Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chiral light–matter interactions in solution-processable semiconductors

Abstract

Chirality is a fundamental property widely observed in nature, arising in objects without a proper rotation axis, therefore existing as forms with distinct handedness. This characteristic can profoundly impact the properties of materials and can enable new functionality, especially for spin-optoelectronics. Chirality enables asymmetric light and spin interactions in materials, with widespread potential applications ranging from energy-efficient displays, holography, imaging, and spin-selective and enantio-selective chemistry to quantum information technologies. This Review focuses on the emerging material class of solution-processable chiral semiconductors, a broad material class comprising organic, inorganic and hybrid materials. These exciting materials offer the opportunity to design desirable light–matter interactions based on symmetry rules, potentially enabling the simultaneous control of light, charge and spin. We briefly discuss the various types of solution-processible chiral semiconductors, including small molecules, polymers, supramolecular self-assemblies and halide perovskites. We then examine the interplay between chirality and spin in these materials, the various mechanisms of chiral light–matter interactions, and techniques utilized to characterize them. We conclude with current and future applications of chiral semiconductors that take advantage of their chiral light–matter interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Polarized light and its role in chiral materials science.
Fig. 2: Examples of chiral small molecules and chiral supramolecular systems.
Fig. 3: Chiral inorganic and inorganic/organic hybrid solution-processable semiconductors.
Fig. 4: The interplay between chirality and electron spin in different material systems.
Fig. 5: Mechanistic origins of chiroptical activity.
Fig. 6: Techniques to study chiral light–matter interactions.
Fig. 7: Current and future applications of chiral light–matter interactions.

Similar content being viewed by others

References

  1. Thomson, W. (Lord Kelvin) Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light (C. J. Clay and Sons, 1904).

  2. Nguyen, L. A., He, H. & Pham-Huy, C. Chiral drugs: an overview. Int. J. Biomed. Sci. 2, 85–100 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lodahl, P. et al. Chiral quantum optics. Nature 541, 473–480 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Kopp, V. I., Zhang, Z.-Q. & Genack, A. Z. Lasing in chiral photonic structures. Prog. Quant. Electron. 27, 369–416 (2003).

    Article  CAS  Google Scholar 

  5. Shang, X., Wan, L., Wang, L., Gao, F. & Li, H. Emerging materials for circularly polarized light detection. J. Mater. Chem. C 10, 2400–2410 (2022).

    Article  CAS  Google Scholar 

  6. Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).

    Article  Google Scholar 

  7. Lu, H., Vardeny, Z. V. & Beard, M. C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 6, 470–485 (2022).

    Article  PubMed  Google Scholar 

  8. Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Wan, L., Liu, Y., Fuchter, M. J. & Yan, B. Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital–momentum locking. Nat. Photon. 17, 193–199 (2023).

    Article  CAS  Google Scholar 

  11. Wang, Q. et al. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl. 7, 25 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhao, Y. et al. Alkaline-earth metal ion turn-on circularly polarized luminescence and encrypted selective recognition of AMP. Small Methods 4, 2000493 (2020).

    Article  CAS  Google Scholar 

  13. Tempelaar, R., Stradomska, A., Knoester, J. & Spano, F. C. Circularly polarized luminescence as a probe for long-range interactions in molecular aggregates. J. Phys. Chem. B 115, 10592–10603 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. MacKenzie, L. E. & Pal, R. Circularly polarized lanthanide luminescence for advanced security inks. Nat. Rev. Chem. 5, 109–124 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Article  Google Scholar 

  17. Arrico, L., Di Bari, L. & Zinna, F. Quantifying the overall efficiency of circularly polarized emitters. Chem. Eur. J. 27, 2920–2934 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Cei, M., Di Bari, L. & Zinna, F. Circularly polarized luminescence of helicenes: a data-informed insight. Chirality 35, 192–210 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Gauthier, E. S. et al. Long-lived circularly polarized phosphorescence in helicene-NHC rhenium(I) complexes: the influence of helicene, halogen, and stereochemistry on emission properties. Angew. Chem. Int. Ed. 59, 8394–8400 (2020).

    Article  CAS  Google Scholar 

  20. Maynard, J. R. J., Gallagher, P., Lozano, D., Butler, P. & Goldup, S. M. Mechanically axially chiral catenanes and noncanonical mechanically axially chiral rotaxanes. Nat. Chem. 14, 1038–1044 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guo, Q.-H., Jiao, Y., Feng, Y. & Stoddart, J. F. The rise and promise of molecular nanotopology. CCS Chem. 3, 1542–1572 (2021).

    Article  CAS  Google Scholar 

  22. Poncet, M., Benchohra, A., Jiménez, J. & Piguet, C. Chiral chromium(III) complexes as promising candidates for circularly polarized luminescence. ChemPhotoChem 5, 880–892 (2021).

    Article  CAS  Google Scholar 

  23. Zhong, Y., Wu, Z., Zhang, Y., Dong, B. & Bai, X. Circularly polarized luminescence of lanthanide complexes: from isolated individuals, discrete oligomers, to hierarchical assemblies. InfoMat 5, e12392 (2023).

    Article  CAS  Google Scholar 

  24. Lunkley, J. L., Shirotani, D., Yamanari, K., Kaizaki, S. & Muller, G. Chiroptical spectra of a series of tetrakis(( + )-3-heptafluorobutylyrylcamphorato)lanthanide(III) with an encapsulated alkali metal ion: circularly polarized luminescence and absolute chiral structures for the Eu(III) and Sm(III) complexes. Inorg. Chem. 50, 12724–12732 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stachelek, P., MacKenzie, L., Parker, D. & Pal, R. Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions. Nat. Commun. 13, 553 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Frédéric, L., Desmarchelier, A., Favereau, L. & Pieters, G. Designs and applications of circularly polarized thermally activated delayed fluorescence molecules. Adv. Funct. Mater. 31, 2010281 (2021).

    Article  Google Scholar 

  27. Cheng, Y. et al. Circularly polarized near-infrared phosphorescence of chiral chromium(III) complexes. Chem. Commun. 59, 1781–1784 (2023).

    Article  CAS  Google Scholar 

  28. Sui, J. et al. Strategies for chiral separation: from racemate to enantiomer. Chem. Sci. 14, 11955–12003 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Gong, W., Chen, Z., Dong, J., Liu, Y. & Cui, Y. Chiral metal–organic frameworks. Chem. Rev. 122, 9078–9144 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Palmans, A. R. A., Meijer, E. W. & Denmark, S. E. Stereochemical language in supramolecular polymer chemistry: how we can do better. J. Polym. Sci. 59, 1171–1174 (2021).

    Article  CAS  Google Scholar 

  32. Ikai, T. et al. Control of one-handed helicity in polyacetylenes: impact of an extremely small amount of chiral substituents. J. Am. Chem. Soc. 145, 24862–24876 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yashima, E. Synthesis and applications of helical polymers with dynamic and static memories of helicity. Proc. Jpn Acad. Ser. B 99, 438–459 (2023).

    Article  CAS  Google Scholar 

  34. Shimomura, K., Ikai, T., Kanoh, S., Yashima, E. & Maeda, K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat. Chem. 6, 429–434 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Wade, J. et al. Natural optical activity as the origin of the large chiroptical properties in π-conjugated polymer thin films. Nat. Commun. 11, 6137 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wade, J. et al. 500-Fold amplification of small molecule circularly polarised luminescence through circularly polarised FRET. Angew. Chem. Int. Ed. 60, 222–227 (2021).

    Article  CAS  Google Scholar 

  37. Zhang, Y. et al. Circularly polarized luminescence in chiral materials. Matter 5, 837–875 (2022).

    Article  CAS  Google Scholar 

  38. Weissbuch, I., Leiserowitz, L. & Lahav, M. in Prebiotic Chemistry (ed. Walde, P.) 123–165 (Springer, 2005).

  39. Gellman, A. J. & Ernst, K.-H. Chiral autocatalysis and mirror symmetry breaking. Catal. Lett. 148, 1610–1621 (2018).

    Article  CAS  Google Scholar 

  40. Ben-Moshe, A., Govorov, A. O. & Markovich, G. Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals. Angew. Chem. Int. Ed. 52, 1275–1279 (2013).

    Article  CAS  Google Scholar 

  41. Aurivillius, K. L., Hammarsten, E. & Reichard, P. On the crystal structure of cinnabar. Acta Chem. Scand. 4, 1413–1436 (1950).

    Article  CAS  Google Scholar 

  42. Schaaff, T. G., Knight, G., Shafigullin, M. N., Borkman, R. F. & Whetten, R. L. Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J. Phys. Chem. B 102, 10643–10646 (1998).

    Article  CAS  Google Scholar 

  43. Moloney, M. P., Gun’ko, Y. K. & Kelly, J. M. Chiral highly luminescent CdS quantum dots. Chem. Commun. https://doi.org/10.1039/B704636G (2007).

  44. Kim, Y.-H. et al. Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals. ACS Nano 14, 8816–8825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Georgieva, Z. N., Bloom, B. P., Ghosh, S. & Waldeck, D. H. Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets. Adv. Mater. 30, 1800097 (2018).

    Article  Google Scholar 

  46. Hubley, A. et al. Chiral perovskite nanoplatelets exhibiting circularly polarized luminescence through ligand optimization. Adv. Opt. Mater. 10, 2200394 (2022).

    Article  CAS  Google Scholar 

  47. Hao, C. et al. Chiral semiconductor nanoparticles for protein catalysis and profiling. Angew. Chem. Int. Ed. 58, 7371–7374 (2019).

    Article  CAS  Google Scholar 

  48. Purcell-Milton, F. et al. Induction of chirality in two-dimensional nanomaterials: chiral 2D MoS2 nanostructures. ACS Nano 12, 954–964 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Yeom, J. et al. Chiromagnetic nanoparticles and gels. Science 359, 309–314 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, Y., Yang, M., Sun, K., Tang, Z. & Kotov, N. A. Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. J. Am. Chem. Soc. 132, 6006–6013 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Yao, Y. et al. Extracting pure circular dichroism from hierarchically structured CdS magic cluster films. ACS Nano 16, 20457–20469 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Shi, Y., Duan, P., Huo, S., Li, Y. & Liu, M. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 30, 1705011 (2018).

    Article  Google Scholar 

  53. Liu, P. et al. Optically active perovskite CsPbBr3 nanocrystals helically arranged on inorganic silica nanohelices. Nano Lett. 20, 8453–8460 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Ben-Moshe, A. et al. The chain of chirality transfer in tellurium nanocrystals. Science 372, 729–733 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).

    Article  CAS  Google Scholar 

  56. Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).

    Article  CAS  Google Scholar 

  57. Ma, J. et al. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano 13, 3659–3665 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018).

    Article  CAS  Google Scholar 

  59. Zhou, C. et al. Low dimensional metal halide perovskites and hybrids. Mater. Sci. Eng. R Rep. 137, 38–65 (2019).

    Article  Google Scholar 

  60. Long, G. et al. Theoretical prediction of chiral 3D hybrid organic–inorganic perovskites. Adv. Mater. 31, 1807628 (2019).

    Article  Google Scholar 

  61. Guan, Q. et al. Unprecedented chiral three-dimensional hybrid organic-inorganic perovskitoids. Angew. Chem. Int. Ed. 62, e202307034 (2023).

    Article  CAS  Google Scholar 

  62. Hao, J. et al. Direct detection of circularly polarized light using chiral copper chloride–carbon nanotube heterostructures. ACS Nano 15, 7608–7617 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moon, T. H., Oh, S.-J. & Ok, K. M. [((R)-C8H12N)4][Bi2Br10] and [((S)-C8H12N)4][Bi2Br10]: chiral hybrid bismuth bromides templated by chiral organic cations. ACS Omega 3, 17895–17903 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Dey, A. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).

    Article  Google Scholar 

  67. Sallembien, Q., Bouteiller, L., Crassous, J. & Raynal, M. Possible chemical and physical scenarios towards biological homochirality. Chem. Soc. Rev. 51, 3436–3476 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Kettner, M. et al. Spin filtering in electron transport through chiral oligopeptides. J. Phys. Chem. C 119, 14542–14547 (2015).

    Article  CAS  Google Scholar 

  71. Bloom, B. P., Paltiel, Y., Naaman, R. & Waldeck, D. H. Chiral induced spin selectivity. Chem. Rev. 124, 1950–1991 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xie, Z. et al. Spin specific electron conduction through DNA oligomers. Nano Lett. 11, 4652–4655 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Liu, T. & Weiss, P. S. Spin polarization in transport studies of chirality-induced spin selectivity. ACS Nano 17, 19502–19507 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    Article  CAS  Google Scholar 

  75. Naaman, R. & Waldeck, D. H. Spintronics and chirality: spin selectivity in electron transport through chiral molecules. Annu. Rev. Phys. Chem. 66, 263–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Waldeck, D. H., Naaman, R. & Paltiel, Y. The spin selectivity effect in chiral materials. APL Mater. 9, 040902 (2021).

    Article  CAS  Google Scholar 

  77. Michaeli, K., Kantor-Uriel, N., Naaman, R. & Waldeck, D. H. The electron’s spin and molecular chirality – how are they related and how do they affect life processes? Chem. Soc. Rev. 45, 6478–6487 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Evers, F. et al. Theory of chirality induced spin selectivity: progress and challenges. Adv. Mater. 34, 2106629 (2022).

    Article  CAS  Google Scholar 

  79. Fransson, J. Chirality-induced spin selectivity: the role of electron correlations. J. Phys. Chem. Lett. 10, 7126–7132 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Das, T. K., Tassinari, F., Naaman, R. & Fransson, J. Temperature-dependent chiral-induced spin selectivity effect: experiments and theory. J. Phys. Chem. C 126, 3257–3264 (2022).

    Article  CAS  Google Scholar 

  81. Fransson, J. Charge redistribution and spin polarization driven by correlation induced electron exchange in chiral molecules. Nano Lett. 21, 3026–3032 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ben Dor, O. et al. Magnetization switching in ferromagnets by adsorbed chiral molecules without current or external magnetic field. Nat. Commun. 8, 14567 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sukenik, N. et al. Correlation between ferromagnetic layer easy axis and the tilt angle of self assembled chiral molecules. Molecules 25, 6036 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Michaeli, K., Varade, V., Naaman, R. & Waldeck, D. H. A new approach towards spintronics–spintronics with no magnets. J. Phys. Condens. Matter 29, 103002 (2017).

    Article  PubMed  Google Scholar 

  85. Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  Google Scholar 

  86. Reineke, S. Complementary LED technologies. Nat. Mater. 14, 459–462 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Baldo, M. & Segal, M. Phosphorescence as a probe of exciton formation and energy transfer in organic light emitting diodes. Phys. Status Solidi 201, 1205–1214 (2004).

    Article  CAS  Google Scholar 

  88. Endo, A. et al. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light emitting diodes — a novel mechanism for electroluminescence. Adv. Mater. 21, 4802–4806 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Im, Y. et al. Molecular design strategy of organic thermally activated delayed fluorescence emitters. Chem. Mater. 29, 1946–1963 (2017).

    Article  CAS  Google Scholar 

  90. Peng, Q., Obolda, A., Zhang, M. & Li, F. Organic light-emitting diodes using a neutral π radical as emitter: the emission from a doublet. Angew. Chem. Int. Ed. 54, 7091–7095 (2015).

    Article  CAS  Google Scholar 

  91. Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Hudson, J. M., Hele, T. J. H. & Evans, E. W. Efficient light-emitting diodes from organic radicals with doublet emission. J. Appl. Phys. 129, 180901 (2021).

    Article  CAS  Google Scholar 

  93. Mayorga Burrezo, P. et al. Organic free radicals as circularly polarized luminescence emitters. Angew. Chem. Int. Ed. 58, 16282–16288 (2019).

    Article  CAS  Google Scholar 

  94. Mayorga-Burrezo, P. et al. An enantiopure propeller-like trityl-brominated radical: bringing together a high racemization barrier and an efficient circularly polarized luminescent magnetic emitter. Chem. Eur. J. 26, 3776–3781 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Cibert, J. & Scalbert, D. in Spin Physics in Semiconductors (ed. Dyakonov, M. I.) 389–431 (Springer, 2008).

  96. Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).

    Article  CAS  Google Scholar 

  97. Ohno, H. et al. (Ga,Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996).

    Article  CAS  Google Scholar 

  98. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. & Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. MacDonald, A. H., Schiffer, P. & Samarth, N. Ferromagnetic semiconductors: moving beyond (Ga,Mn)As. Nat. Mater. 4, 195–202 (2005).

    Article  CAS  Google Scholar 

  100. Ohno, H. et al. Spontaneous splitting of ferromagnetic (Ga, Mn)As valence band observed by resonant tunneling spectroscopy. Appl. Phys. Lett. 73, 363–365 (1998).

    Article  CAS  Google Scholar 

  101. Lee, S., Chung, J.-H., Liu, X., Furdyna, J. K. & Kirby, B. J. Ferromagnetic semiconductor GaMnAs. Mater. Today 12, 14–21 (2009).

    Article  CAS  Google Scholar 

  102. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  CAS  Google Scholar 

  103. Ahmed, G. H. et al. Luminescence enhancement due to symmetry breaking in doped halide perovskite nanocrystals. J. Am. Chem. Soc. 144, 15862–15870 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Neumann, T. et al. Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskites. Nat. Commun. 12, 3489 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Náfrádi, B. et al. Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3. Nat. Commun. 7, 13406 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhang, Z. et al. Induced circularly polarized luminescence and exciton fine structure splitting in magnetic-doped chiral perovskites. ACS Nano 18, 5890–5897 (2024).

    Article  CAS  Google Scholar 

  107. Tanaka, H., Inoue, Y. & Mori, T. Circularly polarized luminescence and circular dichroisms in small organic molecules: correlation between excitation and emission dissymmetry factors. ChemPhotoChem 2, 386–402 (2018).

    Article  CAS  Google Scholar 

  108. Foot, C. J. Atomic Physics (Oxford Univ. Press, 2005).

  109. Riehl, J. P. & Richardson, F. S. Circularly polarized luminescence spectroscopy. Chem. Rev. 86, 1–16 (1986).

    Article  CAS  Google Scholar 

  110. Willis, B.-A. N., Schnable, D., Schley, N. D. & Ung, G. Spinolate lanthanide complexes for high circularly polarized luminescence metrics in the visible and near-infrared. J. Am. Chem. Soc. 144, 22421–22425 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Yang, D., Duan, P., Zhang, L. & Liu, M. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix. Nat. Commun. 8, 15727 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Han, J., Duan, P., Li, X. & Liu, M. Amplification of circularly polarized luminescence through triplet–triplet annihilation-based photon upconversion. J. Am. Chem. Soc. 139, 9783–9786 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Hautzinger, M. P. et al. Room-temperature spin injection across a chiral perovskite/III–V interface. Nature 631, 307–312 (2024).

    Article  CAS  PubMed  Google Scholar 

  116. Lingstädt, R. et al. Electron beam induced circularly polarized light emission of chiral gold nanohelices. ACS Nano 17, 25496–25506 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wei, J. J. et al. Molecular chirality and charge transfer through self-assembled scaffold monolayers. J. Phys. Chem. B 110, 1301–1308 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011).

    Article  PubMed  Google Scholar 

  119. Jiang, S. & Kotov, N. A. Circular polarized light emission in chiral inorganic nanomaterials. Adv. Mater. 35, 2108431 (2023).

    Article  CAS  Google Scholar 

  120. Zhang, W., Eperon, G. E. & Snaith, H. J. Metal halide perovskites for energy applications. Nat. Energy 1, 16048 (2016).

    Article  CAS  Google Scholar 

  121. Even, J., Pedesseau, L. & Katan, C. Analysis of multivalley and multibandgap absorption and enhancement of free carriers related to exciton screening in hybrid perovskites. J. Phys. Chem. C 118, 11566–11572 (2014).

    Article  CAS  Google Scholar 

  122. Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003).

    Article  CAS  Google Scholar 

  123. Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Liu, S. et al. Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskites. Sci. Adv. 9, eadh5083 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013).

    Article  CAS  Google Scholar 

  126. Yu, Z.-G. Chirality-induced spin–orbit coupling, spin transport, and natural optical activity in hybrid organic–inorganic perovskites. J. Phys. Chem. Lett. 11, 8638–8646 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. Sercel, P. C., Vardeny, Z. V. & Efros, A. L. Circular dichroism in non-chiral metal halide perovskites. Nanoscale 12, 18067–18078 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Arago, D. F. Mémoire sur une modification remarquable qu’éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes et sur quelques autres nouveaux phénomènes d’optique. Mém. Cl. Sci. Math. Phys. Inst. France 12, 93–134 (1811).

    Google Scholar 

  129. Haidinger, W. Über den Pleochroismus des Amethysts. Ann. Phys. 146, 531–544 (1847).

    Article  Google Scholar 

  130. Samoilov, B. N. Absorption and luminescence spectra of uranyl salts at temperatures of liquid helium. J. Exp. Theor. Phys. 18, 1030–1040 (1948).

    CAS  Google Scholar 

  131. Changenet, P. & Hache, F. Recent advances in the development of ultrafast electronic circular dichroism for probing the conformational dynamics of biomolecules in solution. Eur. Phys. J. Spec. Top. 232, 2117–2129 (2023).

    Article  Google Scholar 

  132. Kitzmann, W. R., Freudenthal, J., Reponen, A.-P. M., VanOrman, Z. A. & Feldmann, S. Fundamentals, advances, and artifacts in circularly polarized luminescence (CPL) spectroscopy. Adv. Mater. 35, 2302279 (2023).

    Article  CAS  Google Scholar 

  133. Meskers, S. C. J. Circular polarization of luminescence as a tool to study molecular dynamical processes. ChemPhotoChem 6, e202100154 (2022).

    Article  CAS  Google Scholar 

  134. Berova, N., Polavarapu, P. L., Nakanishi, K. & Woody, R. W. (eds) Comprehensive Chiroptical Spectroscopy, Volume 1: Instrumentation, Methodologies, and Theoretical Simulations (Wiley, 2012).

  135. Schippers, P. H., van den Buekel, A. & Dekkers, H. P. J. M. An accurate digital instrument for the measurement of circular polarisation of luminescence. J. Phys. E Sci. Instrum. 15, 945 (1982).

    Article  CAS  Google Scholar 

  136. Schippers, P. H. & Dekkers, H. P. J. M. Direct determination of absolute circular dichroism data and calibration of commercial instruments. Anal. Chem. 53, 778–782 (1981).

    Article  CAS  Google Scholar 

  137. Arteaga, O., Freudenthal, J., Wang, B. & Kahr, B. Mueller matrix polarimetry with four photoelastic modulators: theory and calibration. Appl. Opt. 51, 6805–6817 (2012).

    Article  PubMed  Google Scholar 

  138. Kliger, D. S. & Lewis, J. W. Recent advances in time resolved circular dichroism spectroscopy. Rev. Chem. Intermed. 8, 367–398 (1987).

    Article  CAS  Google Scholar 

  139. Trifonov, A., Buchvarov, I., Lohr, A., Würthner, F. & Fiebig, T. Broadband femtosecond circular dichroism spectrometer with white-light polarization control. Rev. Sci. Instrum. 81, 043104 (2010).

    Article  PubMed  Google Scholar 

  140. Oppermann, M. et al. Ultrafast broadband circular dichroism in the deep ultraviolet. Optica 6, 56–60 (2019).

    Article  CAS  Google Scholar 

  141. Schauerte, J. A., Schlyer, B. D., Steel, D. G. & Gafni, A. Nanosecond time-resolved circular polarization of fluorescence: study of NADH bound to horse liver alcohol dehydrogenase. Proc. Natl Acad. Sci. USA 92, 569–573 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. MacKenzie, L. E., Pålsson, L.-O., Parker, D., Beeby, A. & Pal, R. Rapid time-resolved circular polarization luminescence (CPL) emission spectroscopy. Nat. Commun. 11, 1676 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hananel, U. et al. Time-resolved circularly polarized luminescence of Eu3+-based systems. Chirality 33, 124–133 (2021).

    Article  CAS  PubMed  Google Scholar 

  144. Nafie, L. A. Infrared and Raman vibrational optical activity: theoretical and experimental aspects. Annu. Rev. Phys. Chem. 48, 357–386 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Nafie, L. A. Vibrational optical activity: from discovery and development to future challenges. Chirality 32, 667–692 (2020).

    Article  CAS  PubMed  Google Scholar 

  146. Hobden, M. V. Optical activity in a non-enantiomorphous crystal silver gallium sulphide. Nature 216, 678–678 (1967).

    Article  CAS  Google Scholar 

  147. Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials 1st edn (CRC, 1997).

  148. Rikken, G. L. J. A. & Raupach, E. Observation of magneto-chiral dichroism. Nature 390, 493–494 (1997).

    Article  CAS  Google Scholar 

  149. Franco, V. & Dodrill, B. (eds) Magnetic Measurement Techniques for Materials Characterization (Springer Nature, 2021).

  150. Maestre, M. F., Bustamante, C., Hayes, T. L., Subirana, J. A. & Tinoco, I. Differential scattering of circularly polarized light by the helical sperm head from the octopus Eledone cirrhosa. Nature 298, 773–774 (1982).

    Article  CAS  PubMed  Google Scholar 

  151. Goulon, J. et al. Optical activity probed with x-rays. J. Phys. Condens. Matter 15, S633–S645 (2003).

    Article  CAS  Google Scholar 

  152. Zhang, Y., Rouxel, J. R., Autschbach, J., Govind, N. & Mukamel, S. X-ray circular dichroism signals: a unique probe of local molecular chirality. Chem. Sci. 8, 5969–5978 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Powis, I. in Advances in Chemical Physics Vol. 138 (ed. Rice, S. A.) 267–329 (Wiley, 2008).

  154. Janssen, M. H. M. & Powis, I. Detecting chirality in molecules by imaging photoelectron circular dichroism. Phys. Chem. Chem. Phys. 16, 856–871 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Haupert, L. M. & Simpson, G. J. Chirality in nonlinear optics. Annu. Rev. Phys. Chem. 60, 345–365 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Kriech, M. A. & Conboy, J. C. Imaging chirality with surface second harmonic generation microscopy. J. Am. Chem. Soc. 127, 2834–2835 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Asnin, V. M. et al. “Circular” photogalvanic effect in optically active crystals. Solid State Commun. 30, 565–570 (1979).

    Article  CAS  Google Scholar 

  158. Huang, P.-J. et al. Chirality-dependent circular photogalvanic effect in enantiomorphic 2D organic–inorganic hybrid perovskites. Adv. Mater. 33, 2008611 (2021).

    Article  CAS  Google Scholar 

  159. Völker, L. A., Herb, K., Janitz, E., Degen, C. L. & Abendroth, J. M. Toward quantum sensing of chiral induced spin selectivity: probing donor–bridge–acceptor molecules with NV centers in diamond. J. Chem. Phys. 158, 161103 (2023).

    Article  PubMed  Google Scholar 

  160. Fay, T. P. Chirality-induced spin coherence in electron transfer reactions. J. Phys. Chem. Lett. 12, 1407–1412 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Yang, X., van der Wal, C. H. & van Wees, B. J. Detecting chirality in two-terminal electronic nanodevices. Nano Lett. 20, 6148–6154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. L. Greenfield, J. et al. Pathways to increase the dissymmetry in the interaction of chiral light and chiral molecules. Chem. Sci. 12, 8589–8602 (2021).

    Article  Google Scholar 

  163. Tang, Y. & Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Forbes, K. A. & Andrews, D. L. Enhanced optical activity using the orbital angular momentum of structured light. Phys. Rev. Res. 1, 033080 (2019).

    Article  CAS  Google Scholar 

  165. Oppermann, M., Zinna, F., Lacour, J. & Chergui, M. Chiral control of spin-crossover dynamics in Fe(II) complexes. Nat. Chem. 14, 739–745 (2022).

    Article  CAS  PubMed  Google Scholar 

  166. Kim, B. C. et al. Wideband antireflective circular polarizer exhibiting a perfect dark state in organic light-emitting-diode display. Opt. Express 22, A1725–A1730 (2014).

    Article  PubMed  Google Scholar 

  167. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  Google Scholar 

  168. Zhang, M. et al. Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging. Sci. Adv. 9, eadi9944 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Aiello, C. D. et al. A chirality-based quantum leap. ACS Nano 16, 4989–5035 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kan, Y. et al. Metasurface-enabled generation of circularly polarized single photons. Adv. Mater. 32, e1907832 (2020).

    Article  PubMed  Google Scholar 

  171. Nicolas, A. et al. A quantum memory for orbital angular momentum photonic qubits. Nat. Photon. 8, 234–238 (2014).

    Article  CAS  Google Scholar 

  172. Simon, C. Towards a global quantum network. Nat. Photon. 11, 678–680 (2017).

    Article  CAS  Google Scholar 

  173. Li, X., Voss, P. L., Sharping, J. E. & Kumar, P. Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. Phys. Rev. Lett. 94, 053601 (2005).

    Article  PubMed  Google Scholar 

  174. Zhang, C., Wang, X. & Qiu, L. Circularly polarized photodetectors based on chiral materials: a review. Front. Chem. 9, 711488 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ward, M. D. et al. Best practices in the measurement of circularly polarised photodetectors. J. Mater. Chem. C 10, 10452–10463 (2022).

    Article  CAS  Google Scholar 

  176. Walba, D. M., Richards, R. M. & Haltiwanger, R. C. Total synthesis of the first molecular Moebius strip. J. Am. Chem. Soc. 104, 3219–3221 (1982).

    Article  CAS  Google Scholar 

  177. Dee, C. et al. Strong circularly polarized luminescence of an octahedral chromium(III) complex. Chem. Commun. 55, 13078–13081 (2019).

    Article  CAS  Google Scholar 

  178. Kulkarni, C. et al. Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 32, 1904965 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, contributed substantially to discussion of the content and ultimately co-wrote the article. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Sascha Feldmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Jeanne Crassous, Haipeng Lu and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

VanOrman, Z.A., Kitzmann, W.R., Reponen, AP.M. et al. Chiral light–matter interactions in solution-processable semiconductors. Nat Rev Chem 9, 208–223 (2025). https://doi.org/10.1038/s41570-025-00690-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00690-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing