2002).

    PubMed  Google Scholar 

  179. Kirsch, K. A. et al. Venous pressure in man during weightlessness. Science 225, 218–219 (1984).

    Article  CAS  PubMed  Google Scholar 

  180. Buckey, J. C. et al. Central venous pressure in space. N. Engl. J. Med. 328, 1853–1854 (1993).

    Article  CAS  PubMed  Google Scholar 

  181. Beard, D. A. & Feigl, E. O. Understanding Guyton’s venous return curves. Am. J. Physiol. Heart Circ. Physiol. 301, H629–H633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Norsk, P., Asmar, A., Damgaard, M. & Christensen, N. J. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J. Physiol. 593, 573–584 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Norsk, P. et al. Vasorelaxation in space. Hypertension 47, 69–73 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Petersen, L. G. & Ogoh, S. Gravity, intracranial pressure, and cerebral autoregulation. Physiol. Rep. 7, e14039 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Norsk, P. Adaptation of the cardiovascular system to weightlessness: surprises, paradoxes and implications for deep space missions. Acta Physiol. 228, e13434 (2020).

    Article  CAS  Google Scholar 

  186. Ertl, A. C. et al. Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J. Physiol. 538, 321–329 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Estenne, M., Gorini, M., Van Muylem, A., Ninane, V. & Paiva, M. Rib cage shape and motion in microgravity. J. Appl. Physiol. 73, 946–954 (1992).

    Article  CAS  PubMed  Google Scholar 

  188. Prisk, G. K., Guy, H. J., Elliott, A. R., Deutschman, R. A. III & West, J. B. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. J. Appl. Physiol. 75, 15–26 (1993).

    Article  CAS  PubMed  Google Scholar 

  189. Norsk, P. & Christensen, N. J. The paradox of systemic vasodilatation and sympathetic nervous stimulation in space. Respir. Physiol. Neurobiol. 169, S26–S29 (2009).

    Article  PubMed  Google Scholar 

  190. Jirak, P. et al. How spaceflight challenges human cardiovascular health. Eur. J. Prev. Cardiol. 29, 1399–1411 (2022).

    Article  PubMed  Google Scholar 

  191. Scott, J. M., Stoudemire, J., Dolan, L. & Downs, M. Leveraging spaceflight to advance cardiovascular research on Earth. Circ. Res. 130, 942–957 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Baran, R. et al. The cardiovascular system in space: focus on in vivo and in vitro studies. Biomedicines 10, 59 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Pump, B., Videbaek, R., Gabrielsen, A. & Norsk, P. Arterial pressure in humans during weightlessness induced by parabolic flights. J. Appl. Physiol. 87, 928–932 (1999).

    Article  CAS  PubMed  Google Scholar 

  194. Bimpong-Buta, N. Y. et al. Comprehensive analysis of macrocirculation and microcirculation in microgravity during parabolic flights. Front. Physiol. 11, 960 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Fritsch-Yelle, J. M., Charles, J. B., Jones, M. M. & Wood, M. L. Microgravity decreases heart rate and arterial pressure in humans. J. Appl. Physiol. 80, 910–914 (1996).

    Article  CAS  PubMed  Google Scholar 

  196. Seibert, F. S. et al. The effect of microgravity on central aortic blood pressure. Am. J. Hypertens. 31, 1183–1189 (2018).

    Article  PubMed  Google Scholar 

  197. Ogoh, S. et al. Effect of an acute increase in central blood volume on cerebral hemodynamics. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309, R902–R911 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Cuomo, J. R., Sharma, G. K., Conger, P. D. & Weintraub, N. L. Novel concepts in radiation-induced cardiovascular disease. World J. Cardiol. 8, 504–519 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Tapio, S. Pathology and biology of radiation-induced cardiac disease. J. Radiat. Res. 57, 439–448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Little, M. P. A review of non-cancer effects, especially circulatory and ocular diseases. Radiat. Environ. Biophys. 52, 435–449 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Sheffield-based authors developed this manuscript at the National Institute for Health and Care Research (NIHR) Sheffield Biomedical Research Centre (BRC). The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. N.P.S. is supported by the Marsden Fund, administered by the Royal Society of New Zealand (UOA1620). P.D.M. was funded by the Wellcome Trust (214567/Z/18/Z).

Author information

Authors and Affiliations

Authors

Contributions

P.D.M., R.A.A., A.J.N., D.R.H. and I.H. originated the idea for the manuscript and researched the data for the article. All the authors wrote the manuscript and reviewed/edited it before submission.

Corresponding author

Correspondence to Paul D. Morris.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

HumMod: https://hummod.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, P.D., Anderton, R.A., Marshall-Goebel, K. et al. Computational modelling of cardiovascular pathophysiology to risk stratify commercial spaceflight. Nat Rev Cardiol 21, 667–681 (2024). https://doi.org/10.1038/s41569-024-01047-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-024-01047-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing