Abstract
Chirality is a fundamental property widely observed in nature, arising in objects without a proper rotation axis, therefore existing as forms with distinct handedness. This characteristic can profoundly impact the properties of materials and can enable new functionality, especially for spin-optoelectronics. Chirality enables asymmetric light and spin interactions in materials, with widespread potential applications ranging from energy-efficient displays, holography, imaging, and spin-selective and enantio-selective chemistry to quantum information technologies. This Review focuses on the emerging material class of solution-processable chiral semiconductors, a broad material class comprising organic, inorganic and hybrid materials. These exciting materials offer the opportunity to design desirable light–matter interactions based on symmetry rules, potentially enabling the simultaneous control of light, charge and spin. We briefly discuss the various types of solution-processible chiral semiconductors, including small molecules, polymers, supramolecular self-assemblies and halide perovskites. We then examine the interplay between chirality and spin in these materials, the various mechanisms of chiral light–matter interactions, and techniques utilized to characterize them. We conclude with current and future applications of chiral semiconductors that take advantage of their chiral light–matter interactions.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Thomson, W. (Lord Kelvin) Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light (C. J. Clay and Sons, 1904).
Nguyen, L. A., He, H. & Pham-Huy, C. Chiral drugs: an overview. Int. J. Biomed. Sci. 2, 85–100 (2006).
Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).
Kopp, V. I., Zhang, Z.-Q. & Genack, A. Z. Lasing in chiral photonic structures. Prog. Quant. Electron. 27, 369–416 (2003).
Shang, X., Wan, L., Wang, L., Gao, F. & Li, H. Emerging materials for circularly polarized light detection. J. Mater. Chem. C 10, 2400–2410 (2022).
Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).
Lu, H., Vardeny, Z. V. & Beard, M. C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 6, 470–485 (2022).
Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).
Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).
Wan, L., Liu, Y., Fuchter, M. J. & Yan, B. Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital–momentum locking. Nat. Photon. 17, 193–199 (2023).
Wang, Q. et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl. 7, 25 (2018).
Zhao, Y. et al. Alkaline-earth metal ion turn-on circularly polarized luminescence and encrypted selective recognition of AMP. Small Methods 4, 2000493 (2020).
Tempelaar, R., Stradomska, A., Knoester, J. & Spano, F. C. Circularly polarized luminescence as a probe for long-range interactions in molecular aggregates. J. Phys. Chem. B 115, 10592–10603 (2011).
MacKenzie, L. E. & Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 5, 109–124 (2021).
Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).
Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).
Arrico, L., Di Bari, L. & Zinna, F. Quantifying the overall efficiency of circularly polarized emitters. Chem. Eur. J. 27, 2920–2934 (2021).
Cei, M., Di Bari, L. & Zinna, F. Circularly polarized luminescence of helicenes: a data-informed insight. Chirality 35, 192–210 (2023).
Gauthier, E. S. et al. Long-lived circularly polarized phosphorescence in helicene-NHC rhenium(I) complexes: the influence of helicene, halogen, and stereochemistry on emission properties. Angew. Chem. Int. Ed. 59, 8394–8400 (2020).
Maynard, J. R. J., Gallagher, P., Lozano, D., Butler, P. & Goldup, S. M. Mechanically axially chiral catenanes and noncanonical mechanically axially chiral rotaxanes. Nat. Chem. 14, 1038–1044 (2022).
Guo, Q.-H., Jiao, Y., Feng, Y. & Stoddart, J. F. The rise and promise of molecular nanotopology. CCS Chem. 3, 1542–1572 (2021).
Poncet, M., Benchohra, A., Jiménez, J. & Piguet, C. Chiral chromium(III) complexes as promising candidates for circularly polarized luminescence. ChemPhotoChem 5, 880–892 (2021).
Zhong, Y., Wu, Z., Zhang, Y., Dong, B. & Bai, X. Circularly polarized luminescence of lanthanide complexes: from isolated individuals, discrete oligomers, to hierarchical assemblies. InfoMat 5, e12392 (2023).
Lunkley, J. L., Shirotani, D., Yamanari, K., Kaizaki, S. & Muller, G. Chiroptical spectra of a series of tetrakis(( + )-3-heptafluorobutylyrylcamphorato)lanthanide(III) with an encapsulated alkali metal ion: circularly polarized luminescence and absolute chiral structures for the Eu(III) and Sm(III) complexes. Inorg. Chem. 50, 12724–12732 (2011).
Stachelek, P., MacKenzie, L., Parker, D. & Pal, R. Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions. Nat. Commun. 13, 553 (2022).
Frédéric, L., Desmarchelier, A., Favereau, L. & Pieters, G. Designs and applications of circularly polarized thermally activated delayed fluorescence molecules. Adv. Funct. Mater. 31, 2010281 (2021).
Cheng, Y. et al. Circularly polarized near-infrared phosphorescence of chiral chromium(III) complexes. Chem. Commun. 59, 1781–1784 (2023).
Sui, J. et al. Strategies for chiral separation: from racemate to enantiomer. Chem. Sci. 14, 11955–12003 (2023).
Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).
Gong, W., Chen, Z., Dong, J., Liu, Y. & Cui, Y. Chiral metal–organic frameworks. Chem. Rev. 122, 9078–9144 (2022).
Palmans, A. R. A., Meijer, E. W. & Denmark, S. E. Stereochemical language in supramolecular polymer chemistry: how we can do better. J. Polym. Sci. 59, 1171–1174 (2021).
Ikai, T. et al. Control of one-handed helicity in polyacetylenes: impact of an extremely small amount of chiral substituents. J. Am. Chem. Soc. 145, 24862–24876 (2023).
Yashima, E. Synthesis and applications of helical polymers with dynamic and static memories of helicity. Proc. Jpn Acad. Ser. B 99, 438–459 (2023).
Shimomura, K., Ikai, T., Kanoh, S., Yashima, E. & Maeda, K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat. Chem. 6, 429–434 (2014).
Wade, J. et al. Natural optical activity as the origin of the large chiroptical properties in π-conjugated polymer thin films. Nat. Commun. 11, 6137 (2020).
Wade, J. et al. 500-Fold amplification of small molecule circularly polarised luminescence through circularly polarised FRET. Angew. Chem. Int. Ed. 60, 222–227 (2021).
Zhang, Y. et al. Circularly polarized luminescence in chiral materials. Matter 5, 837–875 (2022).
Weissbuch, I., Leiserowitz, L. & Lahav, M. in Prebiotic Chemistry (ed. Walde, P.) 123–165 (Springer, 2005).
Gellman, A. J. & Ernst, K.-H. Chiral autocatalysis and mirror symmetry breaking. Catal. Lett. 148, 1610–1621 (2018).
Ben-Moshe, A., Govorov, A. O. & Markovich, G. Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. Int. Ed. 52, 1275–1279 (2013).
Aurivillius, K. L., Hammarsten, E. & Reichard, P. On the crystal structure of cinnabar. Acta Chem. Scand. 4, 1413–1436 (1950).
Schaaff, T. G., Knight, G., Shafigullin, M. N., Borkman, R. F. & Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B 102, 10643–10646 (1998).
Moloney, M. P., Gun’ko, Y. K. & Kelly, J. M. Chiral highly luminescent CdS quantum dots. Chem. Commun. https://doi.org/10.1039/B704636G (2007).
Kim, Y.-H. et al. Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals. ACS Nano 14, 8816–8825 (2020).
Georgieva, Z. N., Bloom, B. P., Ghosh, S. & Waldeck, D. H. Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets. Adv. Mater. 30, 1800097 (2018).
Hubley, A. et al. Chiral perovskite nanoplatelets exhibiting circularly polarized luminescence through ligand optimization. Adv. Opt. Mater. 10, 2200394 (2022).
Hao, C. et al. Chiral semiconductor nanoparticles for protein catalysis and profiling. Angew. Chem. Int. Ed. 58, 7371–7374 (2019).
Purcell-Milton, F. et al. Induction of chirality in two-dimensional nanomaterials: chiral 2D MoS2 nanostructures. ACS Nano 12, 954–964 (2018).
Yeom, J. et al. Chiromagnetic nanoparticles and gels. Science 359, 309–314 (2018).
Zhou, Y., Yang, M., Sun, K., Tang, Z. & Kotov, N. A. Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. J. Am. Chem. Soc. 132, 6006–6013 (2010).
Yao, Y. et al. Extracting pure circular dichroism from hierarchically structured CdS magic cluster films. ACS Nano 16, 20457–20469 (2022).
Shi, Y., Duan, P., Huo, S., Li, Y. & Liu, M. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 30, 1705011 (2018).
Liu, P. et al. Optically active perovskite CsPbBr3 nanocrystals helically arranged on inorganic silica nanohelices. Nano Lett. 20, 8453–8460 (2020).
Ben-Moshe, A. et al. The chain of chirality transfer in tellurium nanocrystals. Science 372, 729–733 (2021).
Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).
Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).
Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).
Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018).
Zhou, C. et al. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R Rep. 137, 38–65 (2019).
Long, G. et al. Theoretical prediction of chiral 3D hybrid organic–inorganic perovskites. Adv. Mater. 31, 1807628 (2019).
Guan, Q. et al. Unprecedented chiral three-dimensional hybrid organic-inorganic perovskitoids. Angew. Chem. Int. Ed. 62, e202307034 (2023).
Hao, J. et al. Direct detection of circularly polarized light using chiral copper chloride–carbon nanotube heterostructures. ACS Nano 15, 7608–7617 (2021).
Moon, T. H., Oh, S.-J. & Ok, K. M. [((R)-C8H12N)4][Bi2Br10] and [((S)-C8H12N)4][Bi2Br10]: chiral hybrid bismuth bromides templated by chiral organic cations. ACS Omega 3, 17895–17903 (2018).
Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).
Dey, A. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021).
Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).
Sallembien, Q., Bouteiller, L., Crassous, J. & Raynal, M. Possible chemical and physical scenarios towards biological homochirality. Chem. Soc. Rev. 51, 3436–3476 (2022).
Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012).
Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).
Kettner, M. et al. Spin filtering in electron transport through chiral oligopeptides. J. Phys. Chem. C 119, 14542–14547 (2015).
Bloom, B. P., Paltiel, Y., Naaman, R. & Waldeck, D. H. Chiral induced spin selectivity. Chem. Rev. 124, 1950–1991 (2024).
Xie, Z. et al. Spin specific electron conduction through DNA oligomers. Nano Lett. 11, 4652–4655 (2011).
Liu, T. & Weiss, P. S. Spin polarization in transport studies of chirality-induced spin selectivity. ACS Nano 17, 19502–19507 (2023).
Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).
Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).
Waldeck, D. H., Naaman, R. & Paltiel, Y. The spin selectivity effect in chiral materials. APL Mater. 9, 040902 (2021).
Michaeli, K., Kantor-Uriel, N., Naaman, R. & Waldeck, D. H. The electron’s spin and molecular chirality – how are they related and how do they affect life processes? Chem. Soc. Rev. 45, 6478–6487 (2016).
Evers, F. et al. Theory of chirality induced spin selectivity: progress and challenges. Adv. Mater. 34, 2106629 (2022).
Fransson, J. Chirality-induced spin selectivity: the role of electron correlations. J. Phys. Chem. Lett. 10, 7126–7132 (2019).
Das, T. K., Tassinari, F., Naaman, R. & Fransson, J. Temperature-dependent chiral-induced spin selectivity effect: experiments and theory. J. Phys. Chem. C 126, 3257–3264 (2022).
Fransson, J. Charge redistribution and spin polarization driven by correlation induced electron exchange in chiral molecules. Nano Lett. 21, 3026–3032 (2021).
Ben Dor, O. et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat. Commun. 8, 14567 (2017).
Sukenik, N. et al. Correlation between ferromagnetic layer easy axis and the tilt angle of self assembled chiral molecules. Molecules 25, 6036 (2020).
Michaeli, K., Varade, V., Naaman, R. & Waldeck, D. H. A new approach towards spintronics–spintronics with no magnets. J. Phys. Condens. Matter 29, 103002 (2017).
Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).
Reineke, S. Complementary LED technologies. Nat. Mater. 14, 459–462 (2015).
Baldo, M. & Segal, M. Phosphorescence as a probe of exciton formation and energy transfer in organic light emitting diodes. Phys. Status Solidi 201, 1205–1214 (2004).
Endo, A. et al. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes — a novel mechanism for electroluminescence. Adv. Mater. 21, 4802–4806 (2009).
Im, Y. et al. Molecular design strategy of organic thermally activated delayed fluorescence emitters. Chem. Mater. 29, 1946–1963 (2017).
Peng, Q., Obolda, A., Zhang, M. & Li, F. Organic light-emitting diodes using a neutral π radical as emitter: the emission from a doublet. Angew. Chem. Int. Ed. 54, 7091–7095 (2015).
Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).
Hudson, J. M., Hele, T. J. H. & Evans, E. W. Efficient light-emitting diodes from organic radicals with doublet emission. J. Appl. Phys. 129, 180901 (2021).
Mayorga Burrezo, P. et al. Organic free radicals as circularly polarized luminescence emitters. Angew. Chem. Int. Ed. 58, 16282–16288 (2019).
Mayorga-Burrezo, P. et al. An enantiopure propeller-like trityl-brominated radical: bringing together a high racemization barrier and an efficient circularly polarized luminescent magnetic emitter. Chem. Eur. J. 26, 3776–3781 (2020).
Cibert, J. & Scalbert, D. in Spin Physics in Semiconductors (ed. Dyakonov, M. I.) 389–431 (Springer, 2008).
Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).
Ohno, H. et al. (Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996).
Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).
MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat. Mater. 4, 195–202 (2005).
Ohno, H. et al. Spontaneous splitting of ferromagnetic (Ga, Mn)As valence band observed by resonant tunneling spectroscopy. Appl. Phys. Lett. 73, 363–365 (1998).
Lee, S., Chung, J.-H., Liu, X., Furdyna, J. K. & Kirby, B. J. Ferromagnetic semiconductor GaMnAs. Mater. Today 12, 14–21 (2009).
Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).
Ahmed, G. H. et al. Luminescence enhancement due to symmetry breaking in doped halide perovskite nanocrystals. J. Am. Chem. Soc. 144, 15862–15870 (2022).
Neumann, T. et al. Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskites. Nat. Commun. 12, 3489 (2021).
Náfrádi, B. et al. Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3. Nat. Commun. 7, 13406 (2016).
Zhang, Z. et al. Induced circularly polarized luminescence and exciton fine structure splitting in magnetic-doped chiral perovskites. ACS Nano 18, 5890–5897 (2024).
Tanaka, H., Inoue, Y. & Mori, T. Circularly polarized luminescence and circular dichroisms in small organic molecules: correlation between excitation and emission dissymmetry factors. ChemPhotoChem 2, 386–402 (2018).
Foot, C. J. Atomic Physics (Oxford Univ. Press, 2005).
Riehl, J. P. & Richardson, F. S. Circularly polarized luminescence spectroscopy. Chem. Rev. 86, 1–16 (1986).
Willis, B.-A. N., Schnable, D., Schley, N. D. & Ung, G. Spinolate lanthanide complexes for high circularly polarized luminescence metrics in the visible and near-infrared. J. Am. Chem. Soc. 144, 22421–22425 (2022).
Yang, D., Duan, P., Zhang, L. & Liu, M. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat. Commun. 8, 15727 (2017).
Han, J., Duan, P., Li, X. & Liu, M. Amplification of circularly polarized luminescence through triplet–triplet annihilation-based photon upconversion. J. Am. Chem. Soc. 139, 9783–9786 (2017).
Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).
Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).
Hautzinger, M. P. et al. Room-temperature spin injection across a chiral perovskite/III–V interface. Nature 631, 307–312 (2024).
Lingstädt, R. et al. Electron beam induced circularly polarized light emission of chiral gold nanohelices. ACS Nano 17, 25496–25506 (2023).
Wei, J. J. et al. Molecular chirality and charge transfer through self-assembled scaffold monolayers. J. Phys. Chem. B 110, 1301–1308 (2006).
Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011).
Jiang, S. & Kotov, N. A. Circular polarized light emission in chiral inorganic nanomaterials. Adv. Mater. 35, 2108431 (2023).
Zhang, W., Eperon, G. E. & Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016).
Even, J., Pedesseau, L. & Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118, 11566–11572 (2014).
Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003).
Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015).
Liu, S. et al. Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskites. Sci. Adv. 9, eadh5083 (2023).
Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013).
Yu, Z.-G. Chirality-induced spin–orbit coupling, spin transport, and natural optical activity in hybrid organic–inorganic perovskites. J. Phys. Chem. Lett. 11, 8638–8646 (2020).
Sercel, P. C., Vardeny, Z. V. & Efros, A. L. Circular dichroism in non-chiral metal halide perovskites. Nanoscale 12, 18067–18078 (2020).
Arago, D. F. Mémoire sur une modification remarquable qu’éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes et sur quelques autres nouveaux phénomènes d’optique. Mém. Cl. Sci. Math. Phys. Inst. France 12, 93–134 (1811).
Haidinger, W. Über den Pleochroismus des Amethysts. Ann. Phys. 146, 531–544 (1847).
Samoilov, B. N. Absorption and luminescence spectra of uranyl salts at temperatures of liquid helium. J. Exp. Theor. Phys. 18, 1030–1040 (1948).
Changenet, P. & Hache, F. Recent advances in the development of ultrafast electronic circular dichroism for probing the conformational dynamics of biomolecules in solution. Eur. Phys. J. Spec. Top. 232, 2117–2129 (2023).
Kitzmann, W. R., Freudenthal, J., Reponen, A.-P. M., VanOrman, Z. A. & Feldmann, S. Fundamentals, advances, and artifacts in circularly polarized luminescence (CPL) spectroscopy. Adv. Mater. 35, 2302279 (2023).
Meskers, S. C. J. Circular polarization of luminescence as a tool to study molecular dynamical processes. ChemPhotoChem 6, e202100154 (2022).
Berova, N., Polavarapu, P. L., Nakanishi, K. & Woody, R. W. (eds) Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical Simulations (Wiley, 2012).
Schippers, P. H., van den Buekel, A. & Dekkers, H. P. J. M. An accurate digital instrument for the measurement of circular polarisation of luminescence. J. Phys. E Sci. Instrum. 15, 945 (1982).
Schippers, P. H. & Dekkers, H. P. J. M. Direct determination of absolute circular dichroism data and calibration of commercial instruments. Anal. Chem. 53, 778–782 (1981).
Arteaga, O., Freudenthal, J., Wang, B. & Kahr, B. Mueller matrix polarimetry with four photoelastic modulators: theory and calibration. Appl. Opt. 51, 6805–6817 (2012).
Kliger, D. S. & Lewis, J. W. Recent advances in time resolved circular dichroism spectroscopy. Rev. Chem. Intermed. 8, 367–398 (1987).
Trifonov, A., Buchvarov, I., Lohr, A., Würthner, F. & Fiebig, T. Broadband femtosecond circular dichroism spectrometer with white-light polarization control. Rev. Sci. Instrum. 81, 043104 (2010).
Oppermann, M. et al. Ultrafast broadband circular dichroism in the deep ultraviolet. Optica 6, 56–60 (2019).
Schauerte, J. A., Schlyer, B. D., Steel, D. G. & Gafni, A. Nanosecond time-resolved circular polarization of fluorescence: study of NADH bound to horse liver alcohol dehydrogenase. Proc. Natl Acad. Sci. USA 92, 569–573 (1995).
MacKenzie, L. E., Pålsson, L.-O., Parker, D., Beeby, A. & Pal, R. Rapid time-resolved circular polarization luminescence (CPL) emission spectroscopy. Nat. Commun. 11, 1676 (2020).
Hananel, U. et al. Time-resolved circularly polarized luminescence of Eu3+-based systems. Chirality 33, 124–133 (2021).
Nafie, L. A. Infrared and Raman vibrational optical activity: theoretical and experimental aspects. Annu. Rev. Phys. Chem. 48, 357–386 (1997).
Nafie, L. A. Vibrational optical activity: from discovery and development to future challenges. Chirality 32, 667–692 (2020).
Hobden, M. V. Optical activity in a non-enantiomorphous crystal silver gallium sulphide. Nature 216, 678–678 (1967).
Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials 1st edn (CRC, 1997).
Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).
Franco, V. & Dodrill, B. (eds) Magnetic Measurement Techniques for Materials Characterization (Springer Nature, 2021).
Maestre, M. F., Bustamante, C., Hayes, T. L., Subirana, J. A. & Tinoco, I. Differential scattering of circularly polarized light by the helical sperm head from the octopus Eledone cirrhosa. Nature 298, 773–774 (1982).
Goulon, J. et al. Optical activity probed with x-rays. J. Phys. Condens. Matter 15, S633–S645 (2003).
Zhang, Y., Rouxel, J. R., Autschbach, J., Govind, N. & Mukamel, S. X-ray circular dichroism signals: a unique probe of local molecular chirality. Chem. Sci. 8, 5969–5978 (2017).
Powis, I. in Advances in Chemical Physics Vol. 138 (ed. Rice, S. A.) 267–329 (Wiley, 2008).
Janssen, M. H. M. & Powis, I. Detecting chirality in molecules by imaging photoelectron circular dichroism. Phys. Chem. Chem. Phys. 16, 856–871 (2014).
Haupert, L. M. & Simpson, G. J. Chirality in nonlinear optics. Annu. Rev. Phys. Chem. 60, 345–365 (2009).
Kriech, M. A. & Conboy, J. C. Imaging chirality with surface second harmonic generation microscopy. J. Am. Chem. Soc. 127, 2834–2835 (2005).
Asnin, V. M. et al. “Circular” photogalvanic effect in optically active crystals. Solid State Commun. 30, 565–570 (1979).
Huang, P.-J. et al. Chirality-dependent circular photogalvanic effect in enantiomorphic 2D organic–inorganic hybrid perovskites. Adv. Mater. 33, 2008611 (2021).
Völker, L. A., Herb, K., Janitz, E., Degen, C. L. & Abendroth, J. M. Toward quantum sensing of chiral induced spin selectivity: probing donor–bridge–acceptor molecules with NV centers in diamond. J. Chem. Phys. 158, 161103 (2023).
Fay, T. P. Chirality-induced spin coherence in electron transfer reactions. J. Phys. Chem. Lett. 12, 1407–1412 (2021).
Yang, X., van der Wal, C. H. & van Wees, B. J. Detecting chirality in two-terminal electronic nanodevices. Nano Lett. 20, 6148–6154 (2020).
L. Greenfield, J. et al. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules. Chem. Sci. 12, 8589–8602 (2021).
Tang, Y. & Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333–336 (2011).
Forbes, K. A. & Andrews, D. L. Enhanced optical activity using the orbital angular momentum of structured light. Phys. Rev. Res. 1, 033080 (2019).
Oppermann, M., Zinna, F., Lacour, J. & Chergui, M. Chiral control of spin-crossover dynamics in Fe(II) complexes. Nat. Chem. 14, 739–745 (2022).
Kim, B. C. et al. Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display. Opt. Express 22, A1725–A1730 (2014).
Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).
Zhang, M. et al. Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging. Sci. Adv. 9, eadi9944 (2023).
Aiello, C. D. et al. A chirality-based quantum leap. ACS Nano 16, 4989–5035 (2022).
Kan, Y. et al. Metasurface-enabled generation of circularly polarized single photons. Adv. Mater. 32, e1907832 (2020).
Nicolas, A. et al. A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234–238 (2014).
Simon, C. Towards a global quantum network. Nat. Photon. 11, 678–680 (2017).
Li, X., Voss, P. L., Sharping, J. E. & Kumar, P. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005).
Zhang, C., Wang, X. & Qiu, L. Circularly polarized photodetectors based on chiral materials: a review. Front. Chem. 9, 711488 (2021).
Ward, M. D. et al. Best practices in the measurement of circularly polarised photodetectors. J. Mater. Chem. C 10, 10452–10463 (2022).
Walba, D. M., Richards, R. M. & Haltiwanger, R. C. Total synthesis of the first molecular Moebius strip. J. Am. Chem. Soc. 104, 3219–3221 (1982).
Dee, C. et al. Strong circularly polarized luminescence of an octahedral chromium(III) complex. Chem. Commun. 55, 13078–13081 (2019).
Kulkarni, C. et al. Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 32, 1904965 (2020).
Author information
Authors and Affiliations
Contributions
All authors researched data for the article, contributed substantially to discussion of the content and ultimately co-wrote the article. All authors reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Jeanne Crassous, Haipeng Lu and the other, anonymous, reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
VanOrman, Z.A., Kitzmann, W.R., Reponen, AP.M. et al. Chiral light–matter interactions in solution-processable semiconductors. Nat Rev Chem 9, 208–223 (2025). https://doi.org/10.1038/s41570-025-00690-x
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41570-025-00690-x