Abstract
Chemists often treat gaseous fragment ions as esoteric chemical species of interest to only analytical mass spectrometry and gas-phase ion chemistry. However, their potential as building blocks for designing new compounds in the condensed phase is largely unexplored. Developments in preparative mass spectrometry instrumentation have opened up a new research field focused on understanding the chemistry of well-defined gaseous fragment ions on surfaces. In this Review, we highlight the preparative potential of gaseous fragment ions for synthesizing new compounds in the condensed phase. We discuss factors affecting the selectivity of the observed reactivity of fragment ions, examine the effect of charge on reaction mechanisms, and introduce the unexpected reactivity of ions of the same polarity on surfaces in the absence of solvent molecules. These developments hold the potential to transform preparative mass spectrometry into a valuable method for small-scale chemical synthesis in almost all fields of molecular sciences.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Yang, S. X., Jiang, C. B. & Wei, S. H. Gas sensing in 2D materials. Appl. Phys. Rev. 4, 021304 (2017).
Zhang, A. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).
Felser, C., Fecher, G. H. & Balke, B. Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46, 668–699 (2007).
Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).
Dong, R., Zhang, T. & Feng, X. Interface-assisted synthesis of 2D materials: trend and challenges. Chem. Rev. 118, 6189–6235 (2018).
Gbadamasi, S. et al. Interface chemistry of two-dimensional heterostructures — fundamentals to applications. Chem. Soc. Rev. 50, 4684–4729 (2021).
George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).
Van Bui, H., Grillo, F. & van Ommen, J. R. Atomic and molecular layer deposition: off the beaten track. Chem. Commun. 53, 45–71 (2017).
Nunn, W., Truttmann, T. K. & Jalan, B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. J. Mater. Res. 36, 4846–4864 (2021).
Gologan, B., Wiseman, J. M. & Cooks, R. G. in Principles of Mass Spectrometry Applied to Biomolecules (eds Laskin, J. & Lifshitz, C.) Ch. 12 (Wiley, 2006).
Johnson, G. E., Gunaratne, D. & Laskin, J. Soft- and reactive landing of ions onto surfaces: concepts and applications. Mass Spectrom. Rev. 35, 439–479 (2016).
Verbeck, G., Hoffmann, W. & Walton, B. Soft-landing preparative mass spectrometry. Analyst 137, 4393–4407 (2012).
Rauschenbach, S., Ternes, M., Harnau, L. & Kern, K. Mass spectrometry as a preparative tool for the surface science of large molecules. Annu. Rev. Anal. Chem. 9, 473–498 (2016).
Johnson, G. E., Hu, Q. & Laskin, J. Soft landing of complex molecules on surfaces. Annu. Rev. Anal. Chem. 4, 83–104 (2011).
Cyriac, J., Pradeep, T., Kang, H., Souda, R. & Cooks, R. G. Low-energy ionic collisions at molecular solids. Chem. Rev. 112, 5356–5411 (2012).
Grill, V., Shen, J., Evans, C. & Cooks, R. G. Collisions of ions with surfaces at chemically relevant energies: instrumentation and phenomena. Rev. Sci. Instrum. 72, 3149–3179 (2001).
Wang, P. & Laskin, J. in Ion Beams in Nanoscience and Technology (eds R. Hellborg, R., Whitlow, H. J. & Zhang, Y.) 37–65 (Springer, 2009).
Laskin, J., Wang, P. & Hadjar, O. Soft-landing of peptide ions onto self-assembled monolayer surfaces: an overview. Phys. Chem. Chem. Phys. 10, 1079–1090 (2008).
Pratihar, S., Barnes, G. L., Laskin, J. & Hase, W. L. Dynamics of protonated peptide ion collisions with organic surfaces: consonance of simulation and experiment. J. Phys. Chem. Lett. 7, 3142–3150 (2016).
Hu, Q. & Laskin, J. Reactive landing of dendrimer ions onto activated self-assembled monolayer surfaces. J. Phys. Chem. C 118, 2602–2608 (2014).
Hu, Q. C. & Laskin, J. Secondary structures of ubiquitin ions soft-landed onto self-assembled monolayer surfaces. J. Phys. Chem. B 120, 4927–4936 (2016).
Rinke, G. et al. Active conformation control of unfolded proteins by hyperthermal collision with a metal surface. Nano Lett. 14, 5609–5615 (2014).
Mitsui, M., Nagaoka, S., Matsumoto, T. & Nakajima, A. Soft-landing isolation of vanadium-benzene sandwich clusters on a room-temperature substrate using n-alkanethiolate self-assembled monolayer matrixes. J. Phys. Chem. B 110, 2968–2971 (2006).
Johnson, G. E. & Laskin, J. Preparation of surface organometallic catalysts by gas-phase ligand stripping and reactive landing of mass-selected ions. Chem. Eur. J. 16, 14433–14438 (2010). This research is an early demonstration of the binding of an ionic fragment of a homogeneous (photo)catalyst to a surface with preservation of its catalytic activity.
Popok, V. N., Barke, I., Campbell, E. E. B. & Meiwes-Broer, K. H. Cluster-surface interaction: from soft landing to implantation. Surf. Sci. Rep. 66, 347–377 (2011).
Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015).
von Weber, A. & Anderson, S. L. Electrocatalysis by mass-selected Pt-n clusters. Acc. Chem. Res. 49, 2632–2639 (2016).
Johnson, G. E., Wang, C., Priest, T. & Laskin, J. Monodisperse Au11 clusters prepared by soft landing of mass selected ions. Anal. Chem. 83, 8069–8072 (2011).
Westphall, M. S. et al. Cryogenic soft landing improves structural preservation of protein complexes. Anal. Chem. 95, 15094–15101 (2023).
Prabhakaran, V. et al. Coordination-dependent chemical reactivity of TFSI anions at a Mg metal interface. ACS Appl. Mater. Interfaces 15, 7518–7528 (2023).
Yang, F. et al. On-surface single-molecule identification of mass-selected cyclodextrin-supported polyoxovanadates for multistate resistive-switching memory applications. ACS Appl. Nano Mater. 5, 14216–14220 (2022).
Shen, J. W., Grill, V., Evans, C. & Cooks, R. G. Chemical modification of fluorinated self-assembled monolayer surfaces using low-energy ion beams for halogen and pseudohalogen transfer. J. Mass Spectrom. 34, 354–363 (1999).
Evans, C. et al. Surface modification and patterning using low-energy ion beams: Si-O bond formation at the vacuum/adsorbate interface. Anal. Chem. 74, 317–323 (2002).
Bottcher, A. et al. Solid C-58 films. Phys. Chem. Chem. Phys. 7, 2816–2820 (2005).
Gunaratne, K. D. et al. Design and performance of a high-flux electrospray ionization source for ion soft landing. Analyst 140, 2957–2963 (2015).
Pauly, M. et al. A hydrodynamically optimized nano-electrospray ionization source and vacuum interface. Analyst 139, 1856–1867 (2014).
Su, P. et al. Multiplexing of electrospray ionization sources using orthogonal injection into an electrodynamic ion funnel. Anal. Chem. 93, 11576–11584 (2021).
Su, P. et al. Design and performance of a dual-polarity instrument for ion soft landing. Anal. Chem. 91, 5904–5912 (2019).
McLuckey, S. A. & Goeringer, D. E. Slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 32, 461–474 (1997).
Gronert, S. Mass spectrometric studies of organic ion/molecule reactions. Chem. Rev. 101, 329–360 (2001).
Sleno, L. & Volmer, D. A. Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 39, 1091–1112 (2004).
Vajda, S. & White, M. G. Catalysis applications of size-selected cluster deposition. ACS Catal. 5, 7152–7176 (2015).
Laskin, J., Johnson, G. E. & Prabhakaran, V. Soft landing of complex ions for studies in catalysis and energy storage. J. Phys. Chem. C 120, 23305–23322 (2016).
Laskin, J., Johnson, G. E., Warneke, J. & Prabhakaran, V. From isolated ions to multilayer functional materials using ion soft landing. Angew. Chem. Int. Ed. 57, 16270–16284 (2018).
Li, A. Y. et al. Using ambient ion beams to write nanostructured patterns for surface enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 53, 12528–12531 (2014).
Espenship, M. F. & Laskin, J. Writing with mass-selected ions using a dynamic field Wien filter. J. Am. Soc. Mass Spectrom. 35, 2472–2479 (2024).
Das, A., Samayoa-Oviedo, H. Y., Mohapatra, M., Basu, S. & Laskin, J. Enhancing energy storage capacity of 3D carbon electrodes using soft landing of molecular redox mediators. Small 20, 2311585 (2024).
Gholipour-Ranjbar, H. et al. Soft landing of polyatomic anions onto three-dimensional semiconductive and conductive substrates. Nanoscale Adv. 5, 1672–1680 (2023).
Kawa, S. et al. Generation and reactivity of the fragment ion [B12I8S(CN)]− in the gas phase and on surfaces. Analyst 149, 2573–2585 (2024). This paper describes the influence of reactive functional groups on the regioselectivity of reactive fragment ions.
Samayoa-Oviedo, H. Y. et al. Design and performance of a soft-landing instrument for fragment ion deposition. Anal. Chem. 93, 14489–14496 (2021). This paper provides a detailed description of the capabilities of a high-flux preparative mass spectrometer for fragment ion deposition, including controlled ion fragmentation, rapid polarity switching for dual-polarity ion deposition, and analysis of surface-bound products.
Rohdenburg, M., Warneke, Z., Knorke, H., Icker, M. & Warneke, J. Chemical synthesis with gaseous molecular ions: harvesting [B12Br11N2]− from a mass spectrometer. Angew. Chem. Int. Ed. 62, e202308600 (2023). This research is an early demonstration of microgram-scale accumulation of an ion–molecule reaction product and its structural characterization using conventional analytical methods, including NMR and infrared spectroscopy.
Westphall, M. S., Lee, K. W., Salome, A. Z., Coon, J. J. & Grant, T. Mass spectrometers as cryoEM grid preparation instruments. Curr. Opin. Struct. Biol. 83, 102699 (2023).
Halder, A., Curtiss, L. A., Fortunelli, A. & Vajda, S. Perspective: size selected clusters for catalysis and electrochemistry. J. Chem. Phys. 148, 110901 (2018).
Ghosh, J. & Cooks, R. G. Mass spectrometry in materials synthesis. Trends Anal. Chem. 161, 117010 (2023).
Prabhakaran, V., Johnson, G. E. & Laskin, J. Ion soft landing: a unique tool for understanding electrochemical processes. Curr. Opin. Electrochem. 40, 101310 (2023).
Warneke, J. et al. Self-organizing layers from complex molecular anions. Nat. Commun. 9, 1889 (2018).
Samayoa-Oviedo, H. Y., Knorke, H., Warneke, J. & Laskin, J. Spontaneous ligand loss by soft landed [Ni(bpy)3]2+ ions on perfluorinated self-assembled monolayer surfaces. Chem. Sci. 15, 10770–10783 (2024). This paper highlights how surface interactions destabilize transition metal complexes commonly used as photosensitizers, promoting ligand loss from the complex.
Yan, X., Bain, R. M. & Cooks, R. G. Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Ed. 55, 12960–12972 (2016).
Lee, J. K., Banerjee, S., Nam, H. G. & Zare, R. N. Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 48, 437–444 (2015).
Yang, F. et al. Control of intermediates and products by combining droplet reactions and ion soft-landing. Angew. Chem. Int. Ed. 63, e202314784 (2024).
Hankins, K. et al. Role of polysulfide anions in solid-electrolyte interphase formation at the lithium metal surface in Li–S batteries. J. Phys. Chem. Lett. 12, 9360–9367 (2021).
Zhang, X. et al. Controlled formation of nanoribbons and their heterostructures via assembly of mass-selected inorganic ions. Adv. Mater. 36, 2310817 (2024).
Löffler, D., Jester, S. S., Weis, P., Böttcher, A. & Kappes, M. M. Cn films (n = 50, 52, 54, 56, and 58) on graphite: cage size dependent electronic properties. J. Chem. Phys. 124, 054705 (2006).
Löffler, D. et al. Non-IPR C60 solids. J. Chem. Phys. 130, 164705 (2009).
Weippert, J. et al. Oligomerization of dehydrogenated polycyclic aromatic hydrocarbons on highly oriented pyrolytic graphite. J. Phys. Chem. C 124, 8236–8246 (2020).
Pratontep, S., Carroll, S. J., Xirouchaki, C., Streun, M. & Palmer, R. E. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev. Sci. Instrum. 76, 045103 (2005).
Blake, T. A. et al. Preparative linear ion trap mass spectrometer for separation and collection of purified proteins and peptides in arrays using ion soft landing. Anal. Chem. 76, 6293–6305 (2004).
Peng, W.-P. et al. Ion soft landing using a rectilinear ion trap mass spectrometer. Anal. Chem. 80, 6640–6649 (2008).
Fremdling, P. et al. A preparative mass spectrometer to deposit intact large native protein complexes. ACS Nano 16, 14443–14455 (2022).
Westphall, M. S. et al. Three-dimensional structure determination of protein complexes using matrix-landing mass spectrometry. Nat. Commun. 13, 2276 (2022).
von Issendorff, B. & Palmer, R. E. A new high transmission infinite range mass selector for cluster and nanoparticle beams. Rev. Sci. Instrum. 70, 4497–4501 (1999).
Yoshimura, S., Sugimoto, S., Takeuchi, T., Murai, K. & Kiuchi, M. Identification of fragment ions produced from hexamethyldisilazane and production of low-energy mass-selected fragment ion beam. Nucl. Instrum. Methods Phys. Res. B 430, 1–5 (2018).
Su, P. et al. Preparative mass spectrometry using a rotating-wall mass analyzer. Angew. Chem. Int. Ed. 59, 7711–7716 (2020).
Su, P., Espenship, M. F. & Laskin, J. Principles of operation of a rotating wall mass analyzer for preparative mass spectrometry. J. Am. Soc. Mass Spectrom. 31, 1875–1884 (2020).
Warneke, J., Knorke, H., Charvat, A. & Warneke, K. G. in Encyclopedia of Inorganic and Bioinorganic Chemistry 1–15 (2022)
Miller, S. A., Luo, H., Pachuta, S. J. & Cooks, R. G. Soft-landing of polyatomic ions at fluorinated self-assembled monolayer surfaces. Science 275, 1447–1450 (1997).
Cowin, J. P., Tsekouras, A. A., Iedema, M. J., Wu, K. & Ellison, G. B. Immobility of protons in ice from 30 to 190 K. Nature 398, 405–407 (1999).
Wu, K., Iedema, M. J. & Cowin, J. P. Ion transport in micelle-like films: soft-landed ion studies. Langmuir 16, 4259–4265 (2000).
Hadjar, O., Futrell, J. H. & Laskin, J. First observation of charge reduction and desorption kinetics of multiply protonated peptides soft landed onto self-assembled monolayer surfaces. J. Phys. Chem. C 111, 18220–18225 (2007).
Johnson, G. E., Priest, T. & Laskin, J. Coverage-dependent charge reduction of cationic gold clusters on surfaces prepared using soft landing of mass-selected ions. J. Phys. Chem. C 116, 24977–24986 (2012).
Laskin, J. et al. Charge retention by peptide ions soft-landed onto self-assembled monolayer surfaces. Int. J. Mass Spectrom. 265, 237–243 (2007).
Gunaratne, K. D. D., Prabhakaran, V., Andersen, A., Johnson, G. E. & Laskin, J. Charge retention of soft-landed phosphotungstate Keggin anions on self-assembled monolayers. Phys. Chem. Chem. Phys. 18, 9021–9028 (2016).
Yang, F. et al. Anion–anion chemistry with mass-selected molecular fragments on surfaces. Angew. Chem. Int. Ed. 60, 24910–24914 (2021). This paper shows that an unexpected reaction between a reactive fragment ion and a previously deposited ion of the same polarity at the layer–vacuum interface generates highly charged products.
Kertesz, V. & Van Berkel, G. J. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J. Mass Spectrom. 45, 252–260 (2010).
Roach, P. J., Laskin, J. & Laskin, A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135, 2233–2236 (2010).
Warneke, J. et al. Electronic structure and stability of [B12X12]2– (X = F–At): a combined photoelectron spectroscopic and theoretical study. J. Am. Chem. Soc. 139, 14749–14756 (2017).
Mayer, M. et al. Rational design of an argon-binding superelectrophilic anion. Proc. Natl. Acad. Sci. USA 116, 8167–8172 (2019).
Rohdenburg, M. et al. Superelectrophilic behavior of an anion demonstrated by the spontaneous binding of noble gases to B12Cl11−. Angew. Chem. Int. Ed. 56, 7980–7985 (2017).
Mayer, M. et al. Relevance of π-backbonding for the reactivity of electrophilic anions B12X11− (X = F, Cl, Br, I, CN). Chem. Eur. J. 27, 10274–10281 (2021).
Mayer, M. et al. First steps towards a stable neon compound: observation and bonding analysis of B12(CN)11Ne−. Chem. Commun. 56, 4591–4594 (2020).
Ma, X. et al. Binding of saturated and unsaturated C6-hydrocarbons to the electrophilic anion [B12Br11]−: a systematic mechanistic study. Phys. Chem. Chem. Phys. 24, 21759–21772 (2022).
Warneke, J. et al. Direct functionalization of C–H bonds by electrophilic anions. Proc. Natl. Acad. Sci. USA 117, 23374–23379 (2020). This research has led to an early discovery of the reaction involving proton substitution in alkanes by electrophilic anions both in the gas phase and in condensed-phase layers prepared using fragment ion deposition.
Rohdenburg, M. et al. Probing fragment ion reactivity towards functional groups on coordination polymer surfaces. Chem. Commun. 60, 10219–10418 (2024). This research has used surface-bound coordination polymer to anchor functional groups to the layer–vacuum interface, which were subsequently bound by reactive fragment ions.
Gholipour-Ranjbar, H., Deepika, Jena, P. & Laskin, J. Gas-phase fragmentation of single heteroatom-incorporated Co5MS8(PEt3)6+ (M = Mn, Fe, Co, Ni) nanoclusters. Commun. Chem. 5, 130 (2022).
Gholipour-Ranjbar, H., Samayoa-Oviedo, H. Y. & Laskin, J. Controlled formation of fused metal chalcogenide nanoclusters using soft landing of gaseous fragment ions. ACS Nano 17, 17427–17435 (2023). This research has led to the discovery of the selective dimerization of undercoordinated metal chalcogenide clusters on surfaces and the effect of heteroatom incorporation into the cluster core on the reactivity.
Gholipour-Ranjbar, H., Sertse, L., Forbes, D. & Laskin, J. Effect of ligands on the reactivity of the undercoordinated fragment ions of Co6S8(PEt3-xPhx)6+ (x = 0–3) clusters on surfaces. J. Phys. Chem. C 128, 8232–8238 (2024). This research has determined that the ligand binding energy to the core of a cobalt sulfide cluster influences the efficiency of dimer formation by the corresponding undercoordinated fragment ion when deposited on a surface.
Champsaur, A. M., Hochuli, T. J., Paley, D. W., Nuckolls, C. & Steigerwald, M. L. Superatom fusion and the nature of quantum confinement. Nano Lett. 18, 4564–4569 (2018).
Gadjieva, N. A., Champsaur, A. M., Steigerwald, M. L., Roy, X. & Nuckolls, C. Dimensional control of assembling metal chalcogenide clusters. Eur. J. Inorg. Chem. 2020, 1245–1254 (2020).
Bista, D., Sengupta, T., Reber, A. C. & Khanna, S. N. Interfacial magnetism in a fused superatomic cluster [Co6Se8(PEt3)5]2. Nanoscale 13, 15763–15769 (2021).
Bista, D., Sengupta, T., Reber, A. C. & Khanna, S. N. A magnetic superatomic dimer with an intense internal electric dipole moment. J. Phys. Chem. A 125, 816–824 (2021).
Housecroft, C. E. & Constable, E. C. Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chem. Sci. 13, 1225–1262 (2022).
Takaya, J. Catalysis using transition metal complexes featuring main group metal and metalloid compounds as supporting ligands. Chem. Sci. 12, 1964–1981 (2021).
Ritala, M. & Leskelä, M. in Handbook of Thin Films (ed H. S. Nalwa) 103–159 (Academic, 2002).
Chang, C.-H., Fan, X., Li, L.-J. & Kuo, J.-L. Band gap tuning of graphene by adsorption of aromatic molecules. J. Phys. Chem. C 116, 13788–13794 (2012).
Utke, I., Hoffmann, P. & Melngailis, J. Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 26, 1197–1276 (2008).
Wang, P., Hadjar, O., Gassman, P. L. & Laskin, J. Reactive landing of peptide ions on self-assembled monolayer surfaces: an alternative approach for covalent immobilization of peptides on surfaces. Phys. Chem. Chem. Phys. 10, 1512–1522 (2008).
Thanka Rajan, S., Subramanian, B. & Arockiarajan, A. A comprehensive review on biocompatible thin films for biomedical application. Ceram. Int. 48, 4377–4400 (2022).
Wheeler, A. R. Putting electrowetting to work. Science 322, 539–540 (2008).
Das, A., Fehse, S., Polack, M., Panneerselvam, R. & Belder, D. Surface-enhanced Raman spectroscopic probing in digital microfluidics through a microspray hole. Anal. Chem. 95, 1262–1272 (2023).
Acknowledgements
The authors acknowledge support from the Air Force Office of Scientific Research (AFOSR) under grant FA9550-23-1-0137 (H.Y.S-O, X.L., J.L.) and the Volkswagen Foundation for a Freigeist Fellowship (J.W.).
Author information
Authors and Affiliations
Contributions
J.L. and J.W. conceptualized the article and wrote major parts of the text. All authors researched literature for the article. J.W., M.R., H.K. and J.L. contributed substantially to discussion of the content. All authors contributed substantially to writing the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Warneke, J., Samayoa-Oviedo, H.Y., Rohdenburg, M. et al. Molecular synthesis with gaseous fragment ions on surfaces. Nat Rev Chem 9, 470–480 (2025). https://doi.org/10.1038/s41570-025-00719-1
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41570-025-00719-1
This article is cited by
-
Ein Molekülsynthese-Verfahren eröffnet neue Perspektiven
JOT Journal für Oberflächentechnik (2025)