Abstract
Lead halide perovskites (LHPs) have shot to prominence as efficient energy-conversion materials that can be processed using cost-effective fabrication methods. A reason for their exceptional performance is their crystallographic defect tolerance, enabling long charge-carrier lifetimes despite high defect densities. Achieving defect tolerance in broader classes of materials would impact on the semiconductor industry substantially. Considerable efforts have been made to understand the origins of defect tolerance, so as to design stable and nontoxic alternatives to LHPs. However, understanding defect tolerance in LHPs is far from straightforward. This Review discusses the models proposed for defect tolerance in halide perovskites, evaluating the experimental and theoretical support for these models, as well as their limitations. We also cover attempts to apply these models to identify materials beyond LHPs that could exhibit defect tolerance. Finally, we discuss the experimental methods used to understand defects in mixed ionic–electronic conductors, as well as the important information that is necessary for a deeper understanding, in order to develop improved models that enable the design of defect-tolerant semiconductors.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Ballif, C., Haug, F.-J., Boccard, M., Verlinden, P. J. & Hahn, G. Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 7, 597–616 (2022).
Nayak, P. K., Mahesh, S., Snaith, H. J. & Cahen, D. Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4, 269–285 (2019).
Nishiyama, H. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 598, 304–307 (2021).
Andrei, V. et al. Floating perovskite-BiVO4 devices for scalable solar fuel production. Nature 608, 518–522 (2022).
Holmes-Gentle, I., Tembhurne, S., Suter, C. & Haussener, S. Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device. Nat. Energy 8, 586–596 (2023).
Walsh, A. & Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater. 16, 964–967 (2017).
Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).
Zhou, J. et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 8, 1691–1706 (2024).
Liu, S. et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 632, 536–542 (2024).
Dale, P. J. & Scarpulla, M. A. Efficiency versus effort: a better way to compare best photovoltaic research cell efficiencies? Sol. Energy Mater. Sol. Cells 251, 112097 (2023).
Tiedje, T., Yablonovitch, E., Cody, G. D. & Brooks, B. G. Limiting efficiency of silicon solar cells. IEEE Trans. Electron. Devices 31, 711–716 (1984).
Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).
Huang, H., Bodnarchuk, M. I., Kershaw, S. V., Kovalenko, M. V. & Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2, 2071–2083 (2017).
Xu, J. et al. Defect tolerance of mixed B-site organic–inorganic halide perovskites. ACS Energy Lett. 6, 4220–4227 (2021).
Ye, J. et al. Defect passivation in lead‐halide perovskite nanocrystals and thin films: toward efficient LEDs and solar cells. Angew. Chem. Int. Ed. 60, 21636–21660 (2021).
Shin, S. S. et al. Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167–171 (2017).
Polman, A., Knight, M., Garnett, E. C., Ehrler, B. & Sinke, W. C. Photovoltaic materials: present efficiencies and future challenges. Science 352, aad4424 (2016).
Lindmayer, J. & Allison, J. F. The violet cell: an improved silicon solar cell. Sol. Cells 29, 151–166 (1990).
Green, M. A. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt. 17, 183–189 (2009).
Green, M. A. Silicon solar cells: evolution, high-efficiency design and efficiency enhancements. Semicond. Sci. Technol. 8, 1 (1993).
Blakesley, J. C. et al. Roadmap on established and emerging photovoltaics for sustainable energy conversion. J. Phys. Energy 6, 041501 (2024).
Das, S. K. & Morris, G. C. Preparation and properties of CdS/CdTe thin film solar cell produced by periodic pulse electrodeposition technique. Sol. Energy Mater. Sol. Cells 30, 107–118 (1993).
Park, J. et al. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 616, 724–730 (2023).
Cahen, D., Kronik, L. & Hodes, G. Are defects in lead-halide perovskites healed, tolerated, or both? ACS Energy Lett. 6, 4108–4114 (2021).
Min, H. et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366, 749–753 (2019).
Meggiolaro, D. et al. Iodine chemistry determines the defect tolerance of lead-halide perovskites. Energy Environ. Sci. 11, 702–713 (2018).
Hangleiter, A. Nonradiative recombination via deep impurity levels in silicon: experiment. Phys. Rev. B 35, 9149–9161 (1987).
Zhang, S. B., Wei, S.-H. & Zunger, A. Stabilization of ternary compounds via ordered arrays of defect pairs. Phys. Rev. Lett. 78, 4059–4062 (1997).
Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).
Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).
Zakutayev, A. et al. Defect tolerant semiconductors for solar energy conversion. J. Phys. Chem. Lett. 5, 1117–1125 (2014).
Cohen, A., Egger, D. A., Rappe, A. M. & Kronik, L. Breakdown of the static picture of defect energetics in halide perovskites: the case of the Br vacancy in CsPbBr3. J. Phys. Chem. Lett. 10, 4490–4498 (2019).
Futscher, M. H. & Deibel, C. Defect spectroscopy in halide perovskites is dominated by ionic rather than electronic defects. ACS Energy Lett. 7, 140–144 (2022).
Heo, S. et al. Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy. Energy Environ. Sci. 10, 1128–1133 (2017).
Yang, W. S. et al. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).
Keeble, D. J. et al. Identification of lead vacancy defects in lead halide perovskites. Nat. Commun. 12, 5566 (2021).
Zhang, X., Turiansky, M. E., Shen, J.-X. & Van de Walle, C. G. Defect tolerance in halide perovskites: a first-principles perspective. J. Appl. Phys. 131, 090901 (2022).
Jaramillo, R. et al. Transient terahertz photoconductivity measurements of minority-carrier lifetime in tin sulfide thin films: advanced metrology for an early stage photovoltaic material. J. Appl. Phys. 119, 035101 (2016).
Brandt, R. E. et al. Searching for “defect-tolerant” photovoltaic materials: combined theoretical and experimental screening. Chem. Mater. 29, 4667–4674 (2017).
Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7, 13941 (2016).
Yuan, Y., Yan, G., Dreessen, C. & Kirchartz, T. Understanding power-law photoluminescence decays and bimolecular recombination in lead-halide perovskites. Adv. Energy Mater. 15, 2403279 (2024).
Yuan, Y. et al. Shallow defects and variable photoluminescence decay times up to 280 µs in triple-cation perovskites. Nat. Mater. 23, 391–397 (2024).
Kirchartz, T., Márquez, J. A., Stolterfoht, M. & Unold, T. Photoluminescence-based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10, 1904134 (2020).
Rondiya, S. R., Jagt, R. A., MacManus-Driscoll, J. L., Walsh, A. & Hoye, R. L. Z. Self-trapping in bismuth-based semiconductors: opportunities and challenges from optoelectronic devices to quantum technologies. Appl. Phys. Lett. 119, 220501 (2021).
Wu, B. et al. Strong self-trapping by deformation potential limits photovoltaic performance in bismuth double perovskite. Sci. Adv. 7, eabd3160 (2021).
Buizza, L. R. V. & Herz, L. M. Polarons and charge localization in metal-halide semiconductors for photovoltaic and light-emitting devices. Adv. Mater. 33, 2007057 (2021).
Rau, U., Blank, B., Müller, T. C. M. & Kirchartz, T. Efficiency potential of photovoltaic materials and devices unveiled by detailed-balance analysis. Phys. Rev. Appl. 7, 044016 (2017).
Green, M. A. & Ho-Baillie, A. W. Y. Pushing to the limit: radiative efficiencies of recent mainstream and emerging solar cells. ACS Energy Lett. 4, 1639–1644 (2019).
Jasti, N. P. et al. Experimental evidence for defect tolerance in Pb-halide perovskites. Proc. Natl Acad. Sci. USA 121, e2316867121 (2024).
Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Freysoldt, C. Impact of metastable defect structures on carrier recombination in solar cells. Faraday Discuss. 239, 339–356 (2022).
Alkauskas, A., Yan, Q. & Van de Walle, C. G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys. Rev. B 90, 075202 (2014).
Nenon, D. P. et al. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases. J. Am. Chem. Soc. 140, 17760–17772 (2018).
Wang, X., Kavanagh, S. R., Scanlon, D. O. & Walsh, A. Upper efficiency limit of Sb2Se3 solar cells. Joule 8, 2105–2122 (2024).
Kim, S., Park, J.-S. & Walsh, A. Identification of killer defects in kesterite thin-film solar cells. ACS Energy Lett. 3, 496–500 (2018).
Kavanagh, S. R., Walsh, A. & Scanlon, D. O. Rapid recombination by cadmium vacancies in CdTe. ACS Energy Lett. 6, 1392–1398 (2021).
Yang, J.-H., Shi, L., Wang, L.-W. & Wei, S.-H. Non-radiative carrier recombination enhanced by two-level process: a first-principles study. Sci. Rep. 6, 21712 (2016).
Du, M. H. Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014).
Du, M.-H. Density functional calculations of native defects in CH3NH3PbI3: effects of spin–orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015).
Whalley, L. D. et al. Giant Huang–Rhys factor for electron capture by the iodine intersitial in perovskite solar cells. J. Am. Chem. Soc. 143, 9123–9128 (2021).
Zhang, J., Zhang, X., Turiansky, M. E. & Van de Walle, C. G. Iodine vacancies do not cause nonradiative recombination in halide perovskites. PRX Energy 2, 013008 (2023).
Zhang, S. B., Wei, S.-H., Zunger, A. & Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642–9656 (1998).
Huang, Y.-T., Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Hoye, R. L. Z. Perovskite-inspired materials for photovoltaics and beyond—from design to devices. Nanotechnology 32, 132004 (2021).
Kim, J., Chung, C.-H. & Hong, K.-H. Understanding of the formation of shallow level defects from the intrinsic defects of lead tri-halide perovskites. Phys. Chem. Chem. Phys. 18, 27143–27147 (2016).
Ganose, A. M., Scanlon, D. O., Walsh, A. & Hoye, R. L. Z. The defect challenge of wide-bandgap semiconductors for photovoltaics and beyond. Nat. Commun. 13, 4715 (2022).
Zhang, X. & Wei, S.-H. Origin of efficiency enhancement by lattice expansion in hybrid-perovskite solar cells. Phys. Rev. Lett. 128, 136401 (2022).
Zhang, X., Turiansky, M. E., Shen, J.-X. & Van de Walle, C. G. Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites. Phys. Rev. B 101, 140101 (2020).
Zhang, X., Shen, J. X., Turiansky, M. E. & Van de Walle, C. G. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat. Mater. 20, 971–976 (2021).
Whalley, L. D. Steric engineering of point defects in lead halide perovskites. J. Phys. Chem. C 127, 15738–15746 (2023).
Wang, Y. et al. Octahedral tilting on halide perovskites. Nat. Rev. Chem. https://doi.org/10.1038/s41570-025-00687-6 (2025).
Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).
Mitzi, D. B., Feild, C. A., Schlesinger, Z. & Laibowitz, R. B. Transport, optical, and magnetic properties of the conducting halide perovskite CH3NH3SnI3. J. Solid State Chem. 114, 159–163 (1995).
Aharon, S., Gamliel, S., Cohen, B. E. & Etgar, L. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 16, 10512–10518 (2014).
Kirchartz, T., Bisquert, J., Mora-Sero, I. & Garcia-Belmonte, G. Classification of solar cells according to mechanisms of charge separation and charge collection. Phys. Chem. Chem. Phys. 17, 4007–4014 (2015).
Walsh, A., Scanlon, D. O., Chen, S., Gong, X. G. & Wei, S.-H. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. 127, 1811–1814 (2015).
Yang, J.-H., Yin, W.-J., Park, J.-S. & Wei, S.-H. Self-regulation of charged defect compensation and formation energy pinning in semiconductors. Sci. Rep. 5, 16977 (2015).
Zhu, H. et al. Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353, 1409–1413 (2016).
Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).
Miyata, K. & Zhu, X.-Y. Ferroelectric large polarons. Nat. Mater. 17, 379–381 (2018).
Wang, C. et al. Self-healing behavior of the metal halide perovskites and photovoltaics. Small 20, 2307645 (2024).
Zhu, X.-Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).
Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).
Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).
Chu, W., Zheng, Q., Prezhdo, O. V., Zhao, J. & Saidi, W. A. Low-frequency lattice phonons in halide perovskites explain high defect tolerance toward electron-hole recombination. Sci. Adv. 6, eaaw7453 (2020).
Chu, W., Saidi, W. A., Zhao, J. & Prezhdo, O. V. Soft lattice and defect covalency rationalize tolerance of β-CsPbI3 perovskite solar cells to native defects. Angew. Chem. Int. Ed. 59, 6435–6441 (2020).
Spina, M. et al. Mechanical signatures of degradation of the photovoltaic perovskite CH3NH3PbI3 upon water vapor exposure. Appl. Phys. Lett. 110, 121903 (2017).
Fukuhara, M. & Yamauchi, I. Temperature dependence of the elastic moduli, dilational and shear internal frictions and acoustic wave velocity for alumina, (Y)TZP and β′-sialon ceramics. J. Mater. Sci. 28, 4681–4688 (1993).
Leguy, A. M. A. et al. Dynamic disorder, phonon lifetimes, and the assignment of modes to the vibrational spectra of methylammonium lead halide perovskites. Phys. Chem. Chem. Phys. 18, 27051–27066 (2016).
Frost, J. M. Calculating polaron mobility in halide perovskites. Phys. Rev. B 96, 195202 (2017).
Kirchartz, T., Markvart, T., Rau, U. & Egger, D. A. Impact of small phonon energies on the charge-carrier lifetimes in metal-halide perovskites. J. Phys. Chem. Lett. 9, 939–946 (2018).
Wang, S. et al. Effective lifetime of non-equilibrium carriers in semiconductors from non-adiabatic molecular dynamics simulations. Nat. Comput. Sci. 2, 486–493 (2022).
Mukhuti, K., Sinha, S., Sinha, S. & Bansal, B. Dissipation-induced symmetry breaking: emphanitic transitions in lead- and tin-containing chalcogenides and halide perovskites. Appl. Phys. Lett. 118, 162111 (2021).
Laurita, G., Fabini, D. H., Stoumpos, C. C., Kanatzidis, M. G. & Seshadri, R. Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites. Chem. Sci. 8, 5628–5635 (2017).
Jensen, K. M. Ø. et al. Lattice dynamics reveals a local symmetry breaking in the emergent dipole phase of PbTe. Phys. Rev. B 86, 085313 (2012).
Dubajic, M. et al. Dynamic nanodomains dictate macroscopic properties in lead halide perovskites. Preprint at https://doi.org/10.48550/ARXIV.2404.14598 (2024).
Walsh, A., Payne, D. J., Egdell, R. G. & Watson, G. W. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40, 4455–4463 (2011).
Lang, F. et al. Radiation hardness and self-healing of perovskite solar cells. Adv. Mater. 28, 8726–8731 (2016).
Andričević, P. et al. Kilogram-scale crystallogenesis of halide perovskites for gamma-rays dose rate measurements. Adv. Sci. 8, 2001882 (2021).
Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333–339 (2016).
Domanski, K. et al. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017).
Bag, M. et al. Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137, 13130–13137 (2015).
Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).
Yadav, P., Prochowicz, D., Alharbi, E. A., Zakeeruddin, S. M. & Grätzel, M. Intrinsic and interfacial kinetics of perovskite solar cells under photo and bias-induced degradation and recovery. J. Mater. Chem. C 5, 7799–7805 (2017).
Yadavalli, S. K., Dai, Z., Zhou, H., Zhou, Y. & Padture, N. P. Facile healing of cracks in organic–inorganic halide perovskite thin films. Acta Mater. 187, 112–121 (2020).
Al-Handawi, M. B. et al. Autonomous reconstitution of fractured hybrid perovskite single crystals. Adv. Mater. 34, 2109374 (2022).
Guillemoles, J.-F., Rau, U., Kronik, L., Schock, H.-W. & Cahen, D. Cu(In,Ga)Se2 solar cells: device stability based on chemical flexibility. Adv. Mater. 11, 957–961 (1999).
Rakita, Y., Lubomirsky, I. & Cahen, D. When defects become ‘dynamic’: halide perovskites: a new window on materials? Mater. Horiz. 6, 1297–1305 (2019).
Zhou, Z. et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem. Int. Ed. 54, 9705–9709 (2015).
Hoye, R. L. Z. et al. The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives. Adv. Energy Mater. 12, 2100499 (2022).
Dunlap-Shohl, W. A., Hill, I. G., Yan, Y. & Mitzi, D. B. Photovoltaic effect in indium(I) iodide thin films. Chem. Mater. 30, 8226–8232 (2018).
López-Fernández, I. et al. Lead-free halide perovskite materials and optoelectronic devices: progress and prospective. Adv. Funct. Mater. 34, 2307896 (2024).
Ganose, A. M., Savory, C. N. & Scanlon, D. O. Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. Chem. Commun. 53, 20–44 (2017).
Glück, N. & Bein, T. Prospects of lead-free perovskite-inspired materials for photovoltaic applications. Energy Environ. Sci. 13, 4691–4716 (2020).
Ke, W. et al. Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Sci. Adv. 3, e1701293 (2017).
Lee, S. J. et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex. J. Am. Chem. Soc. 138, 3974–3977 (2016).
Koh, T. M. et al. Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3, 14996–15000 (2015).
Yu, B. et al. Heterogeneous 2D/3D tin‐halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33, 2102055 (2021).
Shao, S. et al. Highly reproducible Sn‐based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8, 1702019 (2018).
Dixit, H., Punetha, D. & Pandey, S. K. Improvement in performance of lead free inverted perovskite solar cell by optimization of solar parameters. Optik 179, 969–976 (2019).
Shi, Y., Zhu, Z., Miao, D., Ding, Y. & Mi, Q. Interfacial dipoles boost open-circuit voltage of tin halide perovskite solar cells. ACS Energy Lett. 9, 1895–1897 (2024).
Cui, D. et al. Making room for growing oriented FASnI3 with large grains via cold precursor solution. Adv. Funct. Mater. 31, 2100931 (2021).
Wang, C. et al. Self‐repairing tin‐based perovskite solar cells with a breakthrough efficiency over 11%. Adv. Mater. 32, 1907623 (2020).
Meng, X. et al. Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 4, 902–912 (2020).
Ke, W. et al. TiO2–ZnS cascade electron transport layer for efficient formamidinium tin iodide perovskite solar cells. J. Am. Chem. Soc. 138, 14998–15003 (2016).
Li, F. et al. A cation‐exchange approach for the fabrication of efficient methylammonium tin iodide perovskite solar cells. Angew. Chem. Int. Ed. 58, 6688–6692 (2019).
Xu, F., Wei, H. & Cao, B. A hot phonon bottleneck observed upon incorporation of SnF2 to MASnI3 films and its possible role in increasing photocarrier diffusion length. J. Appl. Phys. 135, 133102 (2024).
Ke, W. et al. Efficient lead-free solar cells based on hollow {en}MASnI3 perovskites. J. Am. Chem. Soc. 139, 14800–14806 (2017).
Ji, L. et al. Regulating crystallization dynamics and crystal orientation of methylammonium tin iodide enables high-efficiency lead-free perovskite solar cells. Nanoscale 14, 1219–1225 (2022).
Ye, T. et al. Ambient-air-stable lead-free CsSnI3 solar cells with greater than 7.5% efficiency. J. Am. Chem. Soc. 143, 4319–4328 (2021).
Wang, Y. et al. Convenient preparation of CsSnI3 quantum dots, excellent stability, and the highest performance of lead-free inorganic perovskite solar cells so far. J. Mater. Chem. A 7, 7683–7690 (2019).
Marshall, K. P., Walker, M., Walton, R. I. & Hatton, R. A. Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1, 16178 (2016).
Ye, T. et al. Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies >10%. ACS Energy Lett. 6, 1480–1489 (2021).
Zhang, W. et al. Organic‐free and lead‐free perovskite solar cells with efficiency over 11%. Adv. Energy Mater. 12, 2202491 (2022).
Song, T.-B., Yokoyama, T., Aramaki, S. & Kanatzidis, M. G. Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Lett. 2, 897–903 (2017).
Dai, L. et al. Single‐crystal nanowire cesium tin triiodide perovskite solar cell. Small 19, 2208062 (2023).
Zhang, Z. et al. Over 12% efficient CsSnI3 perovskite solar cells enabled by surface post-treatment with bi-functional polar molecules. Chem. Eng. J. 490, 151561 (2024).
Cao, J. & Yan, F. Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 14, 1286–1325 (2021).
Tai, Q. et al. Antioxidant grain passivation for air-stable tin-based perovskite solar cells. Angew. Chem. Int. Ed. 58, 806–810 (2019).
Hasan, S. A. U., Lee, D. S., Im, S. H. & Hong, K.-H. Present status and research prospects of tin-based perovskite solar cells. Sol. RRL 4, 1900310 (2020).
Krishnamoorthy, T. et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3, 23829–23832 (2015).
Chiara, R., Morana, M. & Malavasi, L. Germanium‐based halide perovskites: materials, properties, and applications. ChemPlusChem 86, 879–888 (2021).
Mohan, R. Green bismuth. Nat. Chem. 2, 336 (2010).
Park, B. et al. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27, 6806–6813 (2015).
Bai, F. et al. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Sol. Energy Mater. Sol. Cells 184, 15–21 (2018).
Huang, P.-C., Yang, W.-C. & Lee, M.-W. AgBiS2 semiconductor-sensitized solar cells. J. Phys. Chem. C 117, 18308–18314 (2013).
Burgués-Ceballos, I., Wang, Y., Akgul, M. Z. & Konstantatos, G. Colloidal AgBiS2 nanocrystals with reduced recombination yield 6.4% power conversion efficiency in solution-processed solar cells. Nano Energy 75, 104961 (2020).
Zhou, S. et al. Preparation and photovoltaic properties of ternary AgBiS2 quantum dots sensitized TiO2 nanorods photoanodes by electrochemical atomic layer deposition. J. Electrochem. Soc. 163, D63–D67 (2016).
Bernechea, M. et al. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photonics 10, 521–525 (2016).
Li, X. et al. Thin film AgBiS2 solar cells with over 10% power conversion efficiency enabled by vapor-assisted solution process treatment. Chem. Eng. J. 495, 153328 (2024).
Sfaelou, S., Raptis, D., Dracopoulos, V. & Lianos, P. BiOI solar cells. RSC Adv. 5, 95813–95816 (2015).
Wang, K., Jia, F., Zheng, Z. & Zhang, L. Crossed BiOI flake array solar cells. Electrochem. Commun. 12, 1764–1767 (2010).
Jain, S. M. et al. An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 49, 614–624 (2018).
Huang, Y.-T. et al. Strong absorption and ultrafast localisation in NaBiS2 nanocrystals with slow charge-carrier recombination. Nat. Commun. 13, 4960 (2022).
Lal, S. et al. The role of chemical composition in determining the charge-carrier dynamics in (AgI)x(BiI3)y rudorffites. Adv. Funct. Mater. 34, 2315942 (2024).
Jia, Z. et al. Charge-carrier dynamics of solution-processed antimony- and bismuth-based chalcogenide thin films. ACS Energy Lett. 8, 1485–1492 (2023).
Lal, S. et al. Bandlike transport and charge-carrier dynamics in BiOI films. J. Phys. Chem. Lett. 14, 6620–6629 (2023).
Wang, Y. et al. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nat. Photonics 16, 235–241 (2022).
Septina, W., Ikeda, S., Iga, Y., Harada, T. & Matsumura, M. Thin film solar cell based on CuSbS2 absorber fabricated from an electrochemically deposited metal stack. Thin Solid Films 550, 700–704 (2014).
Li, Z. et al. 9.2%-efficient core-shell structured antimony selenide nanorod array solar cells. Nat. Commun. 10, 125 (2019).
Kolay, A. et al. New antimony selenide/nickel oxide photocathode boosts the efficiency of graphene quantum-dot co-sensitized solar cells. ACS Appl. Mater. Interfaces 9, 34915–34926 (2017).
Choi, Y. C. et al. Sb2Se3‐sensitized inorganic–organic heterojunction solar cells fabricated using a single‐source precursor. Angew. Chem. Int. Ed. 53, 1329–1333 (2014).
Duan, Z. et al. Sb2Se3 thin‐film solar cells exceeding 10% power conversion efficiency enabled by injection vapor deposition technology. Adv. Mater. 34, 2202969 (2022).
Leng, M. et al. Selenization of Sb2Se3 absorber layer: an efficient step to improve device performance of CdS/Sb2Se3 solar cells. Appl. Phys. Lett. 105, 083905 (2014).
Zhou, Y. et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nat. Photonics 9, 409–415 (2015).
Wang, S. et al. A novel multi-sulfur source collaborative chemical bath deposition technology enables 8%-efficiency Sb2S3 planar solar cells. Adv. Mater. 34, 2206242 (2022).
Chang, J. A. et al. High-performance nanostructured inorganic−organic heterojunction solar cells. Nano Lett. 10, 2609–2612 (2010).
Choi, Y. C., Lee, D. U., Noh, J. H., Kim, E. K. & Seok, S. I. Highly improved Sb2S3 sensitized‐inorganic–organic heterojunction solar cells and quantification of traps by deep‐level transient spectroscopy. Adv. Funct. Mater. 24, 3587–3592 (2014).
Nezu, S. et al. Light soaking and gas effect on nanocrystalline TiO2/Sb2S3/CuSCN photovoltaic cells following extremely thin absorber concept. J. Phys. Chem. C 114, 6854–6859 (2010).
Chang, J. A. et al. Panchromatic photon-harvesting by hole-conducting materials in inorganic–organic heterojunction sensitized-solar cell through the formation of nanostructured electron channels. Nano Lett. 12, 1863–1867 (2012).
Itzhaik, Y., Niitsoo, O., Page, M. & Hodes, G. Sb2S3-sensitized nanoporous TiO2 solar cells. J. Phys. Chem. C 113, 4254–4256 (2009).
Im, S. H. et al. Toward interaction of sensitizer and functional moieties in hole-transporting materials for efficient semiconductor-sensitized solar cells. Nano Lett. 11, 4789–4793 (2011).
Chen, X. et al. Solvent-assisted hydrothermal deposition approach for highly-efficient Sb2(S,Se)3 thin-film solar cells. Adv. Energy Mater. 13, 2300391 (2023).
Messina, S., Nair, M. T. S. & Nair, P. K. Antimony selenide absorber thin films in all-chemically deposited solar cells. J. Electrochem. Soc. 156, H327 (2009).
Choi, Y. C. et al. Efficient inorganic‐organic heterojunction solar cells employing Sb2(Sx/Se1−x)3 graded‐composition sensitizers. Adv. Energy Mater. 4, 1301680 (2014).
Tang, R. et al. Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nat. Energy 5, 587–595 (2020).
Wu, C. et al. Interfacial engineering by indium-doped CdS for high efficiency solution processed Sb2(S1−xSex)3 solar cells. ACS Appl. Mater. Interfaces 11, 3207–3213 (2019).
Wang, X. et al. Manipulating the electrical properties of Sb2(S,Se)3 film for high‐efficiency solar cell. Adv. Energy Mater. 10, 2002341 (2020).
Zhao, Y. et al. Regulating energy band alignment via alkaline metal fluoride assisted solution post‐treatment enabling Sb2(S,Se)3 solar cells with 10.7% efficiency. Adv. Energy Mater. 12, 2103015 (2022).
Zhao, Y. et al. Regulating deposition kinetics via a novel additive-assisted chemical bath deposition technology enables fabrication of 10.57%-efficiency Sb2Se3 solar cells. Energy Environ. Sci. 15, 5118–5128 (2022).
Liu, X. et al. Grain engineering of Sb2S3 thin films to enable efficient planar solar cells with high open-circuit voltage. Adv. Mater. 36, 2305841 (2024).
Chen, X. et al. Additive engineering for Sb2S3 indoor photovoltaics with efficiency exceeding 17%. Light Sci. Appl. 13, 281 (2024).
Welch, A. W. et al. CuSbSe2 photovoltaic devices with 3% efficiency. Appl. Phys. Express 8, 082301 (2015).
Welch, A. W. et al. Trade‐offs in thin film solar cells with layered chalcostibite photovoltaic absorbers. Adv. Energy Mater. 7, 1601935 (2017).
Banu, S., Ahn, S. J., Ahn, S. K., Yoon, K. & Cho, A. Fabrication and characterization of cost-efficient CuSbS2 thin film solar cells using hybrid inks. Sol. Energy Mater. Sol. Cells 151, 14–23 (2016).
Correa-Baena, J.-P. et al. A-site cation in inorganic A3Sb2I9 perovskite influences structural dimensionality, exciton binding energy, and solar cell performance. Chem. Mater. 30, 3734–3742 (2018).
Singh, A. et al. Panchromatic heterojunction solar cells for Pb-free all-inorganic antimony based perovskite. Chem. Eng. J. 419, 129424 (2021).
Singh, A. et al. Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9. ACS Appl. Mater. Interfaces 10, 2566–2573 (2018).
Yang, B. et al. CuSbS2 as a promising earth-abundant photovoltaic absorber material: a combined theoretical and experimental study. Chem. Mater. 26, 3135–3143 (2014).
Peccerillo, E. & Durose, K. Copper—antimony and copper—bismuth chalcogenides—Research opportunities and review for solar photovoltaics. MRS Energy Sustain. 5, 9 (2018).
Yee, Y. S. et al. Copper interstitial recombination centers in Cu3N. Phys. Rev. B 97, 245201 (2018).
Kurchin, R. C., Gorai, P., Buonassisi, T. & Stevanović, V. Structural and chemical features giving rise to defect tolerance of binary semiconductors. Chem. Mater. 30, 5583–5592 (2018).
Huq, T. N. et al. Electronic structure and optoelectronic properties of bismuth oxyiodide robust against percent-level iodine-, oxygen-, and bismuth-related surface defects. Adv. Funct. Mater. 30, 1909983 (2020).
Hoye, R. L. Z. et al. Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide (BiOI). Adv. Mater. 29, 1702176 (2017).
Shi, H. & Du, M.-H. Shallow halogen vacancies in halide optoelectronic materials. Phys. Rev. B 90, 174103 (2014).
Pandey, M. et al. Defect-tolerant monolayer transition metal dichalcogenides. Nano Lett. 16, 2234–2239 (2016).
Pecunia, V., Occhipinti, L. G. & Hoye, R. L. Z. Emerging indoor photovoltaic technologies for sustainable internet of things. Adv. Energy Mater. 11, 2100698 (2021).
Bhattarai, S., Sharma, A. & Das, T. D. Efficiency enhancement of perovskite solar cell by using doubly carrier transport layers with a distinct bandgap of MAPbI3 active layer. Optik 224, 165430 (2020).
Zhao, X. et al. Macroscopic piezoelectricity of an MAPbI3 semiconductor and its associated multifunctional device. Nano Energy 118, 108980 (2023).
Savory, C. N. & Scanlon, D. O. The complex defect chemistry of antimony selenide. J. Mater. Chem. A 7, 10739–10744 (2019).
Hobson, T. D. C., Phillips, L. J., Hutter, O. S., Durose, K. & Major, J. D. Defect properties of Sb2Se3 thin film solar cells and bulk crystals. Appl. Phys. Lett. 116, 261101 (2020).
Wang, X., Kavanagh, S. R., Scanlon, D. O. & Walsh, A. Four-electron negative-U vacancy defects in antimony selenide. Phys. Rev. B 108, 134102 (2023).
Franchini, C., Reticcioli, M., Setvin, M. & Diebold, U. Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).
Wright, A. D. et al. Ultrafast excited-state localization in Cs2AgBiBr6 double perovskite. J. Phys. Chem. Lett. 12, 3352–3360 (2021).
McCall, K. M., Stoumpos, C. C., Kostina, S. S., Kanatzidis, M. G. & Wessels, B. W. Strong electron–phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb). Chem. Mater. 29, 4129–4145 (2017).
Scholz, M., Oum, K. & Lenzer, T. Pronounced exciton and coherent phonon dynamics in BiI. Phys. Chem. Chem. Phys. 20, 10677–10685 (2018).
Buizza, L. R. V. et al. Interplay of structure, charge-carrier localization and dynamics in copper-silver-bismuth-halide semiconductors. Adv. Funct. Mater. 32, 2108392 (2022).
Fu, Y. et al. Structural and electronic features enabling delocalized charge-carriers in CuSbSe2. Nat Commun 16, 65 (2025).
Chen, Y.-T. et al. Interlayer quasi-bonding interactions in 2D layered materials: a classification according to the occupancy of involved energy bands. J. Phys. Chem. Lett. 12, 11998–12004 (2021).
Jagt, R. A. et al. Layered BiOI single crystals capable of detecting low dose rates of X-rays. Nat. Commun. 14, 2452 (2023).
Siekmann, J., Ravishankar, S. & Kirchartz, T. Apparent defect densities in halide perovskite thin films and single crystals. ACS Energy Lett. 6, 3244–3251 (2021).
De Keersmaecker, M., Tirado, J., Armstrong, N. R. & Ratcliff, E. L. Defect quantification in metal halide perovskites anticipates photoluminescence and photovoltaic performance. ACS Energy Lett. 9, 243–252 (2024).
Cahen, D., Rakita, Y., Egger, D. A. & Kahn, A. Surface defects control bulk carrier densities in polycrystalline Pb-halide perovskites. Adv. Mater. 36, 2407098 (2024).
Reichert, S. et al. Probing the ionic defect landscape in halide perovskite solar cells. Nat. Commun. 11, 6098 (2020).
Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).
Huang, Y.-T. et al. Fast near-infrared photodetectors based on nontoxic and solution-processable AgBiS2. Small 20, 2310199 (2024).
Armaroli, G. et al. Photoinduced current transient spectroscopy on metal halide perovskites: electron trapping and ion drift. ACS Energy Lett. 8, 4371–4379 (2023).
Ciavatti, A. et al. Radiation hardness and defects activity in PEA2PbBr4 single crystals. Adv. Funct. Mater. 34, 2405291 (2024).
Zhu, Y. & Cheng, J.-X. Transient absorption microscopy: technological innovations and applications in materials science and life science. J. Chem. Phys. 152, 020901 (2020).
Ke, D. et al. Ultrafast dynamics of defect-assisted carrier capture in MoS2 nanodots investigated by transient absorption spectroscopy. Chin. J. Chem. Phys. 31, 277–283 (2018).
Lo, S. S. et al. CdTe nanowires studied by transient absorption microscopy. EPJ Web Conf. 41, 04032 (2013).
Nah, S. et al. Transient sub-bandgap states in halide perovskite thin films. Nano Lett. 18, 827–831 (2018).
Snaider, J. M. et al. Ultrafast imaging of carrier transport across grain boundaries in hybrid perovskite thin films. ACS Energy Lett. 3, 1402–1408 (2018).
Xie, J. et al. Visualizing carrier diffusion in Cs-doping FAPbI3 perovskite thin films using transient absorption microscopy. Adv. Opt. Mater. 12, 2303004 (2024).
Frohna, K. et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 17, 190–196 (2022).
Simpson, M. J., Doughty, B., Yang, B., Xiao, K. & Ma, Y.-Z. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy. J. Phys. Chem. Lett. 7, 1725–1731 (2016).
Lin, Y.-H. et al. Bandgap-universal passivation enables stable perovskite solar cells with low photovoltage loss. Science 384, 767–775 (2024).
Stranks, S. D. Multimodal microscopy characterization of halide perovskite semiconductors: revealing a new world (dis)order. Matter 4, 3852–3866 (2021).
Kosar, S. et al. Unraveling the varied nature and roles of defects in hybrid halide perovskites with time-resolved photoemission electron microscopy. Energy Environ. Sci. 14, 6320–6328 (2021).
Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).
Kosar, S. & Dani, K. M. Time-resolved photoemission electron microscopy of semiconductor interfaces. Prog. Surf. Sci. 99, 100745 (2024).
Ye, J. et al. Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics. Nat. Commun. 15, 8120 (2024).
Le Bris, A. et al. Hot carrier solar cells: controlling thermalization in ultrathin devices. IEEE J. Photovolt. 2, 506–511 (2012).
Li, M., Fu, J., Xu, Q. & Sum, T. C. Slow hot-carrier cooling in halide perovskites: prospects for hot-carrier solar cells. Adv. Mater. 31, 1802486 (2019).
Poindexter, J. R. et al. High tolerance to iron contamination in lead halide perovskite solar cells. ACS Nano 11, 7101–7109 (2017).
Kim, S., Márquez, J. A., Unold, T. & Walsh, A. Upper limit to the photovoltaic efficiency of imperfect crystals from first principles. Energy Environ. Sci. 13, 1481–1491 (2020).
Shockley, W. & Read, W. T. Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952).
Stoneham, A. M. Non-radiative transitions in semiconductors. Rep. Prog. Phys. 44, 1251 (1981).
Mosquera-Lois, I., Klarbring, J. & Walsh, A. Point defect formation at finite temperatures with machine learning force fields. Preprint at https://doi.org/10.48550/arXiv.2412.16741 (2024).
Park, J. S., Kim, S., Xie, Z. & Walsh, A. Point defect engineering in thin-film solar cells. Nat. Rev. Mater. 3, 194–210 (2018).
Yang, J.-H., Yin, W.-J., Park, J.-S., Ma, J. & Wei, S.-H. Review on first-principles study of defect properties of CdTe as a solar cell absorber. Semicond. Sci. Technol. 31, 083002 (2016).
Ma, J. et al. Dependence of the minority-carrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. Phys. Rev. Lett. 111, 067402 (2013).
Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. Identifying the ground state structures of point defects in solids. npj Comput. Mater. 9, 25 (2023).
Mosquera-Lois, I. & Kavanagh, S. R. In search of hidden defects. Matter 4, 2602–2605 (2021).
Mosquera-Lois, I., Kavanagh, S. R., Ganose, A. M. & Walsh, A. Machine-learning structural reconstructions for accelerated point defect calculations. npj Comput. Mater. 10, 121 (2024).
Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).
Mosquera-Lois, I., Kavanagh, S. R., Klarbring, J., Tolborg, K. & Walsh, A. Imperfections are not 0 K: free energy of point defects in crystals. Chem. Soc. Rev. 52, 5812–5826 (2023).
Broberg, D. et al. PyCDT: a python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165–179 (2018).
Shen, J.-X. & Varley, J. pymatgen-analysis-defects: a python package for analyzing point defects in crystalline materials. J. Open Source Softw. 9, 5941 (2024).
Squires, A. G., Scanlon, D. O. & Morgan, B. J. py-sc-fermi: self-consistent Fermi energies and defect concentrations from electronic structure calculations. J. Open Source Softw. 8, 4962 (2023).
Mosquera-Lois, I., Kavanagh, S. R., Walsh, A. & Scanlon, D. O. ShakeNBreak: navigating the defect configurational landscape. J. Open Source Softw. 7, 4817 (2022).
Neilson, W. D. & Murphy, S. T. DefAP: a Python code for the analysis of point defects in crystalline solids. Comput. Mater. Sci. 210, 111434 (2022).
Goyal, A., Gorai, P., Peng, H., Lany, S. & Stevanović, V. A computational framework for automation of point defect calculations. Comput. Mater. Sci. 130, 1–9 (2017).
Kavanagh, S. R. et al. doped: Python toolkit for robust and repeatable charged defect supercell calculations. J. Open Source Softw. 9, 6433 (2024).
Kumagai, Y., Tsunoda, N., Takahashi, A. & Oba, F. Insights into oxygen vacancies from high-throughput first-principles calculations. Phys. Rev. Mater. 5, 123803 (2021).
Zhang, X., Turiansky, M. E. & Van de Walle, C. G. Correctly assessing defect tolerance in halide perovskites. J. Phys. Chem. C 124, 6022–6027 (2020).
Zhang, X., Shen, J.-X., Turiansky, M. E. & de Walle, C. G. V. Hidden role of Bi incorporation in nonradiative recombination in methylammonium lead iodide. J. Mater. Chem. A 8, 12964–12967 (2020).
Shi, L. & Wang, L.-W. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors. Phys. Rev. Lett. 109, 245501 (2012).
Kim, S., Hood, S. N. & Walsh, A. Anharmonic lattice relaxation during nonradiative carrier capture. Phys. Rev. B 100, 041202 (2019).
Kim, S., Hood, S. N., Gerwen, P., van, Whalley, L. D. & Walsh, A. CarrierCapture.jl: anharmonic carrier capture. J. Open Source Softw. 5, 2102 (2020).
Turiansky, M. E. et al. Nonrad: computing nonradiative capture coefficients from first principles. Comput. Phys. Commun. 267, 108056 (2021).
Qiao, L., Fang, W.-H., Long, R. & Prezhdo, O. V. Atomic model for alkali metal passivation of point defects at perovskite grain boundaries. ACS Energy Lett. 5, 3813–3820 (2020).
Zhao, K., Xiang, H., Zhu, R., Liu, C. & Jia, Y. Passivation principle of deep-level defects: a study of SnZn defects in kesterites for high-efficient solar cells. J. Mater. Chem. A 10, 2849–2855 (2022).
Cai, Z. et al. Active passivation of anion vacancies in antimony selenide film for efficient solar cells. Adv. Mater. 36, 2404826 (2024).
Du, Y. et al. Defect engineering in earth-abundant Cu2ZnSn(S,Se)4 photovoltaic materials via Ga3+-doping for over 12% efficient solar cells. Adv. Funct. Mater. 31, 2010325 (2021).
de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).
Becker, W. in Advanced Time-Correlated Single Photon Counting Applications (ed. Becker, W.) 1–63 (Springer, 2015).
Berera, R., van Grondelle, R. & Kennis, J. T. M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 101, 105–118 (2009).
Guthrey, H. & Moseley, J. A review and perspective on cathodoluminescence analysis of halide perovskites. Adv. Energy Mater. 10, 1903840 (2020).
Righetto, M. et al. Hot carriers perspective on the nature of traps in perovskites. Nat. Commun. 11, 2712 (2020).
Pan, J. et al. Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy. Nat. Commun. 14, 8000 (2023).
Sadhanala, A. et al. Preparation of single-phase films of CH3NH3Pb(I1−xBrx)3 with sharp optical band edges. J. Phys. Chem. Lett. 5, 2501–2505 (2014).
Kronik, L. & Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1–206 (1999).
van Gorkom, B. T., van der Pol, T. P. A., Datta, K., Wienk, M. M. & Janssen, R. A. J. Revealing defective interfaces in perovskite solar cells from highly sensitive sub-bandgap photocurrent spectroscopy using optical cavities. Nat. Commun. 13, 349 (2022).
Le Corre, V. M. et al. Revealing charge carrier mobility and defect densities in metal halide perovskites via space-charge-limited current measurements. ACS Energy Lett. 6, 1087–1094 (2021).
Lang, D. V. Deep-level transient spectroscopy: a new method to characterize traps in semiconductors. J. Appl. Phys. 45, 3023–3032 (1974).
Losee, D. L. Admittance spectroscopy of deep impurity levels: ZnTe Schottky barriers. Appl. Phys. Lett. 21, 54–56 (1972).
Leon, C., Le Gall, S., Gueunier-Farret, M.-E. & Kleider, J.-P. How to perform admittance spectroscopy and DLTS in multijunction solar cells. Sol. Energy Mater. Sol. Cells 240, 111699 (2022).
Bollmann, J. & Venter, A. Admittance spectroscopy or deep level transient spectroscopy: a contrasting juxtaposition. Phys. B 535, 237–241 (2018).
Acknowledgements
Y.-T.H. and H.L. arranged alphabetically by surname in the author list. I.M.-L. acknowledges Imperial College London for funding from a President’s PhD scholarship. R.L.Z.H., H.L. and J.Y. acknowledge support from a UK Research and Innovation Frontier Grant (grant no. EP/X029900/1), awarded through the European Research Council Starting Grant 2021 scheme. H.L. thanks the Department of Chemistry at the University of Oxford for a studentship. R.L.Z.H. and Y.-T.H. thank the Engineering and Physical Sciences Research Council (EPSRC, grant no. EP/V014498/2) for financial support. A.W. is supported by EPSRC project no. EP/X037754/1. R.L.Z.H. thanks the Royal Academy of Engineering and Science & Technology Facilities Council for financial support through the Senior Research Fellowships scheme (grant no. RCSRF2324-18-68).
Author information
Authors and Affiliations
Contributions
R.L.Z.H. and A.W. conceived of the idea for this Review and drafted the proposal, with support from the other authors. R.L.Z.H. wrote the introduction, Box 1 and Box 3, the Defining defect tolerance section, drafted the Conclusions and outlook, contributed to Fig. 1, and prepared Fig. 5. I.M.-L. and A.W. wrote the models for defect tolerance in LHPs, prepared Box 2, and contributed to Figs. 1 and 2. J.Y. wrote the Polaronic model sub-section in the main discussion and outlook section, contributed to Fig. 2, and also wrote the section on defect characterization with R.L.Z.H. H.L. prepared Fig. 3, and the discussion around it, whereas Y.-T.H. prepared Fig. 4 and the associated discussion. All authors edited and revised the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mosquera-Lois, I., Huang, YT., Lohan, H. et al. Multifaceted nature of defect tolerance in halide perovskites and emerging semiconductors. Nat Rev Chem 9, 287–304 (2025). https://doi.org/10.1038/s41570-025-00702-w
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41570-025-00702-w
This article is cited by
-
Halide Perovskite: The Key to Overcoming von Neumann Bottlenecks in AI Workloads
Electronic Materials Letters (2025)