Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multifaceted nature of defect tolerance in halide perovskites and emerging semiconductors

Abstract

Lead halide perovskites (LHPs) have shot to prominence as efficient energy-conversion materials that can be processed using cost-effective fabrication methods. A reason for their exceptional performance is their crystallographic defect tolerance, enabling long charge-carrier lifetimes despite high defect densities. Achieving defect tolerance in broader classes of materials would impact on the semiconductor industry substantially. Considerable efforts have been made to understand the origins of defect tolerance, so as to design stable and nontoxic alternatives to LHPs. However, understanding defect tolerance in LHPs is far from straightforward. This Review discusses the models proposed for defect tolerance in halide perovskites, evaluating the experimental and theoretical support for these models, as well as their limitations. We also cover attempts to apply these models to identify materials beyond LHPs that could exhibit defect tolerance. Finally, we discuss the experimental methods used to understand defects in mixed ionic–electronic conductors, as well as the important information that is necessary for a deeper understanding, in order to develop improved models that enable the design of defect-tolerant semiconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of defect tolerance on the performance of solar absorbers.
Fig. 2: Models for defect tolerance in lead halide perovskites.
Fig. 3: Progress of perovskite-inspired materials as solar absorbers.
Fig. 4: Performance bottlenecks in emerging perovskite-inspired materials.
Fig. 5: Emerging techniques to characterize point defects.

Similar content being viewed by others

References

  1. Ballif, C., Haug, F.-J., Boccard, M., Verlinden, P. J. & Hahn, G. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 7, 597–616 (2022).

    Article  Google Scholar 

  2. Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).

    Article  CAS  Google Scholar 

  3. Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Andrei, V. et al. Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature 608, 518–522 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Holmes-Gentle, I., Tembhurne, S., Suter, C. & Haussener, S. Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device. Nat. Energy 8, 586–596 (2023).

    Article  CAS  Google Scholar 

  6. Walsh, A. & Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater. 16, 964–967 (2017).

    Article  CAS  Google Scholar 

  7. Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  Google Scholar 

  8. Zhou, J. et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 8, 1691–1706 (2024).

    Article  CAS  Google Scholar 

  9. Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).

    Article  PubMed  Google Scholar 

  10. Dale, P. J. & Scarpulla, M. A. Efficiency versus effort: a better way to compare best photovoltaic research cell efficiencies? Sol. Energy Mater. Sol. Cells 251, 112097 (2023).

    Article  CAS  Google Scholar 

  11. Tiedje, T., Yablonovitch, E., Cody, G. D. & Brooks, B. G. Limiting efficiency of silicon solar cells. IEEE Trans. Electron. Devices 31, 711–716 (1984).

    Article  Google Scholar 

  12. Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, H., Bodnarchuk, M. I., Kershaw, S. V., Kovalenko, M. V. & Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2, 2071–2083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xu, J. et al. Defect tolerance of mixed B-site organic–inorganic halide perovskites. ACS Energy Lett. 6, 4220–4227 (2021).

    Article  CAS  Google Scholar 

  15. Ye, J. et al. Defect passivation in lead‐halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angew. Chem. Int. Ed. 60, 21636–21660 (2021).

    Article  CAS  Google Scholar 

  16. Shin, S. S. et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167–171 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016).

    Article  PubMed  Google Scholar 

  18. Lindmayer, J. & Allison, J. F. The violet cell: an improved silicon solar cell. Sol. Cells 29, 151–166 (1990).

    Article  Google Scholar 

  19. Green, M. A. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. 17, 183–189 (2009).

    Article  CAS  Google Scholar 

  20. Green, M. A. Silicon solar cells: evolution, high-efficiency design and efficiency enhancements. Semicond. Sci. Technol. 8, 1 (1993).

    Article  CAS  Google Scholar 

  21. Blakesley, J. C. et al. Roadmap on established and emerging photovoltaics for sustainable energy conversion. J. Phys. Energy 6, 041501 (2024).

    Article  CAS  Google Scholar 

  22. Das, S. K. & Morris, G. C. Preparation and properties of CdS/CdTe thin film solar cell produced by periodic pulse electrodeposition technique. Sol. Energy Mater. Sol. Cells 30, 107–118 (1993).

    Article  CAS  Google Scholar 

  23. Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Cahen, D., Kronik, L. & Hodes, G. Are defects in lead-halide perovskites healed, tolerated, or both? ACS Energy Lett. 6, 4108–4114 (2021).

    Article  CAS  Google Scholar 

  25. Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Meggiolaro, D. et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 11, 702–713 (2018).

    Article  CAS  Google Scholar 

  27. Hangleiter, A. Nonradiative recombination via deep impurity levels in silicon: experiment. Phys. Rev. B 35, 9149–9161 (1987).

    Article  CAS  Google Scholar 

  28. Zhang, S. B., Wei, S.-H. & Zunger, A. Stabilization of ternary compounds via ordered arrays of defect pairs. Phys. Rev. Lett. 78, 4059–4062 (1997).

    Article  CAS  Google Scholar 

  29. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  Google Scholar 

  30. Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    Article  CAS  Google Scholar 

  31. Zakutayev, A. et al. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Cohen, A., Egger, D. A., Rappe, A. M. & Kronik, L. Breakdown of the static picture of defect energetics in halide perovskites: the case of the Br vacancy in CsPbBr3. J. Phys. Chem. Lett. 10, 4490–4498 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Futscher, M. H. & Deibel, C. Defect spectroscopy in halide perovskites is dominated by ionic rather than electronic defects. ACS Energy Lett. 7, 140–144 (2022).

    Article  CAS  Google Scholar 

  34. Heo, S. et al. Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy. Energy Environ. Sci. 10, 1128–1133 (2017).

    Article  CAS  Google Scholar 

  35. Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Keeble, D. J. et al. Identification of lead vacancy defects in lead halide perovskites. Nat. Commun. 12, 5566 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, X., Turiansky, M. E., Shen, J.-X. & Van de Walle, C. G. Defect tolerance in halide perovskites: a first-principles perspective. J. Appl. Phys. 131, 090901 (2022).

    Article  CAS  Google Scholar 

  38. Jaramillo, R. et al. Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: advanced metrology for an early stage photovoltaic material. J. Appl. Phys. 119, 035101 (2016).

    Article  Google Scholar 

  39. Brandt, R. E. et al. Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667–4674 (2017).

    Article  CAS  Google Scholar 

  40. Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuan, Y., Yan, G., Dreessen, C. & Kirchartz, T. Understanding power-law photoluminescence decays and bimolecular recombination in lead-halide perovskites. Adv. Energy Mater. 15, 2403279 (2024).

    Article  Google Scholar 

  42. Yuan, Y. et al. Shallow defects and variable photoluminescence decay times up to 280 µs in triple-cation perovskites. Nat. Mater. 23, 391–397 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kirchartz, T., Márquez, J. A., Stolterfoht, M. & Unold, T. Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10, 1904134 (2020).

    Article  CAS  Google Scholar 

  44. Rondiya, S. R., Jagt, R. A., MacManus-Driscoll, J. L., Walsh, A. & Hoye, R. L. Z. Self-trapping in bismuth-based semiconductors: opportunities and challenges from optoelectronic devices to quantum technologies. Appl. Phys. Lett. 119, 220501 (2021).

    Article  CAS  Google Scholar 

  45. Wu, B. et al. Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. Sci. Adv. 7, eabd3160 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buizza, L. R. V. & Herz, L. M. Polarons and charge localization in metal-halide semiconductors for photovoltaic and light-emitting devices. Adv. Mater. 33, 2007057 (2021).

    Article  CAS  Google Scholar 

  47. Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017).

    Article  Google Scholar 

  48. Green, M. A. & Ho-Baillie, A. W. Y. Pushing to the limit: radiative efficiencies of recent mainstream and emerging solar cells. ACS Energy Lett. 4, 1639–1644 (2019).

    Article  CAS  Google Scholar 

  49. Jasti, N. P. et al. Experimental evidence for defect tolerance in Pb-halide perovskites. Proc. Natl Acad. Sci. USA 121, e2316867121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Freysoldt, C. Impact of metastable defect structures on carrier recombination in solar cells. Faraday Discuss. 239, 339–356 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alkauskas, A., Yan, Q. & Van de Walle, C. G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys. Rev. B 90, 075202 (2014).

    Article  CAS  Google Scholar 

  52. Nenon, D. P. et al. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases. J. Am. Chem. Soc. 140, 17760–17772 (2018).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, X., Kavanagh, S. R., Scanlon, D. O. & Walsh, A. Upper efficiency limit of Sb2Se3 solar cells. Joule 8, 2105–2122 (2024).

    Article  CAS  Google Scholar 

  54. Kim, S., Park, J.-S. & Walsh, A. Identification of killer defects in kesterite thin-film solar cells. ACS Energy Lett. 3, 496–500 (2018).

    Article  CAS  Google Scholar 

  55. Kavanagh, S. R., Walsh, A. & Scanlon, D. O. Rapid recombination by cadmium vacancies in CdTe. ACS Energy Lett. 6, 1392–1398 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang, J.-H., Shi, L., Wang, L.-W. & Wei, S.-H. Non-radiative carrier recombination enhanced by two-level process: a first-principles study. Sci. Rep. 6, 21712 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Du, M. H. Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014).

    Article  CAS  Google Scholar 

  58. Du, M.-H. Density functional calculations of native defects in CH3NH3PbI3: effects of spin–orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Whalley, L. D. et al. Giant Huang–Rhys factor for electron capture by the iodine intersitial in perovskite solar cells. J. Am. Chem. Soc. 143, 9123–9128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, J., Zhang, X., Turiansky, M. E. & Van de Walle, C. G. Iodine vacancies do not cause nonradiative recombination in halide perovskites. PRX Energy 2, 013008 (2023).

    Article  Google Scholar 

  61. Zhang, S. B., Wei, S.-H., Zunger, A. & Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642–9656 (1998).

    Article  CAS  Google Scholar 

  62. Huang, Y.-T., Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Hoye, R. L. Z. Perovskite-inspired materials for photovoltaics and beyond—from design to devices. Nanotechnology 32, 132004 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Kim, J., Chung, C.-H. & Hong, K.-H. Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Phys. Chem. Chem. Phys. 18, 27143–27147 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Ganose, A. M., Scanlon, D. O., Walsh, A. & Hoye, R. L. Z. The defect challenge of wide-bandgap semiconductors for photovoltaics and beyond. Nat. Commun. 13, 4715 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, X. & Wei, S.-H. Origin of efficiency enhancement by lattice expansion in hybrid-perovskite solar cells. Phys. Rev. Lett. 128, 136401 (2022).

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, X., Turiansky, M. E., Shen, J.-X. & Van de Walle, C. G. Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites. Phys. Rev. B 101, 140101 (2020).

    Article  CAS  Google Scholar 

  67. Zhang, X., Shen, J. X., Turiansky, M. E. & Van de Walle, C. G. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat. Mater. 20, 971–976 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Whalley, L. D. Steric engineering of point defects in lead halide perovskites. J. Phys. Chem. C 127, 15738–15746 (2023).

    Article  CAS  Google Scholar 

  69. Wang, Y. et al. Octahedral tilting on halide perovskites. Nat. Rev. Chem. https://doi.org/10.1038/s41570-025-00687-6 (2025).

  70. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Mitzi, D. B., Feild, C. A., Schlesinger, Z. & Laibowitz, R. B. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114, 159–163 (1995).

    Article  CAS  Google Scholar 

  72. Aharon, S., Gamliel, S., Cohen, B. E. & Etgar, L. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16, 10512–10518 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Kirchartz, T., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Classification of solar cells according to mechanisms of charge separation and charge collection. Phys. Chem. Chem. Phys. 17, 4007–4014 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. 127, 1811–1814 (2015).

    Article  Google Scholar 

  75. Yang, J.-H., Yin, W.-J., Park, J.-S. & Wei, S.-H. Self-regulation of charged defect compensation and formation energy pinning in semiconductors. Sci. Rep. 5, 16977 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Miyata, K. & Zhu, X.-Y. Ferroelectric large polarons. Nat. Mater. 17, 379–381 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, C. et al. Self-healing behavior of the metal halide perovskites and photovoltaics. Small 20, 2307645 (2024).

    Article  CAS  Google Scholar 

  80. Zhu, X.-Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    Article  CAS  Google Scholar 

  82. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Chu, W., Zheng, Q., Prezhdo, O. V., Zhao, J. & Saidi, W. A. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Sci. Adv. 6, eaaw7453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chu, W., Saidi, W. A., Zhao, J. & Prezhdo, O. V. Soft lattice and defect covalency rationalize tolerance of β-CsPbI3 perovskite solar cells to native defects. Angew. Chem. Int. Ed. 59, 6435–6441 (2020).

    Article  CAS  Google Scholar 

  85. Spina, M. et al. Mechanical signatures of degradation of the photovoltaic perovskite CH3NH3PbI3 upon water vapor exposure. Appl. Phys. Lett. 110, 121903 (2017).

    Article  Google Scholar 

  86. Fukuhara, M. & Yamauchi, I. Temperature dependence of the elastic moduli, dilational and shear internal frictions and acoustic wave velocity for alumina, (Y)TZP and β′-sialon ceramics. J. Mater. Sci. 28, 4681–4688 (1993).

    Article  CAS  Google Scholar 

  87. Leguy, A. M. A. et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Frost, J. M. Calculating polaron mobility in halide perovskites. Phys. Rev. B 96, 195202 (2017).

    Article  Google Scholar 

  89. Kirchartz, T., Markvart, T., Rau, U. & Egger, D. A. Impact of small phonon energies on the charge-carrier lifetimes in metal-halide perovskites. J. Phys. Chem. Lett. 9, 939–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Wang, S. et al. Effective lifetime of non-equilibrium carriers in semiconductors from non-adiabatic molecular dynamics simulations. Nat. Comput. Sci. 2, 486–493 (2022).

    Article  PubMed  Google Scholar 

  91. Mukhuti, K., Sinha, S., Sinha, S. & Bansal, B. Dissipation-induced symmetry breaking: emphanitic transitions in lead- and tin-containing chalcogenides and halide perovskites. Appl. Phys. Lett. 118, 162111 (2021).

    Article  CAS  Google Scholar 

  92. Laurita, G., Fabini, D. H., Stoumpos, C. C., Kanatzidis, M. G. & Seshadri, R. Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites. Chem. Sci. 8, 5628–5635 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jensen, K. M. Ø. et al. Lattice dynamics reveals a local symmetry breaking in the emergent dipole phase of PbTe. Phys. Rev. B 86, 085313 (2012).

    Article  Google Scholar 

  94. Dubajic, M. et al. Dynamic nanodomains dictate macroscopic properties in lead halide perovskites. Preprint at https://doi.org/10.48550/ARXIV.2404.14598 (2024).

  95. Walsh, A., Payne, D. J., Egdell, R. G. & Watson, G. W. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40, 4455–4463 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Lang, F. et al. Radiation hardness and self-healing of perovskite solar cells. Adv. Mater. 28, 8726–8731 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Andričević, P. et al. Kilogram-scale crystallogenesis of halide perovskites for gamma-rays dose rate measurements. Adv. Sci. 8, 2001882 (2021).

    Article  Google Scholar 

  98. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333–339 (2016).

    Article  CAS  Google Scholar 

  99. Domanski, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017).

    Article  CAS  Google Scholar 

  100. Bag, M. et al. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137, 13130–13137 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yadav, P., Prochowicz, D., Alharbi, E. A., Zakeeruddin, S. M. & Grätzel, M. Intrinsic and interfacial kinetics of perovskite solar cells under photo and bias-induced degradation and recovery. J. Mater. Chem. C 5, 7799–7805 (2017).

    Article  CAS  Google Scholar 

  103. Yadavalli, S. K., Dai, Z., Zhou, H., Zhou, Y. & Padture, N. P. Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Mater. 187, 112–121 (2020).

    Article  CAS  Google Scholar 

  104. Al-Handawi, M. B. et al. Autonomous reconstitution of fractured hybrid perovskite single crystals. Adv. Mater. 34, 2109374 (2022).

    Article  CAS  Google Scholar 

  105. Guillemoles, J.-F., Rau, U., Kronik, L., Schock, H.-W. & Cahen, D. Cu(In,Ga)Se2 solar cells: device stability based on chemical flexibility. Adv. Mater. 11, 957–961 (1999).

    Article  CAS  Google Scholar 

  106. Rakita, Y., Lubomirsky, I. & Cahen, D. When defects become ‘dynamic’: halide perovskites: a new window on materials? Mater. Horiz. 6, 1297–1305 (2019).

    Article  CAS  Google Scholar 

  107. Zhou, Z. et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. Int. Ed. 54, 9705–9709 (2015).

    Article  CAS  Google Scholar 

  108. Hoye, R. L. Z. et al. The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives. Adv. Energy Mater. 12, 2100499 (2022).

    Article  CAS  Google Scholar 

  109. Dunlap-Shohl, W. A., Hill, I. G., Yan, Y. & Mitzi, D. B. Photovoltaic effect in indium(I) iodide thin films. Chem. Mater. 30, 8226–8232 (2018).

    Article  CAS  Google Scholar 

  110. López-Fernández, I. et al. Lead-free halide perovskite materials and optoelectronic devices: progress and prospective. Adv. Funct. Mater. 34, 2307896 (2024).

    Article  Google Scholar 

  111. Ganose, A. M., Savory, C. N. & Scanlon, D. O. Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. Chem. Commun. 53, 20–44 (2017).

    Article  CAS  Google Scholar 

  112. Glück, N. & Bein, T. Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy Environ. Sci. 13, 4691–4716 (2020).

    Article  Google Scholar 

  113. Ke, W. et al. Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Sci. Adv. 3, e1701293 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lee, S. J. et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex. J. Am. Chem. Soc. 138, 3974–3977 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Koh, T. M. et al. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3, 14996–15000 (2015).

    Article  CAS  Google Scholar 

  116. Yu, B. et al. Heterogeneous 2D/3D tin‐halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33, 2102055 (2021).

    Article  CAS  Google Scholar 

  117. Shao, S. et al. Highly reproducible Sn‐based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8, 1702019 (2018).

    Article  Google Scholar 

  118. Dixit, H., Punetha, D. & Pandey, S. K. Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 179, 969–976 (2019).

    Article  CAS  Google Scholar 

  119. Shi, Y., Zhu, Z., Miao, D., Ding, Y. & Mi, Q. Interfacial dipoles boost open-circuit voltage of tin halide perovskite solar cells. ACS Energy Lett. 9, 1895–1897 (2024).

    Article  CAS  Google Scholar 

  120. Cui, D. et al. Making room for growing oriented FASnI3 with large grains via cold precursor solution. Adv. Funct. Mater. 31, 2100931 (2021).

    Article  CAS  Google Scholar 

  121. Wang, C. et al. Self‐repairing tin‐based perovskite solar cells with a breakthrough efficiency over 11%. Adv. Mater. 32, 1907623 (2020).

    Article  CAS  Google Scholar 

  122. Meng, X. et al. Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 4, 902–912 (2020).

    Article  CAS  Google Scholar 

  123. Ke, W. et al. TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J. Am. Chem. Soc. 138, 14998–15003 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Li, F. et al. A cation‐exchange approach for the fabrication of efficient methylammonium tin iodide perovskite solar cells. Angew. Chem. Int. Ed. 58, 6688–6692 (2019).

    Article  CAS  Google Scholar 

  125. Xu, F., Wei, H. & Cao, B. A hot phonon bottleneck observed upon incorporation of SnF2 to MASnI3 films and its possible role in increasing photocarrier diffusion length. J. Appl. Phys. 135, 133102 (2024).

    Article  CAS  Google Scholar 

  126. Ke, W. et al. Efficient lead-free solar cells based on hollow {en}MASnI3 perovskites. J. Am. Chem. Soc. 139, 14800–14806 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Ji, L. et al. Regulating crystallization dynamics and crystal orientation of methylammonium tin iodide enables high-efficiency lead-free perovskite solar cells. Nanoscale 14, 1219–1225 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Ye, T. et al. Ambient-air-stable lead-free CsSnI3 solar cells with greater than 7.5% efficiency. J. Am. Chem. Soc. 143, 4319–4328 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, Y. et al. Convenient preparation of CsSnI3 quantum dots, excellent stability, and the highest performance of lead-free inorganic perovskite solar cells so far. J. Mater. Chem. A 7, 7683–7690 (2019).

    Article  CAS  Google Scholar 

  130. Marshall, K. P., Walker, M., Walton, R. I. & Hatton, R. A. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1, 16178 (2016).

    Article  CAS  Google Scholar 

  131. Ye, T. et al. Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies >10%. ACS Energy Lett. 6, 1480–1489 (2021).

    Article  CAS  Google Scholar 

  132. Zhang, W. et al. Organic‐free and lead‐free perovskite solar cells with efficiency over 11%. Adv. Energy Mater. 12, 2202491 (2022).

    Article  CAS  Google Scholar 

  133. Song, T.-B., Yokoyama, T., Aramaki, S. & Kanatzidis, M. G. Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Lett. 2, 897–903 (2017).

    Article  CAS  Google Scholar 

  134. Dai, L. et al. Single‐crystal nanowire cesium tin triiodide perovskite solar cell. Small 19, 2208062 (2023).

    Article  CAS  Google Scholar 

  135. Zhang, Z. et al. Over 12% efficient CsSnI3 perovskite solar cells enabled by surface post-treatment with bi-functional polar molecules. Chem. Eng. J. 490, 151561 (2024).

    Article  CAS  Google Scholar 

  136. Cao, J. & Yan, F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 14, 1286–1325 (2021).

    Article  CAS  Google Scholar 

  137. Tai, Q. et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58, 806–810 (2019).

    Article  CAS  Google Scholar 

  138. Hasan, S. A. U., Lee, D. S., Im, S. H. & Hong, K.-H. Present status and research prospects of tin-based perovskite solar cells. Sol. RRL 4, 1900310 (2020).

    Article  Google Scholar 

  139. Krishnamoorthy, T. et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3, 23829–23832 (2015).

    Article  CAS  Google Scholar 

  140. Chiara, R., Morana, M. & Malavasi, L. Germanium‐based halide perovskites: materials, properties, and applications. ChemPlusChem 86, 879–888 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Mohan, R. Green bismuth. Nat. Chem. 2, 336 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Park, B. et al. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27, 6806–6813 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Bai, F. et al. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Sol. Energy Mater. Sol. Cells 184, 15–21 (2018).

    Article  CAS  Google Scholar 

  144. Huang, P.-C., Yang, W.-C. & Lee, M.-W. AgBiS2 semiconductor-sensitized solar cells. J. Phys. Chem. C 117, 18308–18314 (2013).

    Article  CAS  Google Scholar 

  145. Burgués-Ceballos, I., Wang, Y., Akgul, M. Z. & Konstantatos, G. Colloidal AgBiS2 nanocrystals with reduced recombination yield 6.4% power conversion efficiency in solution-processed solar cells. Nano Energy 75, 104961 (2020).

    Article  Google Scholar 

  146. Zhou, S. et al. Preparation and photovoltaic properties of ternary AgBiS2 quantum dots sensitized TiO2 nanorods photoanodes by electrochemical atomic layer deposition. J. Electrochem. Soc. 163, D63–D67 (2016).

    Article  CAS  Google Scholar 

  147. Bernechea, M. et al. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 10, 521–525 (2016).

    Article  CAS  Google Scholar 

  148. Li, X. et al. Thin film AgBiS2 solar cells with over 10% power conversion efficiency enabled by vapor-assisted solution process treatment. Chem. Eng. J. 495, 153328 (2024).

    Article  CAS  Google Scholar 

  149. Sfaelou, S., Raptis, D., Dracopoulos, V. & Lianos, P. BiOI solar cells. RSC Adv. 5, 95813–95816 (2015).

    Article  CAS  Google Scholar 

  150. Wang, K., Jia, F., Zheng, Z. & Zhang, L. Crossed BiOI flake array solar cells. Electrochem. Commun. 12, 1764–1767 (2010).

    Article  CAS  Google Scholar 

  151. Jain, S. M. et al. An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 49, 614–624 (2018).

    Article  CAS  Google Scholar 

  152. Huang, Y.-T. et al. Strong absorption and ultrafast localisation in NaBiS2 nanocrystals with slow charge-carrier recombination. Nat. Commun. 13, 4960 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lal, S. et al. The role of chemical composition in determining the charge-carrier dynamics in (AgI)x(BiI3)y rudorffites. Adv. Funct. Mater. 34, 2315942 (2024).

    Article  CAS  Google Scholar 

  154. Jia, Z. et al. Charge-carrier dynamics of solution-processed antimony- and bismuth-based chalcogenide thin films. ACS Energy Lett. 8, 1485–1492 (2023).

    Article  CAS  Google Scholar 

  155. Lal, S. et al. Bandlike transport and charge-carrier dynamics in BiOI films. J. Phys. Chem. Lett. 14, 6620–6629 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, Y. et al. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nat. Photonics 16, 235–241 (2022).

    Article  CAS  Google Scholar 

  157. Septina, W., Ikeda, S., Iga, Y., Harada, T. & Matsumura, M. Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films 550, 700–704 (2014).

    Article  CAS  Google Scholar 

  158. Li, Z. et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 10, 125 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kolay, A. et al. New antimony selenide/nickel oxide photocathode boosts the efficiency of graphene quantum-dot co-sensitized solar cells. ACS Appl. Mater. Interfaces 9, 34915–34926 (2017).

    Article  CAS  PubMed  Google Scholar 

  160. Choi, Y. C. et al. Sb2Se3‐sensitized inorganic–organic heterojunction solar cells fabricated using a single‐source precursor. Angew. Chem. Int. Ed. 53, 1329–1333 (2014).

    Article  CAS  Google Scholar 

  161. Duan, Z. et al. Sb2Se3 thin‐film solar cells exceeding 10% power conversion efficiency enabled by injection vapor deposition technology. Adv. Mater. 34, 2202969 (2022).

    Article  CAS  Google Scholar 

  162. Leng, M. et al. Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Appl. Phys. Lett. 105, 083905 (2014).

    Article  Google Scholar 

  163. Zhou, Y. et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 9, 409–415 (2015).

    Article  CAS  Google Scholar 

  164. Wang, S. et al. A novel multi-sulfur source collaborative chemical bath deposition technology enables 8%-efficiency Sb2S3 planar solar cells. Adv. Mater. 34, 2206242 (2022).

    Article  CAS  Google Scholar 

  165. Chang, J. A. et al. High-performance nanostructured inorganic−organic heterojunction solar cells. Nano Lett. 10, 2609–2612 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Choi, Y. C., Lee, D. U., Noh, J. H., Kim, E. K. & Seok, S. I. Highly improved Sb2S3 sensitized‐inorganic–organic heterojunction solar cells and quantification of traps by deep‐level transient spectroscopy. Adv. Funct. Mater. 24, 3587–3592 (2014).

    Article  CAS  Google Scholar 

  167. Nezu, S. et al. Light soaking and gas effect on nanocrystalline TiO2/Sb2S3/CuSCN photovoltaic cells following extremely thin absorber concept. J. Phys. Chem. C 114, 6854–6859 (2010).

    Article  CAS  Google Scholar 

  168. Chang, J. A. et al. Panchromatic photon-harvesting by hole-conducting materials in inorganic–organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett. 12, 1863–1867 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Itzhaik, Y., Niitsoo, O., Page, M. & Hodes, G. Sb2S3-sensitized nanoporous TiO2 solar cells. J. Phys. Chem. C 113, 4254–4256 (2009).

    Article  CAS  Google Scholar 

  170. Im, S. H. et al. Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Lett. 11, 4789–4793 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Chen, X. et al. Solvent-assisted hydrothermal deposition approach for highly-efficient Sb2(S,Se)3 thin-film solar cells. Adv. Energy Mater. 13, 2300391 (2023).

    Article  CAS  Google Scholar 

  172. Messina, S., Nair, M. T. S. & Nair, P. K. Antimony selenide absorber thin films in all-chemically deposited solar cells. J. Electrochem. Soc. 156, H327 (2009).

    Article  CAS  Google Scholar 

  173. Choi, Y. C. et al. Efficient inorganic‐organic heterojunction solar cells employing Sb2(Sx/Se1−x)3 graded‐composition sensitizers. Adv. Energy Mater. 4, 1301680 (2014).

    Article  Google Scholar 

  174. Tang, R. et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nat. Energy 5, 587–595 (2020).

    Article  CAS  Google Scholar 

  175. Wu, C. et al. Interfacial engineering by indium-doped CdS for high efficiency solution processed Sb2(S1−xSex)3 solar cells. ACS Appl. Mater. Interfaces 11, 3207–3213 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Wang, X. et al. Manipulating the electrical properties of Sb2(S,Se)3 film for high‐efficiency solar cell. Adv. Energy Mater. 10, 2002341 (2020).

    Article  CAS  Google Scholar 

  177. Zhao, Y. et al. Regulating energy band alignment via alkaline metal fluoride assisted solution post‐treatment enabling Sb2(S,Se)3 solar cells with 10.7% efficiency. Adv. Energy Mater. 12, 2103015 (2022).

    Article  CAS  Google Scholar 

  178. Zhao, Y. et al. Regulating deposition kinetics via a novel additive-assisted chemical bath deposition technology enables fabrication of 10.57%-efficiency Sb2Se3 solar cells. Energy Environ. Sci. 15, 5118–5128 (2022).

    Article  CAS  Google Scholar 

  179. Liu, X. et al. Grain engineering of Sb2S3 thin films to enable efficient planar solar cells with high open-circuit voltage. Adv. Mater. 36, 2305841 (2024).

    Article  CAS  Google Scholar 

  180. Chen, X. et al. Additive engineering for Sb2S3 indoor photovoltaics with efficiency exceeding 17%. Light Sci. Appl. 13, 281 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Welch, A. W. et al. CuSbSe2 photovoltaic devices with 3% efficiency. Appl. Phys. Express 8, 082301 (2015).

    Article  Google Scholar 

  182. Welch, A. W. et al. Trade‐offs in thin film solar cells with layered chalcostibite photovoltaic absorbers. Adv. Energy Mater. 7, 1601935 (2017).

    Article  Google Scholar 

  183. Banu, S., Ahn, S. J., Ahn, S. K., Yoon, K. & Cho, A. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Sol. Energy Mater. Sol. Cells 151, 14–23 (2016).

    Article  CAS  Google Scholar 

  184. Correa-Baena, J.-P. et al. A-site cation in inorganic A3Sb2I9 perovskite influences structural dimensionality, exciton binding energy, and solar cell performance. Chem. Mater. 30, 3734–3742 (2018).

    Article  CAS  Google Scholar 

  185. Singh, A. et al. Panchromatic heterojunction solar cells for Pb-free all-inorganic antimony based perovskite. Chem. Eng. J. 419, 129424 (2021).

    Article  CAS  Google Scholar 

  186. Singh, A. et al. Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9. ACS Appl. Mater. Interfaces 10, 2566–2573 (2018).

    Article  CAS  PubMed  Google Scholar 

  187. Yang, B. et al. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem. Mater. 26, 3135–3143 (2014).

    Article  CAS  Google Scholar 

  188. Peccerillo, E. & Durose, K. Copper—antimony and copper—bismuth chalcogenides—Research opportunities and review for solar photovoltaics. MRS Energy Sustain. 5, 9 (2018).

    Article  Google Scholar 

  189. Yee, Y. S. et al. Copper interstitial recombination centers in Cu3N. Phys. Rev. B 97, 245201 (2018).

    Article  CAS  Google Scholar 

  190. Kurchin, R. C., Gorai, P., Buonassisi, T. & Stevanović, V. Structural and chemical features giving rise to defect tolerance of binary semiconductors. Chem. Mater. 30, 5583–5592 (2018).

    Article  CAS  Google Scholar 

  191. Huq, T. N. et al. Electronic structure and optoelectronic properties of bismuth oxyiodide robust against percent-level iodine-, oxygen-, and bismuth-related surface defects. Adv. Funct. Mater. 30, 1909983 (2020).

    Article  CAS  Google Scholar 

  192. Hoye, R. L. Z. et al. Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI). Adv. Mater. 29, 1702176 (2017).

    Article  Google Scholar 

  193. Shi, H. & Du, M.-H. Shallow halogen vacancies in halide optoelectronic materials. Phys. Rev. B 90, 174103 (2014).

    Article  Google Scholar 

  194. Pandey, M. et al. Defect-tolerant monolayer transition metal dichalcogenides. Nano Lett. 16, 2234–2239 (2016).

    Article  CAS  PubMed  Google Scholar 

  195. Pecunia, V., Occhipinti, L. G. & Hoye, R. L. Z. Emerging indoor photovoltaic technologies for sustainable internet of things. Adv. Energy Mater. 11, 2100698 (2021).

    Article  CAS  Google Scholar 

  196. Bhattarai, S., Sharma, A. & Das, T. D. Efficiency enhancement of perovskite solar cell by using doubly carrier transport layers with a distinct bandgap of MAPbI3 active layer. Optik 224, 165430 (2020).

    Article  CAS  Google Scholar 

  197. Zhao, X. et al. Macroscopic piezoelectricity of an MAPbI3 semiconductor and its associated multifunctional device. Nano Energy 118, 108980 (2023).

    Article  CAS  Google Scholar 

  198. Savory, C. N. & Scanlon, D. O. The complex defect chemistry of antimony selenide. J. Mater. Chem. A 7, 10739–10744 (2019).

    Article  CAS  Google Scholar 

  199. Hobson, T. D. C., Phillips, L. J., Hutter, O. S., Durose, K. & Major, J. D. Defect properties of Sb2Se3 thin film solar cells and bulk crystals. Appl. Phys. Lett. 116, 261101 (2020).

    Article  CAS  Google Scholar 

  200. Wang, X., Kavanagh, S. R., Scanlon, D. O. & Walsh, A. Four-electron negative-U vacancy defects in antimony selenide. Phys. Rev. B 108, 134102 (2023).

    Article  CAS  Google Scholar 

  201. Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).

    Article  CAS  Google Scholar 

  202. Wright, A. D. et al. Ultrafast excited-state localization in Cs2AgBiBr6 double perovskite. J. Phys. Chem. Lett. 12, 3352–3360 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. McCall, K. M., Stoumpos, C. C., Kostina, S. S., Kanatzidis, M. G. & Wessels, B. W. Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 29, 4129–4145 (2017).

    Article  CAS  Google Scholar 

  204. Scholz, M., Oum, K. & Lenzer, T. Pronounced exciton and coherent phonon dynamics in BiI. Phys. Chem. Chem. Phys. 20, 10677–10685 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Buizza, L. R. V. et al. Interplay of structure, charge-carrier localization and dynamics in copper-silver-bismuth-halide semiconductors. Adv. Funct. Mater. 32, 2108392 (2022).

    Article  CAS  Google Scholar 

  206. Fu, Y. et al. Structural and electronic features enabling delocalized charge-carriers in CuSbSe2. Nat Commun 16, 65 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Chen, Y.-T. et al. Interlayer quasi-bonding interactions in 2D layered materials: a classification according to the occupancy of involved energy bands. J. Phys. Chem. Lett. 12, 11998–12004 (2021).

    Article  CAS  PubMed  Google Scholar 

  208. Jagt, R. A. et al. Layered BiOI single crystals capable of detecting low dose rates of X-rays. Nat. Commun. 14, 2452 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Siekmann, J., Ravishankar, S. & Kirchartz, T. Apparent defect densities in halide perovskite thin films and single crystals. ACS Energy Lett. 6, 3244–3251 (2021).

    Article  CAS  Google Scholar 

  210. De Keersmaecker, M., Tirado, J., Armstrong, N. R. & Ratcliff, E. L. Defect quantification in metal halide perovskites anticipates photoluminescence and photovoltaic performance. ACS Energy Lett. 9, 243–252 (2024).

    Article  Google Scholar 

  211. Cahen, D., Rakita, Y., Egger, D. A. & Kahn, A. Surface defects control bulk carrier densities in polycrystalline Pb-halide perovskites. Adv. Mater. 36, 2407098 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Reichert, S. et al. Probing the ionic defect landscape in halide perovskite solar cells. Nat. Commun. 11, 6098 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  CAS  PubMed  Google Scholar 

  214. Huang, Y.-T. et al. Fast near-infrared photodetectors based on nontoxic and solution-processable AgBiS2. Small 20, 2310199 (2024).

    Article  CAS  Google Scholar 

  215. Armaroli, G. et al. Photoinduced current transient spectroscopy on metal halide perovskites: electron trapping and ion drift. ACS Energy Lett. 8, 4371–4379 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ciavatti, A. et al. Radiation hardness and defects activity in PEA2PbBr4 single crystals. Adv. Funct. Mater. 34, 2405291 (2024).

    Article  CAS  Google Scholar 

  217. Zhu, Y. & Cheng, J.-X. Transient absorption microscopy: technological innovations and applications in materials science and life science. J. Chem. Phys. 152, 020901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Ke, D. et al. Ultrafast dynamics of defect-assisted carrier capture in MoS2 nanodots investigated by transient absorption spectroscopy. Chin. J. Chem. Phys. 31, 277–283 (2018).

    Article  CAS  Google Scholar 

  219. Lo, S. S. et al. CdTe nanowires studied by transient absorption microscopy. EPJ Web Conf. 41, 04032 (2013).

    Article  CAS  Google Scholar 

  220. Nah, S. et al. Transient sub-bandgap states in halide perovskite thin films. Nano Lett. 18, 827–831 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Snaider, J. M. et al. Ultrafast imaging of carrier transport across grain boundaries in hybrid perovskite thin films. ACS Energy Lett. 3, 1402–1408 (2018).

    Article  CAS  Google Scholar 

  222. Xie, J. et al. Visualizing carrier diffusion in Cs-doping FAPbI3 perovskite thin films using transient absorption microscopy. Adv. Opt. Mater. 12, 2303004 (2024).

    Article  CAS  Google Scholar 

  223. Frohna, K. et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 17, 190–196 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Simpson, M. J., Doughty, B., Yang, B., Xiao, K. & Ma, Y.-Z. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy. J. Phys. Chem. Lett. 7, 1725–1731 (2016).

    Article  CAS  PubMed  Google Scholar 

  225. Lin, Y.-H. et al. Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss. Science 384, 767–775 (2024).

    Article  CAS  PubMed  Google Scholar 

  226. Stranks, S. D. Multimodal microscopy characterization of halide perovskite semiconductors: revealing a new world (dis)order. Matter 4, 3852–3866 (2021).

    Article  CAS  Google Scholar 

  227. Kosar, S. et al. Unraveling the varied nature and roles of defects in hybrid halide perovskites with time-resolved photoemission electron microscopy. Energy Environ. Sci. 14, 6320–6328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).

    Article  CAS  PubMed  Google Scholar 

  229. Kosar, S. & Dani, K. M. Time-resolved photoemission electron microscopy of semiconductor interfaces. Prog. Surf. Sci. 99, 100745 (2024).

    Article  CAS  Google Scholar 

  230. Ye, J. et al. Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics. Nat. Commun. 15, 8120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Le Bris, A. et al. Hot carrier solar cells: controlling thermalization in ultrathin devices. IEEE J. Photovolt. 2, 506–511 (2012).

    Article  Google Scholar 

  232. Li, M., Fu, J., Xu, Q. & Sum, T. C. Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mater. 31, 1802486 (2019).

    Article  CAS  Google Scholar 

  233. Poindexter, J. R. et al. High tolerance to iron contamination in lead halide perovskite solar cells. ACS Nano 11, 7101–7109 (2017).

    Article  CAS  PubMed  Google Scholar 

  234. Kim, S., Márquez, J. A., Unold, T. & Walsh, A. Upper limit to the photovoltaic efficiency of imperfect crystals from first principles. Energy Environ. Sci. 13, 1481–1491 (2020).

    Article  CAS  Google Scholar 

  235. Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).

    Article  CAS  Google Scholar 

  236. Stoneham, A. M. Non-radiative transitions in semiconductors. Rep. Prog. Phys. 44, 1251 (1981).

    Article  Google Scholar 

  237. Mosquera-Lois, I., Klarbring, J. & Walsh, A. Point defect formation at finite temperatures with machine learning force fields. Preprint at https://doi.org/10.48550/arXiv.2412.16741 (2024).

  238. Park, J. S., Kim, S., Xie, Z. & Walsh, A. Point defect engineering in thin-film solar cells. Nat. Rev. Mater. 3, 194–210 (2018).

    Article  CAS  Google Scholar 

  239. Yang, J.-H., Yin, W.-J., Park, J.-S., Ma, J. & Wei, S.-H. Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semicond. Sci. Technol. 31, 083002 (2016).

    Article  Google Scholar 

  240. Ma, J. et al. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. Phys. Rev. Lett. 111, 067402 (2013).

    Article  PubMed  Google Scholar 

  241. Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. Identifying the ground state structures of point defects in solids. npj Comput. Mater. 9, 25 (2023).

    Article  CAS  Google Scholar 

  242. Mosquera-Lois, I. & Kavanagh, S. R. In search of hidden defects. Matter 4, 2602–2605 (2021).

    Article  Google Scholar 

  243. Mosquera-Lois, I., Kavanagh, S. R., Ganose, A. M. & Walsh, A. Machine-learning structural reconstructions for accelerated point defect calculations. npj Comput. Mater. 10, 121 (2024).

    Article  Google Scholar 

  244. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  245. Mosquera-Lois, I., Kavanagh, S. R., Klarbring, J., Tolborg, K. & Walsh, A. Imperfections are not 0 K: free energy of point defects in crystals. Chem. Soc. Rev. 52, 5812–5826 (2023).

    Article  CAS  PubMed  Google Scholar 

  246. Broberg, D. et al. PyCDT: a python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165–179 (2018).

    Article  CAS  Google Scholar 

  247. Shen, J.-X. & Varley, J. pymatgen-analysis-defects: a python package for analyzing point defects in crystalline materials. J. Open Source Softw. 9, 5941 (2024).

    Article  Google Scholar 

  248. Squires, A. G., Scanlon, D. O. & Morgan, B. J. py-sc-fermi: self-consistent Fermi energies and defect concentrations from electronic structure calculations. J. Open Source Softw. 8, 4962 (2023).

    Article  Google Scholar 

  249. Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. ShakeNBreak: navigating the defect configurational landscape. J. Open Source Softw. 7, 4817 (2022).

    Article  Google Scholar 

  250. Neilson, W. D. & Murphy, S. T. DefAP: a Python code for the analysis of point defects in crystalline solids. Comput. Mater. Sci. 210, 111434 (2022).

    Article  CAS  Google Scholar 

  251. Goyal, A., Gorai, P., Peng, H., Lany, S. & Stevanović, V. A computational framework for automation of point defect calculations. Comput. Mater. Sci. 130, 1–9 (2017).

    Article  Google Scholar 

  252. Kavanagh, S. R. et al. doped: Python toolkit for robust and repeatable charged defect supercell calculations. J. Open Source Softw. 9, 6433 (2024).

    Article  Google Scholar 

  253. Kumagai, Y., Tsunoda, N., Takahashi, A. & Oba, F. Insights into oxygen vacancies from high-throughput first-principles calculations. Phys. Rev. Mater. 5, 123803 (2021).

    Article  CAS  Google Scholar 

  254. Zhang, X., Turiansky, M. E. & Van de Walle, C. G. Correctly assessing defect tolerance in halide perovskites. J. Phys. Chem. C 124, 6022–6027 (2020).

    Article  CAS  Google Scholar 

  255. Zhang, X., Shen, J.-X., Turiansky, M. E. & de Walle, C. G. V. Hidden role of Bi incorporation in nonradiative recombination in methylammonium lead iodide. J. Mater. Chem. A 8, 12964–12967 (2020).

    Article  CAS  Google Scholar 

  256. Shi, L. & Wang, L.-W. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors. Phys. Rev. Lett. 109, 245501 (2012).

    Article  PubMed  Google Scholar 

  257. Kim, S., Hood, S. N. & Walsh, A. Anharmonic lattice relaxation during nonradiative carrier capture. Phys. Rev. B 100, 041202 (2019).

    Article  CAS  Google Scholar 

  258. Kim, S., Hood, S. N., Gerwen, P., van, Whalley, L. D. & Walsh, A. CarrierCapture.jl: anharmonic carrier capture. J. Open Source Softw. 5, 2102 (2020).

    Article  Google Scholar 

  259. Turiansky, M. E. et al. Nonrad: computing nonradiative capture coefficients from first principles. Comput. Phys. Commun. 267, 108056 (2021).

    Article  CAS  Google Scholar 

  260. Qiao, L., Fang, W.-H., Long, R. & Prezhdo, O. V. Atomic model for alkali metal passivation of point defects at perovskite grain boundaries. ACS Energy Lett. 5, 3813–3820 (2020).

    Article  CAS  Google Scholar 

  261. Zhao, K., Xiang, H., Zhu, R., Liu, C. & Jia, Y. Passivation principle of deep-level defects: a study of SnZn defects in kesterites for high-efficient solar cells. J. Mater. Chem. A 10, 2849–2855 (2022).

    Article  CAS  Google Scholar 

  262. Cai, Z. et al. Active passivation of anion vacancies in antimony selenide film for efficient solar cells. Adv. Mater. 36, 2404826 (2024).

    Article  CAS  Google Scholar 

  263. Du, Y. et al. Defect engineering in earth-abundant Cu2ZnSn(S,Se)4 photovoltaic materials via Ga3+-doping for over 12% efficient solar cells. Adv. Funct. Mater. 31, 2010325 (2021).

    Article  CAS  Google Scholar 

  264. de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article  Google Scholar 

  265. Becker, W. in Advanced Time-Correlated Single Photon Counting Applications (ed. Becker, W.) 1–63 (Springer, 2015).

  266. Berera, R., van Grondelle, R. & Kennis, J. T. M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 101, 105–118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Guthrey, H. & Moseley, J. A review and perspective on cathodoluminescence analysis of halide perovskites. Adv. Energy Mater. 10, 1903840 (2020).

    Article  CAS  Google Scholar 

  268. Righetto, M. et al. Hot carriers perspective on the nature of traps in perovskites. Nat. Commun. 11, 2712 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Pan, J. et al. Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy. Nat. Commun. 14, 8000 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Sadhanala, A. et al. Preparation of single-phase films of CH3NH3Pb(I1−xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014).

    Article  CAS  PubMed  Google Scholar 

  271. Kronik, L. & Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1–206 (1999).

    Article  CAS  Google Scholar 

  272. van Gorkom, B. T., van der Pol, T. P. A., Datta, K., Wienk, M. M. & Janssen, R. A. J. Revealing defective interfaces in perovskite solar cells from highly sensitive sub-bandgap photocurrent spectroscopy using optical cavities. Nat. Commun. 13, 349 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Le Corre, V. M. et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6, 1087–1094 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  274. Lang, D. V. Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023–3032 (1974).

    Article  CAS  Google Scholar 

  275. Losee, D. L. Admittance spectroscopy of deep impurity levels: ZnTe Schottky barriers. Appl. Phys. Lett. 21, 54–56 (1972).

    Article  CAS  Google Scholar 

  276. Leon, C., Le Gall, S., Gueunier-Farret, M.-E. & Kleider, J.-P. How to perform admittance spectroscopy and DLTS in multijunction solar cells. Sol. Energy Mater. Sol. Cells 240, 111699 (2022).

    Article  CAS  Google Scholar 

  277. Bollmann, J. & Venter, A. Admittance spectroscopy or deep level transient spectroscopy: a contrasting juxtaposition. Phys. B 535, 237–241 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.-T.H. and H.L. arranged alphabetically by surname in the author list. I.M.-L. acknowledges Imperial College London for funding from a President’s PhD scholarship. R.L.Z.H., H.L. and J.Y. acknowledge support from a UK Research and Innovation Frontier Grant (grant no. EP/X029900/1), awarded through the European Research Council Starting Grant 2021 scheme. H.L. thanks the Department of Chemistry at the University of Oxford for a studentship. R.L.Z.H. and Y.-T.H. thank the Engineering and Physical Sciences Research Council (EPSRC, grant no. EP/V014498/2) for financial support. A.W. is supported by EPSRC project no. EP/X037754/1. R.L.Z.H. thanks the Royal Academy of Engineering and Science & Technology Facilities Council for financial support through the Senior Research Fellowships scheme (grant no. RCSRF2324-18-68).

Author information

Authors and Affiliations

Authors

Contributions

R.L.Z.H. and A.W. conceived of the idea for this Review and drafted the proposal, with support from the other authors. R.L.Z.H. wrote the introduction, Box 1 and Box 3, the Defining defect tolerance section, drafted the Conclusions and outlook, contributed to Fig. 1, and prepared Fig. 5. I.M.-L. and A.W. wrote the models for defect tolerance in LHPs, prepared Box 2, and contributed to Figs. 1 and 2. J.Y. wrote the Polaronic model sub-section in the main discussion and outlook section, contributed to Fig. 2, and also wrote the section on defect characterization with R.L.Z.H. H.L. prepared Fig. 3, and the discussion around it, whereas Y.-T.H. prepared Fig. 4 and the associated discussion. All authors edited and revised the manuscript.

Corresponding authors

Correspondence to Aron Walsh or Robert L. Z. Hoye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mosquera-Lois, I., Huang, YT., Lohan, H. et al. Multifaceted nature of defect tolerance in halide perovskites and emerging semiconductors. Nat Rev Chem 9, 287–304 (2025). https://doi.org/10.1038/s41570-025-00702-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00702-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing