Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enhancing immunotherapy with tumour-responsive nanomaterials

Abstract

The targeted delivery of immunotherapies to tumours using tumour-responsive nanomaterials is a promising area of cancer research with the potential to address the limitations of systemic administration such as on-target off-tumour toxicities and a lack of activity owing to the immunosuppressive tumour microenvironment (TME). Attempts to address these challenges include the design and functionalization of nanomaterials capable of releasing their cargoes in response to specific TME characteristics, thus facilitating the targeted delivery of immune-checkpoint inhibitors, cytokines, mRNAs, vaccines and, potentially, chimaeric antigen receptors as well as of agents that modulate the extracellular matrix and induce immunogenic cell death. In this Review, we describe these various research efforts in the context of the dynamic properties of the TME, such as pH, reductive conditions, reactive oxygen species, hypoxia, specific enzymes, high levels of ATP and locoregional aspects, which can be leveraged to enhance the specificity and efficacy of nanomaterial-based immunotherapies. Highlighting preclinical successes and ongoing clinical trials, we evaluate the current landscape and potential of these innovative approaches. We also consider future research directions as well as the most important barriers to successful clinical translation, emphasizing the transformative potential of tumour-responsive nanomaterials in overcoming the barriers that limit the activity of traditional immunotherapies, thus improving patient outcomes.

Key points

  • Tumours can develop complex immunosuppressive microenvironmental and metabolic features, enabling immune escape, evasion and growth.

  • Tumour-responsive nanomaterials can target these features for immunotherapy delivery, including tumour-specific activation and cargo release to restore a functional cancer–immunity cycle.

  • Despite abundant preclinical evidence of antitumour activity, clinical translation of immune-nanomedicines has thus far been slow and several major barriers continue to impede progress.

  • Promising future directions include improved immunotherapy cargoes, improved tumour specificity by leveraging multiple tumour-responsive properties, and optimized delivery strategies enabling improved pharmacodynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key properties of an immunosuppressive TME in the context of the cancer–immunity cycle.
Fig. 2: Mechanisms of cargo release from tumour-responsive nanomaterials.
Fig. 3: Functional motifs that give rise to tumour-specific responsiveness.
Fig. 4: Incorporating drug cargoes to turn nanomaterials into immunotherapies.

Similar content being viewed by others

References

  1. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hodi, F. S. et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol. 19, 1480–1492 (2018).

    CAS  PubMed  Google Scholar 

  3. Hellmann, M. D. et al. Nivolumab plus ipilimumab in advanced non-small-cell lung cancer. N. Engl. J. Med. 381, 2020–2031 (2019).

    CAS  PubMed  Google Scholar 

  4. Garon, E. B. et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 372, 2018–2028 (2015).

    PubMed  Google Scholar 

  5. Rousseau, B. et al. The spectrum of benefit from checkpoint blockade in hypermutated tumors. N. Engl. J. Med. 384, 1168–1170 (2021).

    PubMed  PubMed Central  Google Scholar 

  6. Foote, M. B., Argilés, G., Rousseau, B. & Segal, N. H. Facts and hopes in colorectal cancer immunotherapy. Clin. Cancer Res. 29, 4032–4039 (2023).

    CAS  PubMed  Google Scholar 

  7. Segal, N. H. et al. Epitope landscape in breast and colorectal cancer. Cancer Res. 68, 889–892 (2008).

    CAS  PubMed  Google Scholar 

  8. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Trujillo, J. A., Sweis, R. F., Bao, R. & Luke, J. J. T cell-inflamed versus non-T cell-inflamed tumors: a conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol. Res. 6, 990–1000 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Karasarides, M. et al. Hallmarks of resistance to immune-checkpoint inhibitors. Cancer Immunol. Res. 10, 372–383 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Mellman, I., Chen, D. S., Powles, T. & Turley, S. J. The cancer-immunity cycle: indication, genotype, and immunotype. Immunity 56, 2188–2205 (2023).

    CAS  PubMed  Google Scholar 

  13. Kao, K.-C., Vilbois, S., Tsai, C.-H. & Ho, P.-C. Metabolic communication in the tumour-immune microenvironment. Nat. Cell Biol. 24, 1574–1583 (2022).

    CAS  PubMed  Google Scholar 

  14. Liu, J., Bai, Y., Li, Y., Li, X. & Luo, K. Reprogramming the immunosuppressive tumor microenvironment through nanomedicine: an immunometabolism perspective. eBioMedicine 107, 105301 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Morrissey, S. M. et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 33, 2040–2058.e10 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumagai, S. et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell 40, 201–218.e9 (2022).

    CAS  PubMed  Google Scholar 

  18. Young, A., Mittal, D., Stagg, J. & Smyth, M. J. Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov. 4, 879–888 (2014).

    CAS  PubMed  Google Scholar 

  19. Chiu, D. K.-C. et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat. Commun. 8, 517 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Stagg, J. & Smyth, M. J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29, 5346–5358 (2010).

    CAS  PubMed  Google Scholar 

  21. Lu, C. et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol. Cancer 18, 130 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Huntington, N. D., Cursons, J. & Rautela, J. The cancer-natural killer cell immunity cycle. Nat. Rev. Cancer 20, 437–454 (2020).

    CAS  PubMed  Google Scholar 

  23. Boedtkjer, E. & Pedersen, S. F. The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol. 82, 103–126 (2020).

    CAS  PubMed  Google Scholar 

  24. Webb, B. A., Chimenti, M., Jacobson, M. P. & Barber, D. L. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11, 671–677 (2011).

    CAS  PubMed  Google Scholar 

  25. Kocak, G., Tuncer, C. & Bütün, V. pH-responsive polymers. Polym. Chem. 8, 144–176 (2017).

    CAS  Google Scholar 

  26. Singh, J. & Nayak, P. pH-responsive polymers for drug delivery: trends and opportunities. J. Polym. Sci. 61, 2828–2850 (2023).

    CAS  Google Scholar 

  27. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    CAS  PubMed  Google Scholar 

  28. Tang, H., Zhao, W., Yu, J., Li, Y. & Zhao, C. Recent development of pH-responsive polymers for cancer nanomedicine. Molecules 24, 4 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Yan, Y. & Ding, H. pH-responsive nanoparticles for cancer immunotherapy: a brief review. Nanomaterials 10, 1613 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jorgenson, T. C., Zhong, W. & Oberley, T. D. Redox imbalance and biochemical changes in cancer. Cancer Res. 73, 6118–6123 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Karlenius, T. C. & Tonissen, K. F. Thioredoxin and cancer: a role for thioredoxin in all states of tumor oxygenation. Cancers 2, 209–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cook, J. A. et al. Oxidative stress, redox, and the tumor microenvironment. Semin. Radiat. Oncol. 14, 259–266 (2004).

    PubMed  Google Scholar 

  33. Ishii, T. et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J. Biol. Chem. 275, 16023–16029 (2000).

    CAS  PubMed  Google Scholar 

  34. Cook, J. A. et al. Cellular glutathione and thiol measurements from surgically resected human lung tumor and normal lung tissue. Cancer Res. 51, 4287–4294 (1991).

    CAS  PubMed  Google Scholar 

  35. Braslau, R., Rivera, F. & Tansakul, C. Reversible crosslinking of polymers bearing pendant or terminal thiol groups prepared by nitroxide-mediated radical polymerization. React. Funct. Polym. 73, 624–633 (2013).

    CAS  Google Scholar 

  36. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanwal, S. et al. Reduction-sensitive dextran-paclitaxel polymer-drug conjugate: synthesis, self-assembly into nanoparticles, and in vitro anticancer efficacy. Bioconjug. Chem. 32, 2516–2529 (2021).

    CAS  PubMed  Google Scholar 

  38. Brumbach, J. H. et al. Mixtures of poly(triethylenetetramine/cystamine bisacrylamide) and poly(triethylenetetramine/cystamine bisacrylamide)-g-poly(ethylene glycol) for improved gene delivery. Bioconjug. Chem. 21, 1753–1761 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin, C. et al. Novel bioreducible poly(amido amine)s for highly efficient gene delivery. Bioconjug. Chem. 18, 138–145 (2007).

    CAS  PubMed  Google Scholar 

  40. You, Y.-Z., Manickam, D. S., Zhou, Q.-H. & Oupický, D. A versatile approach to reducible vinyl polymers via oxidation of telechelic polymers prepared by reversible addition fragmentation chain transfer polymerization. Biomacromolecules 8, 2038–2044 (2007).

    CAS  PubMed  Google Scholar 

  41. You, Y.-Z. et al. Dually responsive multiblock copolymers via RAFT polymerization: synthesis of temperature- and redox-responsive copolymers of PNIPAM and PDMAEMA. Macromolecules 40, 8617–8624 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Saravanakumar, G., Kim, J. & Kim, W. J. Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv. Sci. 4, 1600124 (2017).

    Google Scholar 

  43. Liu, J., Jia, B., Li, Z. & Li, W. Reactive oxygen species-responsive polymer drug delivery systems. Front. Bioeng. Biotechnol. 11, 1115603 (2023).

    PubMed  PubMed Central  Google Scholar 

  44. Xu, Q., He, C., Xiao, C. & Chen, X. Reactive oxygen species (ROS) responsive polymers for biomedical applications. Macromol. Biosci. 16, 635–646 (2016).

    CAS  PubMed  Google Scholar 

  45. Yue, D. et al. Influence of reduction-sensitive diselenide bonds and disulfide bonds on oligoethylenimine conjugates for gene delivery. J. Mater. Chem. B 2, 7210–7221 (2014).

    CAS  PubMed  Google Scholar 

  46. Sun, L. et al. Smart nanoparticles for cancer therapy. Signal. Transduct. Target. Ther. 8, 418 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yao, Q., Kou, L., Tu, Y. & Zhu, L. MMP-responsive ‘Smart’ drug delivery and tumor targeting. Trends Pharmacol. Sci. 39, 766–781 (2018).

    CAS  PubMed  Google Scholar 

  48. Schmalfeldt, B. et al. Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin. Cancer Res. 7, 2396–2404 (2001).

    CAS  PubMed  Google Scholar 

  49. Han, L., Sheng, B., Zeng, Q., Yao, W. & Jiang, Q. Correlation between MMP2 expression in lung cancer tissues and clinical parameters: a retrospective clinical analysis. BMC Pulm. Med. 20, 283 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Caley, M. P., Martins, V. L. C. & O’Toole, E. A. Metalloproteinases and wound healing. Adv. Wound Care 4, 225–234 (2015).

    Google Scholar 

  51. Salamonsen, L. A. & Woolley, D. E. Matrix metalloproteinases in normal menstruation. Hum. Reprod. 11, 124–133 (1996).

    CAS  PubMed  Google Scholar 

  52. Son, J. et al. MMP-responsive nanomaterials. Biomater. Sci. 11, 6457–6479 (2023).

    CAS  PubMed  Google Scholar 

  53. Hou, B. et al. Engineering stimuli-activatable Boolean logic prodrug nanoparticles for combination cancer immunotherapy. Adv. Mater. 32, 1907210 (2020).

    CAS  Google Scholar 

  54. Hu, Q., Katti, P. S. & Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 6, 12273–12286 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang, J. et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal. Transduct. Target. Ther. 6, 153 (2021).

    PubMed  PubMed Central  Google Scholar 

  56. Derynck, R., Turley, S. J. & Akhurst, R. J. TGF-β biology in cancer progression and tumor immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    PubMed  Google Scholar 

  57. Wang, Y. et al. Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy 9, 1624–1625 (2013).

    CAS  PubMed  Google Scholar 

  58. Forrester, T. & Williams, C. A. Release of adenosine triphosphate from isolated adult heart cells in response to hypoxia. J. Physiol. 268, 371–390 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Woodward, H. N. et al. PI3K, Rho, and ROCK play a key role in hypoxia-induced ATP release and ATP-stimulated angiogenic responses in pulmonary artery vasa vasorum endothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L954–L964 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Bodin, P. & Burnstock, G. Evidence that release of adenosine triphosphate from endothelial cells during increased shear stress is vesicular. J. Cardiovasc. Pharmacol. 38, 900–908 (2001).

    CAS  PubMed  Google Scholar 

  61. Vultaggio-Poma, V., Sarti, A. C. & Di Virgilio, F. Extracellular ATP: a feasible target for cancer therapy. Cells 9, 2496 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lim To, W. K., Kumar, P. & Marshall, J. M. Hypoxia is an effective stimulus for vesicular release of ATP from human umbilical vein endothelial cells. Placenta 36, 759–766 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Di Virgilio, F. & Adinolfi, E. Extracellular purines, purinergic receptors and tumor growth. Oncogene 36, 293–303 (2017).

    PubMed  Google Scholar 

  64. Trautmann, A. Extracellular ATP in the immune system: more than just a ‘danger signal’. Sci. Signal. 2, pe6 (2009).

    PubMed  Google Scholar 

  65. Naito, M. et al. A phenylboronate-functionalized polyion complex micelle for ATP-triggered release of siRNA. Angew. Chem. Int. Ed. Engl. 51, 10751–10755 (2012).

    CAS  PubMed  Google Scholar 

  66. Qian, C. et al. ATP-responsive and near-infrared-emissive nanocarriers for anticancer drug delivery and real-time imaging. Theranostics 6, 1053–1064 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lai, J., Shah, B. P., Zhang, Y., Yang, L. & Lee, K.-B. Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles. ACS Nano 9, 5234–5245 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Song, X.-R. et al. Enhancing antitumor efficacy by simultaneous ATP-responsive chemodrug release and cancer cell sensitization based on a smart nanoagent. Adv. Sci. 5, 1801201 (2018).

    Google Scholar 

  69. Zheng, D., Seferos, D. S., Giljohann, D. A., Patel, P. C. & Mirkin, C. A. Aptamer nano-flares for molecular detection in living cells. Nano Lett. 9, 3258–3261 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Mo, R., Jiang, T., DiSanto, R., Tai, W. & Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 5, 3364 (2014).

    PubMed  Google Scholar 

  71. Xue, L. et al. Responsive biomaterials: optimizing control of cancer immunotherapy. Nat. Rev. Mater. 9, 100–118 (2024).

    CAS  Google Scholar 

  72. Peng, S., Xiao, F., Chen, M. & Gao, H. Tumor‐microenvironment‐responsive nanomedicine for enhanced cancer immunotherapy. Adv. Sci. 9, 2103836 (2022).

    CAS  Google Scholar 

  73. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    CAS  PubMed  Google Scholar 

  74. Kroemer, G., Galassi, C., Zitvogel, L. & Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 23, 487–500 (2022).

    CAS  PubMed  Google Scholar 

  75. Demuynck, R. et al. Nanomedicine to aid immunogenic cell death (ICD)-based anticancer therapy. Trends Cancer 10, 486–489 (2024).

    CAS  PubMed  Google Scholar 

  76. Banstola, A., Poudel, K., Kim, J. O., Jeong, J.-H. & Yook, S. Recent progress in stimuli-responsive nanosystems for inducing immunogenic cell death. J. Controlled Rel. 337, 505–520 (2021).

    CAS  Google Scholar 

  77. Li, W., Jiang, Y. & Lu, J. Nanotechnology-enabled immunogenic cell death for improved cancer immunotherapy. Int. J. Pharm. 634, 122655 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Ma, Y. et al. CRISPR-dCas9-guided and telomerase-responsive nanosystem for precise anti-cancer drug delivery. ACS Appl. Mater. Interfaces 13, 7890–7896 (2021).

    CAS  PubMed  Google Scholar 

  79. Slapak, E. J. et al. CAPN2-responsive mesoporous silica nanoparticles: a promising nanocarrier for targeted therapy of pancreatic cancer. Cancer Lett. 590, 216845 (2024).

    CAS  PubMed  Google Scholar 

  80. Johnson, D. B., Nebhan, C. A., Moslehi, J. J. & Balko, J. M. Immune-checkpoint inhibitors: long-term implications of toxicity. Nat. Rev. Clin. Oncol. 19, 254–267 (2022).

    PubMed  PubMed Central  Google Scholar 

  81. Sui, M. et al. A tumor-responsive nanostrategy for reducing the risk of immunotherapy-related myocarditis. Chem. Eng. J. 494, 153131 (2024).

    CAS  Google Scholar 

  82. Lang, T. et al. Cocktail strategy based on spatio‐temporally controlled nano device improves therapy of breast cancer. Adv. Mater. 31, 1806202 (2019).

    Google Scholar 

  83. Wang, C. et al. In situ formed reactive oxygen species–responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 10, eaan3682 (2018).

    PubMed  Google Scholar 

  84. Yu, S. et al. Injectable bioresponsive gel depot for enhanced immune checkpoint blockade. Adv. Mater. 30, 1801527 (2018).

    Google Scholar 

  85. Ding, M. et al. A prodrug hydrogel with tumor microenvironment and near-infrared light dual-responsive action for synergistic cancer immunotherapy. Acta Biomater. 149, 334–346 (2022).

    CAS  PubMed  Google Scholar 

  86. Li, F. et al. ROS-responsive thermosensitive polypeptide hydrogels for localized drug delivery and improved tumor chemoimmunotherapy. Biomater. Sci. 12, 3100–3111 (2024).

    CAS  PubMed  Google Scholar 

  87. Ruan, H. et al. A dual‐bioresponsive drug‐delivery depot for combination of epigenetic modulation and immune checkpoint blockade. Adv. Mater. 31, 1806957 (2019).

    Google Scholar 

  88. Ren, X. et al. Inhibition of glycolysis-driven immunosuppression with a nano-assembly enhances response to immune checkpoint blockade therapy in triple negative breast cancer. Nat. Commun. 14, 7021 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, Y. et al. Stimuli-responsive nanoparticles for the codelivery of chemotherapeutic agents doxorubicin and siPD-L1 to enhance the antitumor effect. J. Biomed. Mater. Res. B Appl. BioMater. 108, 1710–1724 (2020).

    CAS  PubMed  Google Scholar 

  90. Wang, Y., Xie, L., Li, X., Wang, L. & Yang, Z. Chemo-immunotherapy by dual-enzyme responsive peptide self-assembling abolish melanoma. Bioact. Mater. 31, 549–562 (2024).

    CAS  PubMed  Google Scholar 

  91. Siegel, J. P. & Puri, R. K. Interleukin-2 toxicity. J. Clin. Oncol. 9, 694–704 (1991).

    CAS  PubMed  Google Scholar 

  92. Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019).

    CAS  PubMed  Google Scholar 

  93. Deckers, J. et al. Engineering cytokine therapeutics. Nat. Rev. Bioeng. 1, 286–303 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Su, Q. et al. 1147-B encapsulation of IL-12 with an ultra pH-sensitive tumor delivery platform improves tolerability and promotes antitumor response in a preclinical model. J. Immunother. Cancer 11, https://doi.org/10.1136/jitc-2023-SITC2023.1147-B (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chen, P. et al. An IL‐12‐based nanocytokine safely potentiates anticancer immunity through spatiotemporal control of inflammation to eradicate advanced cold tumors. Adv. Sci. 10, 2205139 (2023).

    CAS  Google Scholar 

  96. Zhang, Y. et al. Controlled refolding of denatured IL‐12 using in situ antigen‐capturing nanochaperone remarkably reduces the systemic toxicity and enhances cancer immunotherapy. Adv. Mater. 36, 2309927 (2024).

    CAS  Google Scholar 

  97. Song, Q. et al. Tumor microenvironment responsive nanogel for the combinatorial antitumor effect of chemotherapy and immunotherapy. Nano Lett. 17, 6366–6375 (2017).

    CAS  PubMed  Google Scholar 

  98. Izar, B. et al. Abstract CT183: Initial results from a phase 1a/1b study of STK-012, a first-in-class α/β IL-2 receptor biased partial agonist in advanced solid tumors (NCT05098132). Cancer Res. 84, CT183 (2024).

    Google Scholar 

  99. Emmerich, J. et al. Abstract 1744: STK-012, an alpha/beta selective IL-2 mutein for the activation of the antigen-activated T cells in solid tumor. Cancer Res. 81, 1744 (2021).

    Google Scholar 

  100. Nash, A. M. et al. Clinically translatable cytokine delivery platform for eradication of intraperitoneal tumors. Sci. Adv. 8, eabm1032 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Severino, P. et al. Alginate nanoparticles for drug delivery and targeting. Curr. Pharm. Des. 25, 1312–1334 (2019).

    CAS  PubMed  Google Scholar 

  102. Westin, S. N. et al. A phase 1/2 open-label, multicenter, dose escalation and expansion study of AVB-001, an intraperitoneally administered, cell-generated, human IL-2 immunotherapy in patients with platinum-resistant, high-grade, serous adenocarcinoma of the ovary, primary peritoneum, or fallopian tube. J. Clin. Oncol. 41, TPS5616 (2023).

    Google Scholar 

  103. Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11, eaat9143 (2019).

    CAS  PubMed  Google Scholar 

  104. Patel, M. R. et al. A phase I study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L, IL-23, and IL-36γ, for intratumoral (iTu) injection alone and in combination with durvalumab. J. Clin. Oncol. 38, 3092 (2020).

    Google Scholar 

  105. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. J. Am. Soc. Gene Ther. 26, 1509–1519 (2018).

    CAS  Google Scholar 

  106. Abadier, M. et al. Abstract 6552: Intratumoral (ITu) delivery of mRNA-2752 encoding human OX40L/IL-23/IL-36γ in combination with durvalumab induces an immunostimulatory effect within the tumor microenvironment (TME) of patients with advanced solid tumors. Cancer Res. 84, 6552 (2024).

    Google Scholar 

  107. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS-STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Savage, P. et al. A phase I clinical trial of imiquimod, an oral interferon inducer, administered daily. Br. J. Cancer 74, 1482–1486 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Sun, X., Zhou, X., Lei, Y. L. & Moon, J. J. Unlocking the promise of systemic STING agonist for cancer immunotherapy. J. Control. Release 357, 417–421 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Meric-Bernstam, F. et al. Phase I dose-escalation trial of MIW815 (ADU-S100), an intratumoral STING agonist, in patients with advanced/metastatic solid tumors or lymphomas. Clin. Cancer Res. 28, 677–688 (2022).

    CAS  PubMed  Google Scholar 

  111. Flood, B. A., Higgs, E. F., Li, S., Luke, J. J. & Gajewski, T. F. STING pathway agonism as a cancer therapeutic. Immunol. Rev. 290, 24–38 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, D. et al. Tumor microenvironment‐responsive nanoparticles amplifying STING signaling pathway for cancer immunotherapy. Adv. Mater. 36, 2304845 (2024).

    CAS  Google Scholar 

  113. Pockros, P. J. et al. Oral resiquimod in chronic HCV infection: safety and efficacy in 2 placebo-controlled, double-blind phase IIa studies. J. Hepatol. 47, 174–182 (2007).

    CAS  PubMed  Google Scholar 

  114. Zhang, X. et al. Tumor microenvironment-responsive macrophage-mediated immunotherapeutic drug delivery. Acta Biomater. 186, 369–382 (2024).

    CAS  PubMed  Google Scholar 

  115. Yang, H., Yang, S., Guo, Q., Sheng, J. & Mao, Z. ATP‐responsive manganese‐based bacterial materials synergistically activate the cGAS‐STING pathway for tumor immunotherapy. Adv. Mater. 36, 2310189 (2024).

    CAS  Google Scholar 

  116. Li, J. et al. A virus-inspired inhalable liponanogel induces potent antitumor immunity and regression in metastatic lung tumors. Cancer Res. 84, 2352–2363 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Daniel, W. L., Lorch, U., Mix, S. & Bexon, A. S. A first-in-human phase 1 study of cavrotolimod, a TLR9 agonist spherical nucleic acid, in healthy participants: evidence of immune activation. Front. Immunol. 13, 1073777 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Milhem, M. M. et al. AST-008: a novel approach to TLR9 agonism with PD-1 blockade for anti-PD-1 refractory Merkel cell carcinoma (MCC) and cutaneous squamous cell carcinoma (CSCC). J. Clin. Oncol. 38, TPS3164 (2020).

    Google Scholar 

  119. Kankeu Fonkoua, L. A., Sirpilla, O., Sakemura, R., Siegler, E. L. & Kenderian, S. S. CAR T cell therapy and the tumor microenvironment: current challenges and opportunities. Mol. Ther. Oncolytics 25, 69–77 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ou, W. et al. Regulatory T cells tailored with pH-responsive liposomes shape an immuno-antitumor milieu against tumors. ACS Appl. Mater. Interfaces 11, 36333–36346 (2019).

    CAS  PubMed  Google Scholar 

  121. Sahaf, B., Heydari, K., Herzenberg, L. A. & Herzenberg, L. A. Lymphocyte surface thiol levels. Proc. Natl Acad. Sci. USA 100, 4001–4005 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Xie, Y.-Q. et al. Redox-responsive interleukin-2 nanogel specifically and safely promotes the proliferation and memory precursor differentiation of tumor-reactive T-cells. Biomater. Sci. 7, 1345–1357 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Luo, Y. et al. IL-12 nanochaperone-engineered CAR T cell for robust tumor-immunotherapy. Biomaterials 281, 121341 (2022).

    CAS  PubMed  Google Scholar 

  124. Hamilton, E. et al. 801 PRIMETM IL-15 (RPTR-147): preliminary clinical results and biomarker analysis from a first-in-human phase 1 study of IL-15 loaded peripherally-derived autologous T cell therapy in solid tumor patients.J. Immunother. Cancer 8, https://doi.org/10.1136/jitc-2020-SITC2020.0801 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Nie, W. et al. Magnetic nanoclusters armed with responsive PD-1 antibody synergistically improved adoptive T-cell therapy for solid tumors. ACS Nano 13, 1469–1478 (2019).

    CAS  PubMed  Google Scholar 

  126. Chang, Y. et al. CAR-neutrophil mediated delivery of tumor-microenvironment responsive nanodrugs for glioblastoma chemo-immunotherapy. Nat. Commun. 14, 2266 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Yin, S. et al. Reduction/oxidation-responsive hierarchical nanoparticles with self-driven degradability for enhanced tumor penetration and precise chemotherapy. ACS Appl. Mater. Interfaces 12, 18273–18291 (2020).

    CAS  PubMed  Google Scholar 

  128. Li, M., Zhang, Y., Zhang, Q. & Li, J. Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Mater. Today Bio 16, 100364 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, X., Xu, J., Xu, X., Fang, Q. & Tang, R. pH-sensitive bromelain nanoparticles by ortho ester crosslinkage for enhanced doxorubicin penetration in solid tumor. Mater. Sci. Eng. C 113, 111004 (2020).

    CAS  Google Scholar 

  130. Wang, Y. et al. Co-inhibition of the TGF-β pathway and the PD-L1 checkpoint by pH-responsive clustered nanoparticles for pancreatic cancer microenvironment regulation and anti-tumor immunotherapy. Biomater. Sci. 8, 5121–5132 (2020).

    CAS  PubMed  Google Scholar 

  131. Zhang, J. et al. Hierarchically releasing bio-responsive nanoparticles for complete tumor microenvironment modulation via TGF-β pathway inhibition and TAF reduction. ACS Appl. Mater. Interfaces 13, 2256–2268 (2021).

    CAS  PubMed  Google Scholar 

  132. Li, Y. et al. Development of a tumor-responsive nanopolyplex targeting pancreatic cancer cells and stroma. ACS Appl. Mater. Interfaces 11, 45390–45403 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Deng, M. et al. pH-Triggered copper-free click reaction-mediated micelle aggregation for enhanced tumor retention and elevated immuno–chemotherapy against melanoma. ACS Appl. Mater. Interfaces 13, 18033–18046 (2021).

    CAS  PubMed  Google Scholar 

  134. Ray, P. et al. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy. Colloids Surf. B Biointerfaces 174, 126–135 (2019).

    CAS  PubMed  Google Scholar 

  135. Zhu, S. et al. Combination therapy of lox inhibitor and stimuli‐responsive drug for mechanochemically synergistic breast cancer treatment. Adv. Healthcare Mater. 12, 2300103 (2023).

    CAS  Google Scholar 

  136. Li, X. et al. Multifunctional liposomes remodeling tumor immune microenvironment for tumor chemoimmunotherapy. Small Methods 7, 2201327 (2023).

    CAS  Google Scholar 

  137. Li, W. et al. Tumor-associated fibroblast-targeting nanoparticles for enhancing solid tumor therapy: progress and challenges. Mol. Pharm. 18, 2889–2905 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Kim, M.-G., Shon, Y., Kim, J. & Oh, Y.-K. Selective activation of anticancer chemotherapy by cancer-associated fibroblasts in the tumor microenvironment. J. Natl Cancer Inst. 109, djw186 (2017).

    PubMed  Google Scholar 

  139. Ji, T. et al. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer‐associated fibroblast activation. Angew. Chem. Int. Ed. 55, 1050–1055 (2016).

    CAS  Google Scholar 

  140. Prakash, J. & Shaked, Y. The interplay between extracellular matrix remodeling and cancer therapeutics. Cancer Discov. 14, 1375–1388 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Qiu, C. et al. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery. Research 6, 0148 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Chatterjee, S., Kon, E., Sharma, P. & Peer, D. Endosomal escape: a bottleneck for LNP-mediated therapeutics. Proc. Natl Acad. Sci. USA 121, e2307800120 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Zhang, Q. et al. Stimuli-responsive gene delivery nanocarriers for cancer therapy. Nano-Micro Lett. 15, 44 (2023).

    Google Scholar 

  144. Liu, Q. et al. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv. Sci. 6, 1801423 (2019).

    Google Scholar 

  145. Pack, D. W., Hoffman, A. S., Pun, S. & Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4, 581–593 (2005).

    CAS  PubMed  Google Scholar 

  146. Liu, Y. et al. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett. 20, 1637–1646 (2020).

    CAS  PubMed  Google Scholar 

  147. Zhao, T. et al. Multistage pH-responsive codelivery liposomal platform for synergistic cancer therapy. J. Nanobiotechnol. 20, 177 (2022).

    CAS  Google Scholar 

  148. Wang, G. et al. Tumor microenvironment responsive RNA drug delivery systems: intelligent platforms for sophisticated release. Mol. Pharm. 21, 4217–4237 (2024).

    CAS  PubMed  Google Scholar 

  149. Li, Z.-Z. et al. Nanoparticles targeting lymph nodes for cancer immunotherapy: strategies and influencing factors. Small 20, e2308731 (2024).

    PubMed  Google Scholar 

  150. Schudel, A. et al. Programmable multistage drug delivery to lymph nodes. Nat. Nanotechnol. 15, 491–499 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lv, K. et al. Peptide nanovaccine conjugated via a retro-Diels-Alder reaction linker for overcoming the obstacle in lymph node penetration and eliciting robust cellular immunity. J. Mater. Chem. B 12, 5848–5860 (2024).

    CAS  PubMed  Google Scholar 

  152. Singh, A. K., Malviya, R., Prajapati, B., Singh, S. & Goyal, P. Utilization of stimuli-responsive biomaterials in the formulation of cancer vaccines. J. Funct. Biomater. 14, 247 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhao, Y., Guo, Y. & Tang, L. Engineering cancer vaccines using stimuli-responsive biomaterials. Nano Res. 11, 5355–5371 (2018).

    CAS  Google Scholar 

  154. Kramer, K., Shields, N. J., Poppe, V., Young, S. L. & Walker, G. F. Intracellular cleavable CpG oligodeoxynucleotide-antigen conjugate enhances anti-tumor immunity. Mol. Ther. 25, 62–70 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–1164 (2007).

    CAS  PubMed  Google Scholar 

  156. Ruiz-de-Angulo, A. et al. Chemically programmed vaccines: iron catalysis in nanoparticles enhances combination immunotherapy and immunotherapy-promoted tumor ferroptosis. iScience 23, 101499 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Gong, N. et al. Proton-driven transformable nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 15, 1053–1064 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    PubMed  Google Scholar 

  159. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    CAS  PubMed  Google Scholar 

  160. Burris, H. A. III et al. A phase 1, open-label, multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in subjects with resected solid tumors and in combination with pembrolizumab in subjects with unresectable solid tumors (Keynote-603). J. Glob. Oncol. 5, 93 (2019).

    Google Scholar 

  161. Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).

    CAS  PubMed  Google Scholar 

  162. Powderly, J. D. et al. Phase 1/2 study of mRNA-4359 administered alone and in combination with immune checkpoint blockade in adult participants with advanced solid tumors. J. Clin. Oncol. 41, TPS2676 (2023).

    Google Scholar 

  163. Karkada, M., Berinstein, N. L. & Mansour, M. Therapeutic vaccines and cancer: focus on DPX-0907. Biol. Targets Ther. 8, 27–38 (2014).

    Google Scholar 

  164. Berinstein, N. L. et al. Clinical effectiveness of combination immunotherapy DPX-Survivac, low dose cyclophosphamide, and pembrolizumab in recurrent/refractory DLBCL: the Spirel study. Blood 136, 16 (2020).

    Google Scholar 

  165. Dorigo, O. et al. DPX-Survivac, a novel T-cell immunotherapy, to induce robust T-cell responses in advanced ovarian cancer. J. Clin. Oncol. 38, https://doi.org/10.1200/JCO.2020.38.5_suppl.6 (2020).

    Article  Google Scholar 

  166. Dorigo, O. et al. Maveropepimut-S, a DPX-based immune-educating therapy, shows promising and durable clinical benefit in patients with recurrent ovarian cancer, a phase II trial. Clin. Cancer Res. 29, 2808–2815 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Li, Y. et al. Tumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy. Clin. Cancer Res. 17, 7047–7057 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Sanborn, R. et al. P2.02-043 randomized Ph II trial of allogeneic DPV-001 cancer vaccine alone or with adjuvant for curatively-treated stage III NSCLC: topic: multimodality treatment. J. Thorac. Oncol. 12, S873 (2017).

    Google Scholar 

  169. Sanborn, R. E. et al. A pilot study of an autologous tumor-derived autophagosome vaccine with docetaxel in patients with stage IV non-small cell lung cancer. J. Immunother. Cancer 5, 103 (2017).

    PubMed  PubMed Central  Google Scholar 

  170. Besse, B. et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5, e1071008 (2016).

    PubMed  Google Scholar 

  171. Huse, M. Mechanical forces in the immune system. Nat. Rev. Immunol. 17, 679–690 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Han, K. et al. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature 580, 136–141 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Neal, J. T. et al. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972–1988.e16 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Rothschilds, A. et al. Order of administration of combination cytokine therapies can decouple toxicity from efficacy in syngeneic mouse tumor models. Oncoimmunology 8, e1558678 (2019).

    PubMed  PubMed Central  Google Scholar 

  175. Chinen, T. et al. An essential role for the IL-2 receptor in Treg cell function. Nat. Immunol. 17, 1322–1333 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Thelen, M. et al. Cancer-specific immune evasion and substantial heterogeneity within cancer types provide evidence for personalized immunotherapy. NPJ Precis. Oncol. 5, 52 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2, e192535 (2019).

    PubMed  PubMed Central  Google Scholar 

  178. Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    PubMed  PubMed Central  Google Scholar 

  179. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Turajlic, S. et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis. Lancet Oncol. 18, 1009–1021 (2017).

    CAS  PubMed  Google Scholar 

  181. Xie, N. et al. Neoantigens: promising targets for cancer therapy. Signal. Transduct. Target. Ther. 8, 9 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Qin, S. et al. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer 18, 155 (2019).

    PubMed  PubMed Central  Google Scholar 

  183. Mangla, A. et al. Neoadjuvant dual checkpoint inhibitors vs anti-PD1 therapy in high-risk resectable melanoma: a pooled analysis. JAMA Oncol. 10, 612–620 (2024).

    PubMed  PubMed Central  Google Scholar 

  184. Som, A. et al. Percutaneous intratumoral immunoadjuvant gel increases the abscopal effect of cryoablation for checkpoint inhibitor resistant cancer. Adv. Healthcare Mater. 13, e2301848 (2024).

    Google Scholar 

  185. Park, C. G. et al. Extended release of perioperative immunotherapy prevents tumor recurrence and eliminates metastases. Sci. Transl. Med. 10, eaar1916 (2018).

    PubMed  Google Scholar 

  186. Agarwal, Y. et al. Intratumourally injected alum-tethered cytokines elicit potent and safer local and systemic anticancer immunity. Nat. Biomed. Eng. 6, 129–143 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Battula, S., Papastoitsis, G., Kaufman, H. L., Wittrup, K. D. & Schmidt, M. M. Intratumoral aluminum hydroxide-anchored IL-12 drives potent antitumor activity by remodeling the tumor microenvironment. JCI Insight 8, e168224 (2023).

    PubMed  PubMed Central  Google Scholar 

  188. Hirsch, I., Goldstein, D. A., Tannock, I. F., Butler, M. O. & Gilbert, D. C. Optimizing the dose and schedule of immune checkpoint inhibitors in cancer to allow global access. Nat. Med. 28, 2236–2237 (2022).

    CAS  PubMed  Google Scholar 

  189. DeRidder, L., Rubinson, D. A., Langer, R. & Traverso, G. The past, present, and future of chemotherapy with a focus on individualization of drug dosing. J. Control. Release 352, 840–860 (2022).

    CAS  PubMed  Google Scholar 

  190. DeRidder, L. B. et al. Closed-loop automated drug infusion regulator: a clinically translatable, closed-loop drug delivery system for personalized drug dosing. Med 5, 780–796.e10 (2024).

    CAS  PubMed  Google Scholar 

  191. Mage, P. L. et al. Closed-loop control of circulating drug levels in live animals. Nat. Biomed. Eng. 1, 0070 (2017).

    Google Scholar 

  192. Arroyo-Currás, N. et al. High-precision control of plasma drug levels using feedback-controlled dosing. ACS Pharmacol. Transl. Sci. 1, 110–118 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Patel, M. et al. 539 Phase 1 study of mRNA-2752, a lipid nanoparticle encapsulating mRNAs encoding human OX40L/IL-23/IL-36γ, for intratumoral (ITu) injection +/- durvalumab in advanced solid tumors and lymphoma. J. Immunother. Cancer 9, https://doi.org/10.1136/jitc-2021-SITC2021.539 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. O’Day, S. et al. 423 Safety and preliminary efficacy of intratumoral cavrotolimod (AST-008), a spherical nucleic acid TLR9 agonist, in combination with pembrolizumab in patients with advanced solid tumors. J. Immunother. Cancer 8, https://doi.org/10.1136/jitc-2020-SITC2020.0423 (2020).

  195. Zúñiga, L. A. et al. Intratumoral delivery of TransConTM TLR7/8 Agonist promotes sustained anti-tumor activity and local immune cell activation while minimizing systemic cytokine induction. Cancer Cell Int. 22, 286 (2022).

    PubMed  PubMed Central  Google Scholar 

  196. Foldi, J. et al. A phase 1 dose-escalation and expansion study of an intratumorally administered dual STING agonist (ONM-501) alone and in combination with cemiplimab in patients with advanced solid tumors and lymphomas. J. Clin. Oncol. 42, TPS2693 (2024).

    Google Scholar 

  197. Zhou, Z. et al. ATP-activated decrosslinking and charge-reversal vectors for siRNA delivery and cancer therapy. Theranostics 8, 4604–4619 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    CAS  PubMed  Google Scholar 

  199. Lammers, T. Nanomedicine tumor targeting. Adv. Mater. 36, 2312169 (2024).

    CAS  Google Scholar 

  200. Nguyen, L. N. M. et al. The mechanisms of nanoparticle delivery to solid tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).

    CAS  Google Scholar 

  201. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    CAS  PubMed  Google Scholar 

  202. Nguyen, L. N. M. et al. The exit of nanoparticles from solid tumours. Nat. Mater. 22, 1261–1272 (2023).

    CAS  PubMed  Google Scholar 

  203. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    CAS  Google Scholar 

  204. Kim, J., Archer, P. A. & Thomas, S. N. Innovations in lymph node targeting nanocarriers. Semin. Immunol. 56, 101534 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Nakamura, T. et al. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol. Pharm. 17, 944–953 (2020).

    CAS  PubMed  Google Scholar 

  206. Reddy, S. T., Berk, D. A., Jain, R. K. & Swartz, M. A. A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J. Appl. Physiol. 101, 1162–1169 (2006).

    CAS  PubMed  Google Scholar 

  207. Nishimoto, Y. et al. Carboxyl-, sulfonyl-, and phosphate-terminal dendrimers as a nanoplatform with lymph node targeting. Int. J. Pharm. 576, 119021 (2020).

    CAS  PubMed  Google Scholar 

  208. Alonso-Nocelo, M. et al. Selective interaction of PEGylated polyglutamic acid nanocapsules with cancer cells in a 3D model of a metastatic lymph node. J. Nanobiotechnol. 14, 51 (2016).

    Google Scholar 

  209. Abellan-Pose, R., Csaba, N. & Alonso, M. J. Lymphatic targeting of nanosystems for anticancer drug therapy. Curr. Pharm. Des. 22, 1194–1209 (2016).

    CAS  PubMed  Google Scholar 

  210. Jiang, L. et al. Simultaneous targeting of primary tumor, draining lymph node, and distant metastases through high endothelial venule-targeted delivery. Nano Today 36, 101045 (2021).

    CAS  PubMed  Google Scholar 

  211. Wilhelm, A. J., Mijnhout, G. S. & Franssen, E. J. Radiopharmaceuticals in sentinel lymph-node detection— an overview. Eur. J. Nucl. Med. 26, S36–S42 (1999).

    CAS  PubMed  Google Scholar 

  212. Kon, E., Ad-El, N., Hazan-Halevy, I., Stotsky-Oterin, L. & Peer, D. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nat. Rev. Clin. Oncol. 20, 739–754 (2023).

    CAS  PubMed  Google Scholar 

  213. Li, W. et al. HIV-1 Env trimers asymmetrically engage CD4 receptors in membranes. Nature 623, 1026–1033 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Rosenblum, D., Joshi, N., Tao, W., Karp, J. M. & Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 9, 1410 (2018).

    PubMed  PubMed Central  Google Scholar 

  215. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science.Nat. Rev. Mater. 8, 422–438 (2023).

    Google Scholar 

  216. Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. J. Am. Soc. Gene Ther. 18, 1357–1364 (2010).

    CAS  Google Scholar 

  217. Fu, Z., Li, S., Han, S., Shi, C. & Zhang, Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal. Transduct. Target. Ther. 7, 93 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Klein, C., Brinkmann, U., Reichert, J. M. & Kontermann, R. E. The present and future of bispecific antibodies for cancer therapy. Nat. Rev. Drug Discov. 23, 301–319 (2024).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.W.L., L.D., M.B.F., A.R.K. and G.T. researched data for the manuscript and made a substantial contribution to discussions of content, S.W.L., L.D., L.S., M.B.F., M.J.A., A.R.K. and G.T. wrote the manuscript. All authors edited and/or reviewed the manuscript prior to submission.

Corresponding authors

Correspondence to Robert Langer or Giovanni Traverso.

Ethics declarations

Competing interests

S.W.L. is a consultant of the Vaccine and Immunotherapy Center at Massachusetts General Hospital, is on the advisory board of Contrast AI, Inc., is CEO and on the Board of Directors of Absco Therapeutics, Inc., a biotechnology company focused on the development of novel materials-based approaches for immunotherapy, and is on the Board of Directors of Sling Health, a nonprofit biotechnology incubator. M.B.F. has received honoraria for acting as an advisor for Abbott, Bristol Meyers Squibb and Genzyme. M.J.A. has financial interests in Libera Bio, Inc., a company related to immunotherapy. A complete list of R.L.’s competing interests is provided in Supplementary table 2. G.T. is on the board of directors of Absco Therapeutics, Inc. Complete details of all relationships (for profit and not for profit) are provided in Supplementary table 3. The authors are listed as co-inventors on multiple patent applications in the area of cancer therapy, including technologies applicable to immunological-based therapeutic interventions for cancer and in personalization of drug dosing through closed-loop drug delivery, these include US Patent application numbers:: 18/417,024 and 63/527,168.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks X. Chen, H. Gao, Z, Luo, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linderman, S.W., DeRidder, L., Sanjurjo, L. et al. Enhancing immunotherapy with tumour-responsive nanomaterials. Nat Rev Clin Oncol 22, 262–282 (2025). https://doi.org/10.1038/s41571-025-01000-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-025-01000-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer