Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular synthesis with gaseous fragment ions on surfaces

Abstract

Chemists often treat gaseous fragment ions as esoteric chemical species of interest to only analytical mass spectrometry and gas-phase ion chemistry. However, their potential as building blocks for designing new compounds in the condensed phase is largely unexplored. Developments in preparative mass spectrometry instrumentation have opened up a new research field focused on understanding the chemistry of well-defined gaseous fragment ions on surfaces. In this Review, we highlight the preparative potential of gaseous fragment ions for synthesizing new compounds in the condensed phase. We discuss factors affecting the selectivity of the observed reactivity of fragment ions, examine the effect of charge on reaction mechanisms, and introduce the unexpected reactivity of ions of the same polarity on surfaces in the absence of solvent molecules. These developments hold the potential to transform preparative mass spectrometry into a valuable method for small-scale chemical synthesis in almost all fields of molecular sciences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An ESI-based high-flux preparative mass spectrometer for fragment ion deposition.
Fig. 2: Generation and selected reactions of [B12X11] (X = Cl, Br, and I) ions in the gas phase.
Fig. 3: An overview of the reactions of [B12X11] and [B12I8(S)(CN)] fragment ions on surfaces.
Fig. 4: Deposition of undercoordinated metal chalcogenide clusters and nanospray desorption electrospray ionization (nano-DESI) analysis of their reaction products on surfaces.
Fig. 5: Comparison of the optimized structures of [Ni(bpy)3]2+ with and without a stable counterion on a C–H-terminated interface.

Similar content being viewed by others

References

  1. Yang, S. X., Jiang, C. B. & Wei, S. H. Gas sensing in 2D materials. Appl. Phys. Rev. 4, 021304 (2017).

    Article  Google Scholar 

  2. Zhang, A. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).

    Article  CAS  Google Scholar 

  3. Felser, C., Fecher, G. H. & Balke, B. Spintronics: a challenge for materials science and solid-state chemistry. Angew. Chem. Int. Ed. 46, 668–699 (2007).

    Article  CAS  Google Scholar 

  4. Liu, X. & Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 4, 669–684 (2019).

    Article  Google Scholar 

  5. Dong, R., Zhang, T. & Feng, X. Interface-assisted synthesis of 2D materials: trend and challenges. Chem. Rev. 118, 6189–6235 (2018).

    Article  CAS  Google Scholar 

  6. Gbadamasi, S. et al. Interface chemistry of two-dimensional heterostructures — fundamentals to applications. Chem. Soc. Rev. 50, 4684–4729 (2021).

    Article  CAS  Google Scholar 

  7. George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).

    Article  CAS  Google Scholar 

  8. Van Bui, H., Grillo, F. & van Ommen, J. R. Atomic and molecular layer deposition: off the beaten track. Chem. Commun. 53, 45–71 (2017).

    Article  Google Scholar 

  9. Nunn, W., Truttmann, T. K. & Jalan, B. A review of molecular-beam epitaxy of wide bandgap complex oxide semiconductors. J. Mater. Res. 36, 4846–4864 (2021).

    Article  CAS  Google Scholar 

  10. Gologan, B., Wiseman, J. M. & Cooks, R. G. in Principles of Mass Spectrometry Applied to Biomolecules (eds Laskin, J. & Lifshitz, C.) Ch. 12 (Wiley, 2006).

  11. Johnson, G. E., Gunaratne, D. & Laskin, J. Soft- and reactive landing of ions onto surfaces: concepts and applications. Mass Spectrom. Rev. 35, 439–479 (2016).

    Article  CAS  Google Scholar 

  12. Verbeck, G., Hoffmann, W. & Walton, B. Soft-landing preparative mass spectrometry. Analyst 137, 4393–4407 (2012).

    Article  CAS  Google Scholar 

  13. Rauschenbach, S., Ternes, M., Harnau, L. & Kern, K. Mass spectrometry as a preparative tool for the surface science of large molecules. Annu. Rev. Anal. Chem. 9, 473–498 (2016).

    Article  CAS  Google Scholar 

  14. Johnson, G. E., Hu, Q. & Laskin, J. Soft landing of complex molecules on surfaces. Annu. Rev. Anal. Chem. 4, 83–104 (2011).

    Article  CAS  Google Scholar 

  15. Cyriac, J., Pradeep, T., Kang, H., Souda, R. & Cooks, R. G. Low-energy ionic collisions at molecular solids. Chem. Rev. 112, 5356–5411 (2012).

    Article  CAS  Google Scholar 

  16. Grill, V., Shen, J., Evans, C. & Cooks, R. G. Collisions of ions with surfaces at chemically relevant energies: instrumentation and phenomena. Rev. Sci. Instrum. 72, 3149–3179 (2001).

    Article  CAS  Google Scholar 

  17. Wang, P. & Laskin, J. in Ion Beams in Nanoscience and Technology (eds R. Hellborg, R., Whitlow, H. J. & Zhang, Y.) 37–65 (Springer, 2009).

  18. Laskin, J., Wang, P. & Hadjar, O. Soft-landing of peptide ions onto self-assembled monolayer surfaces: an overview. Phys. Chem. Chem. Phys. 10, 1079–1090 (2008).

    Article  CAS  Google Scholar 

  19. Pratihar, S., Barnes, G. L., Laskin, J. & Hase, W. L. Dynamics of protonated peptide ion collisions with organic surfaces: consonance of simulation and experiment. J. Phys. Chem. Lett. 7, 3142–3150 (2016).

    Article  CAS  Google Scholar 

  20. Hu, Q. & Laskin, J. Reactive landing of dendrimer ions onto activated self-assembled monolayer surfaces. J. Phys. Chem. C 118, 2602–2608 (2014).

    Article  CAS  Google Scholar 

  21. Hu, Q. C. & Laskin, J. Secondary structures of ubiquitin ions soft-landed onto self-assembled monolayer surfaces. J. Phys. Chem. B 120, 4927–4936 (2016).

    Article  CAS  Google Scholar 

  22. Rinke, G. et al. Active conformation control of unfolded proteins by hyperthermal collision with a metal surface. Nano Lett. 14, 5609–5615 (2014).

    Article  CAS  Google Scholar 

  23. Mitsui, M., Nagaoka, S., Matsumoto, T. & Nakajima, A. Soft-landing isolation of vanadium-benzene sandwich clusters on a room-temperature substrate using n-alkanethiolate self-assembled monolayer matrixes. J. Phys. Chem. B 110, 2968–2971 (2006).

    Article  CAS  Google Scholar 

  24. Johnson, G. E. & Laskin, J. Preparation of surface organometallic catalysts by gas-phase ligand stripping and reactive landing of mass-selected ions. Chem. Eur. J. 16, 14433–14438 (2010). This research is an early demonstration of the binding of an ionic fragment of a homogeneous (photo)catalyst to a surface with preservation of its catalytic activity.

    Article  CAS  Google Scholar 

  25. Popok, V. N., Barke, I., Campbell, E. E. B. & Meiwes-Broer, K. H. Cluster-surface interaction: from soft landing to implantation. Surf. Sci. Rep. 66, 347–377 (2011).

    Article  CAS  Google Scholar 

  26. Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10, 577–588 (2015).

    Article  CAS  Google Scholar 

  27. von Weber, A. & Anderson, S. L. Electrocatalysis by mass-selected Pt-n clusters. Acc. Chem. Res. 49, 2632–2639 (2016).

    Article  Google Scholar 

  28. Johnson, G. E., Wang, C., Priest, T. & Laskin, J. Monodisperse Au11 clusters prepared by soft landing of mass selected ions. Anal. Chem. 83, 8069–8072 (2011).

    Article  CAS  Google Scholar 

  29. Westphall, M. S. et al. Cryogenic soft landing improves structural preservation of protein complexes. Anal. Chem. 95, 15094–15101 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  30. Prabhakaran, V. et al. Coordination-dependent chemical reactivity of TFSI anions at a Mg metal interface. ACS Appl. Mater. Interfaces 15, 7518–7528 (2023).

    Article  CAS  Google Scholar 

  31. Yang, F. et al. On-surface single-molecule identification of mass-selected cyclodextrin-supported polyoxovanadates for multistate resistive-switching memory applications. ACS Appl. Nano Mater. 5, 14216–14220 (2022).

    Article  CAS  Google Scholar 

  32. Shen, J. W., Grill, V., Evans, C. & Cooks, R. G. Chemical modification of fluorinated self-assembled monolayer surfaces using low-energy ion beams for halogen and pseudohalogen transfer. J. Mass Spectrom. 34, 354–363 (1999).

    Article  CAS  Google Scholar 

  33. Evans, C. et al. Surface modification and patterning using low-energy ion beams: Si-O bond formation at the vacuum/adsorbate interface. Anal. Chem. 74, 317–323 (2002).

    Article  CAS  Google Scholar 

  34. Bottcher, A. et al. Solid C-58 films. Phys. Chem. Chem. Phys. 7, 2816–2820 (2005).

    Article  Google Scholar 

  35. Gunaratne, K. D. et al. Design and performance of a high-flux electrospray ionization source for ion soft landing. Analyst 140, 2957–2963 (2015).

    Article  CAS  Google Scholar 

  36. Pauly, M. et al. A hydrodynamically optimized nano-electrospray ionization source and vacuum interface. Analyst 139, 1856–1867 (2014).

    Article  CAS  Google Scholar 

  37. Su, P. et al. Multiplexing of electrospray ionization sources using orthogonal injection into an electrodynamic ion funnel. Anal. Chem. 93, 11576–11584 (2021).

    Article  CAS  Google Scholar 

  38. Su, P. et al. Design and performance of a dual-polarity instrument for ion soft landing. Anal. Chem. 91, 5904–5912 (2019).

    Article  CAS  Google Scholar 

  39. McLuckey, S. A. & Goeringer, D. E. Slow heating methods in tandem mass spectrometry. J. Mass Spectrom. 32, 461–474 (1997).

    Article  CAS  Google Scholar 

  40. Gronert, S. Mass spectrometric studies of organic ion/molecule reactions. Chem. Rev. 101, 329–360 (2001).

    Article  CAS  Google Scholar 

  41. Sleno, L. & Volmer, D. A. Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 39, 1091–1112 (2004).

    Article  CAS  Google Scholar 

  42. Vajda, S. & White, M. G. Catalysis applications of size-selected cluster deposition. ACS Catal. 5, 7152–7176 (2015).

    Article  CAS  Google Scholar 

  43. Laskin, J., Johnson, G. E. & Prabhakaran, V. Soft landing of complex ions for studies in catalysis and energy storage. J. Phys. Chem. C 120, 23305–23322 (2016).

    Article  CAS  Google Scholar 

  44. Laskin, J., Johnson, G. E., Warneke, J. & Prabhakaran, V. From isolated ions to multilayer functional materials using ion soft landing. Angew. Chem. Int. Ed. 57, 16270–16284 (2018).

    Article  CAS  Google Scholar 

  45. Li, A. Y. et al. Using ambient ion beams to write nanostructured patterns for surface enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 53, 12528–12531 (2014).

    Article  CAS  Google Scholar 

  46. Espenship, M. F. & Laskin, J. Writing with mass-selected ions using a dynamic field Wien filter. J. Am. Soc. Mass Spectrom. 35, 2472–2479 (2024).

    Article  CAS  Google Scholar 

  47. Das, A., Samayoa-Oviedo, H. Y., Mohapatra, M., Basu, S. & Laskin, J. Enhancing energy storage capacity of 3D carbon electrodes using soft landing of molecular redox mediators. Small 20, 2311585 (2024).

    Article  CAS  Google Scholar 

  48. Gholipour-Ranjbar, H. et al. Soft landing of polyatomic anions onto three-dimensional semiconductive and conductive substrates. Nanoscale Adv. 5, 1672–1680 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  49. Kawa, S. et al. Generation and reactivity of the fragment ion [B12I8S(CN)] in the gas phase and on surfaces. Analyst 149, 2573–2585 (2024). This paper describes the influence of reactive functional groups on the regioselectivity of reactive fragment ions.

    Article  CAS  Google Scholar 

  50. Samayoa-Oviedo, H. Y. et al. Design and performance of a soft-landing instrument for fragment ion deposition. Anal. Chem. 93, 14489–14496 (2021). This paper provides a detailed description of the capabilities of a high-flux preparative mass spectrometer for fragment ion deposition, including controlled ion fragmentation, rapid polarity switching for dual-polarity ion deposition, and analysis of surface-bound products.

    Article  CAS  Google Scholar 

  51. Rohdenburg, M., Warneke, Z., Knorke, H., Icker, M. & Warneke, J. Chemical synthesis with gaseous molecular ions: harvesting [B12Br11N2] from a mass spectrometer. Angew. Chem. Int. Ed. 62, e202308600 (2023). This research is an early demonstration of microgram-scale accumulation of an ion–molecule reaction product and its structural characterization using conventional analytical methods, including NMR and infrared spectroscopy.

    Article  CAS  Google Scholar 

  52. Westphall, M. S., Lee, K. W., Salome, A. Z., Coon, J. J. & Grant, T. Mass spectrometers as cryoEM grid preparation instruments. Curr. Opin. Struct. Biol. 83, 102699 (2023).

    Article  CAS  PubMed Central  Google Scholar 

  53. Halder, A., Curtiss, L. A., Fortunelli, A. & Vajda, S. Perspective: size selected clusters for catalysis and electrochemistry. J. Chem. Phys. 148, 110901 (2018).

    Article  Google Scholar 

  54. Ghosh, J. & Cooks, R. G. Mass spectrometry in materials synthesis. Trends Anal. Chem. 161, 117010 (2023).

    Article  CAS  Google Scholar 

  55. Prabhakaran, V., Johnson, G. E. & Laskin, J. Ion soft landing: a unique tool for understanding electrochemical processes. Curr. Opin. Electrochem. 40, 101310 (2023).

    Article  CAS  Google Scholar 

  56. Warneke, J. et al. Self-organizing layers from complex molecular anions. Nat. Commun. 9, 1889 (2018).

    Article  PubMed Central  Google Scholar 

  57. Samayoa-Oviedo, H. Y., Knorke, H., Warneke, J. & Laskin, J. Spontaneous ligand loss by soft landed [Ni(bpy)3]2+ ions on perfluorinated self-assembled monolayer surfaces. Chem. Sci. 15, 10770–10783 (2024). This paper highlights how surface interactions destabilize transition metal complexes commonly used as photosensitizers, promoting ligand loss from the complex.

    Article  CAS  PubMed Central  Google Scholar 

  58. Yan, X., Bain, R. M. & Cooks, R. G. Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Ed. 55, 12960–12972 (2016).

    Article  CAS  Google Scholar 

  59. Lee, J. K., Banerjee, S., Nam, H. G. & Zare, R. N. Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 48, 437–444 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  60. Yang, F. et al. Control of intermediates and products by combining droplet reactions and ion soft-landing. Angew. Chem. Int. Ed. 63, e202314784 (2024).

    Article  CAS  Google Scholar 

  61. Hankins, K. et al. Role of polysulfide anions in solid-electrolyte interphase formation at the lithium metal surface in Li–S batteries. J. Phys. Chem. Lett. 12, 9360–9367 (2021).

    Article  CAS  Google Scholar 

  62. Zhang, X. et al. Controlled formation of nanoribbons and their heterostructures via assembly of mass-selected inorganic ions. Adv. Mater. 36, 2310817 (2024).

    Article  CAS  Google Scholar 

  63. Löffler, D., Jester, S. S., Weis, P., Böttcher, A. & Kappes, M. M. Cn films (n = 50, 52, 54, 56, and 58) on graphite: cage size dependent electronic properties. J. Chem. Phys. 124, 054705 (2006).

    Article  Google Scholar 

  64. Löffler, D. et al. Non-IPR C60 solids. J. Chem. Phys. 130, 164705 (2009).

    Article  Google Scholar 

  65. Weippert, J. et al. Oligomerization of dehydrogenated polycyclic aromatic hydrocarbons on highly oriented pyrolytic graphite. J. Phys. Chem. C 124, 8236–8246 (2020).

    Article  CAS  Google Scholar 

  66. Pratontep, S., Carroll, S. J., Xirouchaki, C., Streun, M. & Palmer, R. E. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev. Sci. Instrum. 76, 045103 (2005).

    Article  Google Scholar 

  67. Blake, T. A. et al. Preparative linear ion trap mass spectrometer for separation and collection of purified proteins and peptides in arrays using ion soft landing. Anal. Chem. 76, 6293–6305 (2004).

    Article  CAS  Google Scholar 

  68. Peng, W.-P. et al. Ion soft landing using a rectilinear ion trap mass spectrometer. Anal. Chem. 80, 6640–6649 (2008).

    Article  CAS  Google Scholar 

  69. Fremdling, P. et al. A preparative mass spectrometer to deposit intact large native protein complexes. ACS Nano 16, 14443–14455 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  70. Westphall, M. S. et al. Three-dimensional structure determination of protein complexes using matrix-landing mass spectrometry. Nat. Commun. 13, 2276 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  71. von Issendorff, B. & Palmer, R. E. A new high transmission infinite range mass selector for cluster and nanoparticle beams. Rev. Sci. Instrum. 70, 4497–4501 (1999).

    Article  Google Scholar 

  72. Yoshimura, S., Sugimoto, S., Takeuchi, T., Murai, K. & Kiuchi, M. Identification of fragment ions produced from hexamethyldisilazane and production of low-energy mass-selected fragment ion beam. Nucl. Instrum. Methods Phys. Res. B 430, 1–5 (2018).

    Article  CAS  Google Scholar 

  73. Su, P. et al. Preparative mass spectrometry using a rotating-wall mass analyzer. Angew. Chem. Int. Ed. 59, 7711–7716 (2020).

    Article  CAS  Google Scholar 

  74. Su, P., Espenship, M. F. & Laskin, J. Principles of operation of a rotating wall mass analyzer for preparative mass spectrometry. J. Am. Soc. Mass Spectrom. 31, 1875–1884 (2020).

    Article  CAS  Google Scholar 

  75. Warneke, J., Knorke, H., Charvat, A. & Warneke, K. G. in Encyclopedia of Inorganic and Bioinorganic Chemistry 1–15 (2022)

  76. Miller, S. A., Luo, H., Pachuta, S. J. & Cooks, R. G. Soft-landing of polyatomic ions at fluorinated self-assembled monolayer surfaces. Science 275, 1447–1450 (1997).

    Article  CAS  Google Scholar 

  77. Cowin, J. P., Tsekouras, A. A., Iedema, M. J., Wu, K. & Ellison, G. B. Immobility of protons in ice from 30 to 190 K. Nature 398, 405–407 (1999).

    Article  CAS  Google Scholar 

  78. Wu, K., Iedema, M. J. & Cowin, J. P. Ion transport in micelle-like films: soft-landed ion studies. Langmuir 16, 4259–4265 (2000).

    Article  CAS  Google Scholar 

  79. Hadjar, O., Futrell, J. H. & Laskin, J. First observation of charge reduction and desorption kinetics of multiply protonated peptides soft landed onto self-assembled monolayer surfaces. J. Phys. Chem. C 111, 18220–18225 (2007).

    Article  CAS  Google Scholar 

  80. Johnson, G. E., Priest, T. & Laskin, J. Coverage-dependent charge reduction of cationic gold clusters on surfaces prepared using soft landing of mass-selected ions. J. Phys. Chem. C 116, 24977–24986 (2012).

    Article  CAS  Google Scholar 

  81. Laskin, J. et al. Charge retention by peptide ions soft-landed onto self-assembled monolayer surfaces. Int. J. Mass Spectrom. 265, 237–243 (2007).

    Article  CAS  Google Scholar 

  82. Gunaratne, K. D. D., Prabhakaran, V., Andersen, A., Johnson, G. E. & Laskin, J. Charge retention of soft-landed phosphotungstate Keggin anions on self-assembled monolayers. Phys. Chem. Chem. Phys. 18, 9021–9028 (2016).

    Article  CAS  Google Scholar 

  83. Yang, F. et al. Anion–anion chemistry with mass-selected molecular fragments on surfaces. Angew. Chem. Int. Ed. 60, 24910–24914 (2021). This paper shows that an unexpected reaction between a reactive fragment ion and a previously deposited ion of the same polarity at the layer–vacuum interface generates highly charged products.

    Article  CAS  Google Scholar 

  84. Kertesz, V. & Van Berkel, G. J. Fully automated liquid extraction-based surface sampling and ionization using a chip-based robotic nanoelectrospray platform. J. Mass Spectrom. 45, 252–260 (2010).

    Article  CAS  Google Scholar 

  85. Roach, P. J., Laskin, J. & Laskin, A. Nanospray desorption electrospray ionization: an ambient method for liquid-extraction surface sampling in mass spectrometry. Analyst 135, 2233–2236 (2010).

    Article  CAS  Google Scholar 

  86. Warneke, J. et al. Electronic structure and stability of [B12X12]2– (X = F–At): a combined photoelectron spectroscopic and theoretical study. J. Am. Chem. Soc. 139, 14749–14756 (2017).

    Article  CAS  Google Scholar 

  87. Mayer, M. et al. Rational design of an argon-binding superelectrophilic anion. Proc. Natl. Acad. Sci. USA 116, 8167–8172 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  88. Rohdenburg, M. et al. Superelectrophilic behavior of an anion demonstrated by the spontaneous binding of noble gases to B12Cl11. Angew. Chem. Int. Ed. 56, 7980–7985 (2017).

    Article  CAS  Google Scholar 

  89. Mayer, M. et al. Relevance of π-backbonding for the reactivity of electrophilic anions B12X11 (X = F, Cl, Br, I, CN). Chem. Eur. J. 27, 10274–10281 (2021).

    Article  CAS  Google Scholar 

  90. Mayer, M. et al. First steps towards a stable neon compound: observation and bonding analysis of B12(CN)11Ne. Chem. Commun. 56, 4591–4594 (2020).

    Article  CAS  Google Scholar 

  91. Ma, X. et al. Binding of saturated and unsaturated C6-hydrocarbons to the electrophilic anion [B12Br11]: a systematic mechanistic study. Phys. Chem. Chem. Phys. 24, 21759–21772 (2022).

    Article  CAS  Google Scholar 

  92. Warneke, J. et al. Direct functionalization of C–H bonds by electrophilic anions. Proc. Natl. Acad. Sci. USA 117, 23374–23379 (2020). This research has led to an early discovery of the reaction involving proton substitution in alkanes by electrophilic anions both in the gas phase and in condensed-phase layers prepared using fragment ion deposition.

    Article  CAS  PubMed Central  Google Scholar 

  93. Rohdenburg, M. et al. Probing fragment ion reactivity towards functional groups on coordination polymer surfaces. Chem. Commun. 60, 10219–10418 (2024). This research has used surface-bound coordination polymer to anchor functional groups to the layer–vacuum interface, which were subsequently bound by reactive fragment ions.

    Article  Google Scholar 

  94. Gholipour-Ranjbar, H., Deepika, Jena, P. & Laskin, J. Gas-phase fragmentation of single heteroatom-incorporated Co5MS8(PEt3)6+ (M = Mn, Fe, Co, Ni) nanoclusters. Commun. Chem. 5, 130 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  95. Gholipour-Ranjbar, H., Samayoa-Oviedo, H. Y. & Laskin, J. Controlled formation of fused metal chalcogenide nanoclusters using soft landing of gaseous fragment ions. ACS Nano 17, 17427–17435 (2023). This research has led to the discovery of the selective dimerization of undercoordinated metal chalcogenide clusters on surfaces and the effect of heteroatom incorporation into the cluster core on the reactivity.

    Article  CAS  Google Scholar 

  96. Gholipour-Ranjbar, H., Sertse, L., Forbes, D. & Laskin, J. Effect of ligands on the reactivity of the undercoordinated fragment ions of Co6S8(PEt3-xPhx)6+ (x = 0–3) clusters on surfaces. J. Phys. Chem. C 128, 8232–8238 (2024). This research has determined that the ligand binding energy to the core of a cobalt sulfide cluster influences the efficiency of dimer formation by the corresponding undercoordinated fragment ion when deposited on a surface.

    Article  CAS  Google Scholar 

  97. Champsaur, A. M., Hochuli, T. J., Paley, D. W., Nuckolls, C. & Steigerwald, M. L. Superatom fusion and the nature of quantum confinement. Nano Lett. 18, 4564–4569 (2018).

    Article  CAS  Google Scholar 

  98. Gadjieva, N. A., Champsaur, A. M., Steigerwald, M. L., Roy, X. & Nuckolls, C. Dimensional control of assembling metal chalcogenide clusters. Eur. J. Inorg. Chem. 2020, 1245–1254 (2020).

    Article  CAS  Google Scholar 

  99. Bista, D., Sengupta, T., Reber, A. C. & Khanna, S. N. Interfacial magnetism in a fused superatomic cluster [Co6Se8(PEt3)5]2. Nanoscale 13, 15763–15769 (2021).

    Article  CAS  Google Scholar 

  100. Bista, D., Sengupta, T., Reber, A. C. & Khanna, S. N. A magnetic superatomic dimer with an intense internal electric dipole moment. J. Phys. Chem. A 125, 816–824 (2021).

    Article  CAS  Google Scholar 

  101. Housecroft, C. E. & Constable, E. C. Solar energy conversion using first row d-block metal coordination compound sensitizers and redox mediators. Chem. Sci. 13, 1225–1262 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  102. Takaya, J. Catalysis using transition metal complexes featuring main group metal and metalloid compounds as supporting ligands. Chem. Sci. 12, 1964–1981 (2021).

    Article  CAS  Google Scholar 

  103. Ritala, M. & Leskelä, M. in Handbook of Thin Films (ed H. S. Nalwa) 103–159 (Academic, 2002).

  104. Chang, C.-H., Fan, X., Li, L.-J. & Kuo, J.-L. Band gap tuning of graphene by adsorption of aromatic molecules. J. Phys. Chem. C 116, 13788–13794 (2012).

    Article  CAS  Google Scholar 

  105. Utke, I., Hoffmann, P. & Melngailis, J. Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 26, 1197–1276 (2008).

    Article  CAS  Google Scholar 

  106. Wang, P., Hadjar, O., Gassman, P. L. & Laskin, J. Reactive landing of peptide ions on self-assembled monolayer surfaces: an alternative approach for covalent immobilization of peptides on surfaces. Phys. Chem. Chem. Phys. 10, 1512–1522 (2008).

    Article  CAS  Google Scholar 

  107. Thanka Rajan, S., Subramanian, B. & Arockiarajan, A. A comprehensive review on biocompatible thin films for biomedical application. Ceram. Int. 48, 4377–4400 (2022).

    Article  CAS  Google Scholar 

  108. Wheeler, A. R. Putting electrowetting to work. Science 322, 539–540 (2008).

    Article  CAS  Google Scholar 

  109. Das, A., Fehse, S., Polack, M., Panneerselvam, R. & Belder, D. Surface-enhanced Raman spectroscopic probing in digital microfluidics through a microspray hole. Anal. Chem. 95, 1262–1272 (2023).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Air Force Office of Scientific Research (AFOSR) under grant FA9550-23-1-0137 (H.Y.S-O, X.L., J.L.) and the Volkswagen Foundation for a Freigeist Fellowship (J.W.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. and J.W. conceptualized the article and wrote major parts of the text. All authors researched literature for the article. J.W., M.R., H.K. and J.L. contributed substantially to discussion of the content. All authors contributed substantially to writing the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Julia Laskin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warneke, J., Samayoa-Oviedo, H.Y., Rohdenburg, M. et al. Molecular synthesis with gaseous fragment ions on surfaces. Nat Rev Chem 9, 470–480 (2025). https://doi.org/10.1038/s41570-025-00719-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00719-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing