Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic targeting of mismatch repair-deficient cancers

Abstract

DNA mismatch repair (MMR) is one of many evolutionarily conserved processes that act as guardians of genomic integrity. MMR proteins recognize errors that occur during DNA replication and initiate countermeasures to rectify those mistakes. MMR deficiency (MMRd) therefore leads to a dramatic accumulation of mutations. The MMRd genomic signature is characterized by a high frequency of single-base substitutions as well as insertions and/or deletions that preferentially occur in short nucleotide repeat sequences known as microsatellites. This accumulation leads to a phenomenon termed microsatellite instability, which accordingly serves as a marker of underlying MMRd. MMRd is associated with hereditary cancer syndromes such as Lynch syndrome and constitutional MMRd as well as with sporadic tumour development across a variety of tissues. High baseline immune cell infiltration is a characteristic feature of MMRd/microsatellite instability-high tumours, as is the upregulation of immune checkpoints. Importantly, the molecular profile of MMRd tumours confers remarkable sensitivity to immune-checkpoint inhibitors (ICIs). Many patients with MMRd disease derive durable clinical benefit when treated with these agents regardless of the primary tumour site. Nevertheless, a substantial subset of these patients will fail to respond to ICI, and increasing research is focused on identifying the factors that confer resistance. In this Review, we begin by discussing the biological function of the MMR machinery as well as the genomic sequelae of MMRd before then examining the clinical implications of MMRd with a specific focus on cancer predisposition, diagnostic approaches, therapeutic strategies and potential mechanisms of resistance to ICIs.

Key points

  • Immune-checkpoint inhibitors (ICIs) confer remarkably durable clinical benefit in many patients with DNA mismatch repair-deficient (MMRd) tumours.

  • MMRd tumours are thought to be responsive to ICIs because they harbour many single-base substitutions and frameshift mutations, which, if expressed, have the potential to encode tumour-specific immunogenic neoantigens.

  • Immune-mediated killing of MMRd cancer cells can be orchestrated by various effector cells, enabling MMRd tumours to respond to ICIs despite major histocompatibility complex (MHC) class I loss.

  • Most patients with MMRd tumours derive benefit from ICIs, although a substantial number have primary resistance and many more develop acquired resistance.

  • Many potential predictors of response and resistance to ICIs are under active investigation, but none are currently ready for clinical implementation.

  • The accurate diagnosis of MMRd status is an important determinant of ICI response. This is best achieved through a multimodal approach that involves immunohistochemical analysis of mismatch repair protein expression and microsatellite profiling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of MMR loss and the corresponding genomic and immunological sequelae.
Fig. 2: Timeline of the major discoveries and milestones in MMRd/MSI research.
Fig. 3: Prevalence of MMRd across solid tumours.
Fig. 4: Response to neoadjuvant ICIs based on duration of therapy.
Fig. 5: Dynamics of the immune microenvironment in MMRd tumours.

Similar content being viewed by others

References

  1. Lynch, H. T., Snyder, C. L., Shaw, T. G., Heinen, C. D. & Hitchins, M. P. Milestones of Lynch syndrome: 1895–2015. Nat. Rev. Cancer 15, 181–194 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Holliday, R. A mechanism for gene conversion in fungi. Genet. Res. 89, 285–307 (2007).

    Article  PubMed  Google Scholar 

  3. Kunkel, T. A. & Erie, D. A. Eukaryotic mismatch repair in relation to DNA replication. Annu. Rev. Genet. 49, 291–313 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357, 409–413 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mandal, R. et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science 364, 485–491 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Germano, G. et al. Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552, 116–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hause, R. J., Pritchard, C. C., Shendure, J. & Salipante, S. J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 22, 1342–1350 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Kim, T. M., Laird, P. W. & Park, P. J. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell 155, 858–868 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Cortes-Ciriano, I., Lee, S., Park, W. Y., Kim, T. M. & Park, P. J. A molecular portrait of microsatellite instability across multiple cancers. Nat. Commun. 8, 15180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ercan, A. B. et al. Clinical and biological landscape of constitutional mismatch-repair deficiency syndrome: an international replication repair deficiency consortium cohort study. Lancet Oncol. 25, 668–682 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Veigl, M. L. et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl Acad. Sci. USA 95, 8698–8702 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Llosa, N. J. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 5, 43–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Marabelle, A. et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J. Clin. Oncol. 38, 1–10 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. André, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    Article  PubMed  Google Scholar 

  16. Mirza, M. R. et al. Dostarlimab for primary advanced or recurrent endometrial cancer. N. Engl. J. Med. 388, 2145–2158 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Lenz, H. J. et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J. Clin. Oncol. 40, 161–170 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. André, T. et al. Antitumor activity and safety of dostarlimab monotherapy in patients with mismatch repair deficient solid tumors: a nonrandomized controlled trial. JAMA Netw. Open. 6, e2341165 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Andre, T. et al. Nivolumab plus ipilimumab in microsatellite-instability-high metastatic colorectal cancer. N. Engl. J. Med. 391, 2014–2026 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. André, T. et al. Nivolumab plus ipilimumab versus nivolumab in microsatellite instability-high metastatic colorectal cancer (CheckMate 8HW): a randomised, open-label, phase 3 trial. Lancet Lond. Engl. 405, 383–395 (2025).

    Article  Google Scholar 

  21. Iyer, R. R., Pluciennik, A., Burdett, V. & Modrich, P. L. DNA mismatch repair: functions and mechanisms. Chem. Rev. 106, 302–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Kunkel, T. A. DNA replication fidelity. J. Biol. Chem. 279, 16895–16898 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kunkel, T. A. & Bebenek, K. DNA replication fidelity. Annu. Rev. Biochem. 69, 497–529 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Schofield, M. J. & Hsieh, P. DNA mismatch repair: molecular mechanisms and biological function. Annu. Rev. Microbiol. 57, 579–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kolodner, R. D. A personal historical view of DNA mismatch repair with an emphasis on eukaryotic DNA mismatch repair. DNA Repair. 38, 3–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Wildenberg, J. & Meselson, M. Mismatch repair in heteroduplex DNA. Proc. Natl Acad. Sci. USA 72, 2202–2206 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wagner, R. & Meselson, M. Repair tracts in mismatched DNA heteroduplexes. Proc. Natl Acad. Sci. USA 73, 4135–4139 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Modrich, P. Mechanisms and biological effects of mismatch repair. Annu. Rev. Genet. 25, 229–253 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Fishel, R. Mismatch repair. J. Biol. Chem. 290, 26395–26403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Miller, J. H. Mutators in Escherichia coli. Mutat. Res. 409, 99–106 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Kunkel, T. A. DNA-mismatch repair. The intricacies of eukaryotic spell-checking. Curr. Biol. CB 5, 1091–1094 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Kolodner, R. Biochemistry and genetics of eukaryotic mismatch repair. Genes. Dev. 10, 1433–1442 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Acharya, S., Foster, P. L., Brooks, P. & Fishel, R. The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol. Cell 12, 233–246 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, H. et al. DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc. Natl Acad. Sci. USA 100, 14822–14827 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cho, W. K. et al. ATP alters the diffusion mechanics of MutS on mismatched DNA. Struct. 20, 1264–1274 (2012).

    Article  CAS  Google Scholar 

  36. Liu, J. et al. Cascading MutS and MutL sliding clamps control DNA diffusion to activate mismatch repair. Nature 539, 583–587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang, X. W. et al. MutS functions as a clamp loader by positioning MutL on the DNA during mismatch repair. Nat. Commun. 13, 5808 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hall, M. C. & Matson, S. W. The Escherichia coli MutL protein physically interacts with MutH and stimulates the MutH-associated endonuclease activity. J. Biol. Chem. 274, 1306–1312 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Au, K. G., Welsh, K. & Modrich, P. Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267, 12142–12148 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Kunkel, T. A. & Erie, D. A. DNA mismatch repair. Annu. Rev. Biochem. 74, 681–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Modrich, P. Mechanisms in E. coli and human mismatch repair (Nobel lecture). Angew. Chem. Int. Ed. Engl. 55, 8490–8501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dai, J. et al. Molecular basis of the dual role of the Mlh1–Mlh3 endonuclease in MMR and in meiotic crossover formation. Proc. Natl Acad. Sci. USA 118, e2022704118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Flores-Rozas, H. & Kolodner, R. D. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc. Natl Acad. Sci. USA 95, 12404–12409 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, P. C. et al. Contributions by MutL homologues Mlh3 and Pms2 to DNA mismatch repair and tumor suppression in the mouse. Cancer Res. 65, 8662–8670 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Kadyrova, L. Y. & Kadyrov, F. A. Endonuclease activities of MutLα and its homologs in DNA mismatch repair. DNA Repair 38, 42–49 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Putnam, C. D. Strand discrimination in DNA mismatch repair. DNA Repair 105, 103161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Drummond, J. T., Li, G. M., Longley, M. J. & Modrich, P. Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells. Science 268, 1909–1912 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Genschel, J., Littman, S. J., Drummond, J. T. & Modrich, P. Isolation of MutSbeta from human cells and comparison of the mismatch repair specificities of MutSbeta and MutSalpha. J. Biol. Chem. 273, 19895–19901 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Hombauer, H., Campbell, C. S., Smith, C. E., Desai, A. & Kolodner, R. D. Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 147, 1040–1053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Warren, J. J. et al. Structure of the human MutSalpha DNA lesion recognition complex. Mol. Cell 26, 579–592 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Lamers, M. H. et al. The crystal structure of DNA mismatch repair protein MutS binding to a G × T mismatch. Nature 407, 711–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Edelbrock, M. A., Kaliyaperumal, S. & Williams, K. J. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat. Res. 743-744, 53–66 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Bradford, K. C. et al. Dynamic human MutSα-MutLα complexes compact mismatched DNA. Proc. Natl Acad. Sci. USA 117, 16302–16312 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bowers, J., Sokolsky, T., Quach, T. & Alani, E. A mutation in the MSH6 subunit of the Saccharomyces cerevisiae MSH2-MSH6 complex disrupts mismatch recognition. J. Biol. Chem. 274, 16115–16125 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Dufner, P., Marra, G., Räschle, M. & Jiricny, J. Mismatch recognition and DNA-dependent stimulation of the ATPase activity of hMutSalpha is abolished by a single mutation in the hMSH6 subunit. J. Biol. Chem. 275, 36550–36555 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Schofield, M. J. et al. The Phe–X–Glu DNA binding motif of MutS. The role of hydrogen bonding in mismatch recognition. J. Biol. Chem. 276, 45505–45508 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Drotschmann, K., Yang, W., Brownewell, F. E., Kool, E. T. & Kunkel, T. A. Asymmetric recognition of DNA local distortion. Structure-based functional studies of eukaryotic Msh2–Msh6. J. Biol. Chem. 276, 46225–46229 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Gupta, S., Gellert, M. & Yang, W. Mechanism of mismatch recognition revealed by human MutSβ bound to unpaired DNA loops. Nat. Struct. Mol. Biol. 19, 72–78 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gradia, S., Acharya, S. & Fishel, R. The human mismatch recognition complex hMSH2–hMSH6 functions as a novel molecular switch. Cell 91, 995–1005 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Geng, H. et al. Biochemical analysis of the human mismatch repair proteins hMutSα MSH2(G674A)–MSH6 and MSH2–MSH6(T1219D). J. Biol. Chem. 287, 9777–9791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Iaccarino, I., Marra, G., Palombo, F. & Jiricny, J. hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha. EMBO J. 17, 2677–2686 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fishel, R. Mismatch repair, molecular switches, and signal transduction. Genes. Dev. 12, 2096–2101 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Antony, E. & Hingorani, M. M. Mismatch recognition-coupled stabilization of Msh2–Msh6 in an ATP-bound state at the initiation of DNA repair. Biochemistry 42, 7682–7693 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Gradia, S. et al. hMSH2–hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol. Cell 3, 255–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Plotz, G., Raedle, J., Brieger, A., Trojan, J. & Zeuzem, S. N-terminus of hMLH1 confers interaction of hMutLalpha and hMutLbeta with hMutSalpha. Nucleic Acids Res. 31, 3217–3226 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Plotz, G. et al. Mutations in the MutSalpha interaction interface of MLH1 can abolish DNA mismatch repair. Nucleic Acids Res. 34, 6574–6586 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kadyrov, F. A., Dzantiev, L., Constantin, N. & Modrich, P. Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126, 297–308 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Sacho, E. J., Kadyrov, F. A., Modrich, P., Kunkel, T. A. & Erie, D. A. Direct visualization of asymmetric adenine-nucleotide-induced conformational changes in MutL alpha. Mol. Cell 29, 112–121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Genschel, J. et al. Interaction of proliferating cell nuclear antigen with PMS2 is required for MutLα activation and function in mismatch repair. Proc. Natl Acad. Sci. USA 114, 4930–4935 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pluciennik, A. et al. PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc. Natl Acad. Sci. USA 107, 16066–16071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Umar, A. et al. Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87, 65–73 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Schmutte, C. et al. Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer Res. 58, 4537–4542 (1998).

    CAS  PubMed  Google Scholar 

  73. Goellner, E. M., Putnam, C. D. & Kolodner, R. D. Exonuclease 1-dependent and independent mismatch repair. DNA Repair. 32, 24–32 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amin, N. S., Nguyen, M. N., Oh, S. & Kolodner, R. D. exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair. Mol. Cell Biol. 21, 5142–5155 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Calil, F. A. et al. Rad27 and Exo1 function in different excision pathways for mismatch repair in Saccharomyces cerevisiae. Nat. Commun. 12, 5568 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, Y. et al. Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122, 693–705 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Genschel, J. & Modrich, P. Mechanism of 5′-directed excision in human mismatch repair. Mol. Cell 12, 1077–1086 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Goellner, E. M. et al. Identification of Exo1-Msh2 interaction motifs in DNA mismatch repair and new Msh2-binding partners. Nat. Struct. Mol. Biol. 25, 650–659 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Budczies, J. et al. Tumour mutational burden: clinical utility, challenges and emerging improvements. Nat. Rev. Clin. Oncol. 21, 725–742 (2024).

    Article  PubMed  Google Scholar 

  80. Chow, R. D. et al. Distinct mechanisms of mismatch-repair deficiency delineate two modes of response to anti-PD-1 immunotherapy in endometrial carcinoma. Cancer Discov. 13, 312–331 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kwon, M. et al. Determinants of response and intrinsic resistance to PD-1 blockade in microsatellite instability-high gastric cancer. Cancer Discov. 11, 2168–2185 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Schrock, A. B. et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann. Oncol. 30, 1096–1103 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Campbell, B. B. et al. Comprehensive analysis of hypermutation in human cancer. Cell 171, 1042–1056.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rousseau, B. et al. The spectrum of benefit from checkpoint blockade in hypermutated tumors. N. Engl. J. Med. 384, 1168–1170 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Rousseau, B. et al. PD-1 blockade in solid tumors with defects in polymerase epsilon. Cancer Discov. 12, 1435–1448 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chung, J. et al. DNA polymerase and mismatch repair exert distinct microsatellite instability signatures in normal and malignant human cells. Cancer Discov. 11, 1176–1191 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Westcott, P. M. K. et al. Mismatch repair deficiency is not sufficient to elicit tumor immunogenicity. Nat. Genet. 55, 1686–1695 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Ellegren, H. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Kelkar, Y. D. et al. What is a microsatellite: a computational and experimental definition based upon repeat mutational behavior at A/T and GT/AC repeats. Genome Biol. Evol. 2, 620–635 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Viguera, E., Canceill, D. & Ehrlich, S. D. Replication slippage involves DNA polymerase pausing and dissociation. EMBO J. 20, 2587–2595 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hile, S. E. & Eckert, K. A. Positive correlation between DNA polymerase alpha-primase pausing and mutagenesis within polypyrimidine/polypurine microsatellite sequences. J. Mol. Biol. 335, 745–759 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J. & Rolf, B. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am. J. Hum. Genet. 62, 1408–1415 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brohede, J., Primmer, C. R., Møller, A. & Ellegren, H. Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. Nucleic Acids Res. 30, 1997–2003 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chakraborty, R., Kimmel, M., Stivers, D. N., Davison, L. J. & Deka, R. Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc. Natl Acad. Sci. USA 94, 1041–1046 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bachtrog, D., Agis, M., Imhof, M. & Schlötterer, C. Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster. Mol. Biol. Evol. 17, 1277–1285 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Strand, M., Prolla, T. A., Liskay, R. M. & Petes, T. D. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365, 274–276 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Mizutani, T. et al. Recapitulating the adenoma-carcinoma sequence by selection of four spontaneous oncogenic mutations in mismatch-repair-deficient human colon organoids. Nat. Cancer 5, 1852–1867 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Markowitz, S. et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268, 1336–1338 (1995).

    Article  CAS  PubMed  Google Scholar 

  100. Myeroff, L. L. et al. A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res. 55, 5545–5547 (1995).

    CAS  PubMed  Google Scholar 

  101. Wang, J. et al. Demonstration that mutation of the type II transforming growth factor beta receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. J. Biol. Chem. 270, 22044–22049 (1995).

    Article  CAS  PubMed  Google Scholar 

  102. Gurin, C. C., Federici, M. G., Kang, L. & Boyd, J. Causes and consequences of microsatellite instability in endometrial carcinoma. Cancer Res. 59, 462–466 (1999).

    CAS  PubMed  Google Scholar 

  103. Giannakis, M. et al. RNF43 is frequently mutated in colorectal and endometrial cancers. Nat. Genet. 46, 1264–1266 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Perucho, M. Microsatellite instability: the mutator that mutates the other mutator. Nat. Med. 2, 630–631 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Kayhanian, H. et al. Homopolymer switches mediate adaptive mutability in mismatch repair-deficient colorectal cancer. Nat. Genet. 56, 1420–1433 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Cunningham, J. M. et al. Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 58, 3455–3460 (1998).

    CAS  PubMed  Google Scholar 

  107. Herman, J. G. et al. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl Acad. Sci. USA 95, 6870–6875 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fang, M., Ou, J., Hutchinson, L. & Green, M. R. The BRAF oncoprotein functions through the transcriptional repressor MAFG to mediate the CpG island methylator phenotype. Mol. Cell 55, 904–915 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Metcalf, A. M. & Spurdle, A. B. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review. Fam. Cancer 13, 1–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Drews, R. M. et al. A pan-cancer compendium of chromosomal instability. Nature 606, 976–983 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Taylor, A. M. et al. Genomic and functional approaches to understanding cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  Google Scholar 

  113. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  Google Scholar 

  114. Cancer Genome Atlas Research Network, Kandoth, C. et al. Integrated genomic characterization of endometrial carcinoma. Nature 497, 67–73 (2013).

    Article  Google Scholar 

  115. Trautmann, K. et al. Chromosomal instability in microsatellite-unstable and stable colon cancer. Clin. Cancer Res. 12, 6379–6385 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Shlien, A. et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat. Genet. 47, 257–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Cocco, E. et al. Colorectal carcinomas containing hypermethylated MLH1 promoter and wild-type BRAF/KRAS are enriched for targetable kinase fusions. Cancer Res. 79, 1047–1053 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Spies, M. & Fishel, R. Mismatch repair during homologous and homeologous recombination. Cold Spring Harb. Perspect. Biol. 7, a022657 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Li, L. S. et al. Chromosomal imbalances in the colorectal carcinomas with microsatellite instability. Am. J. Pathol. 163, 1429–1436 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Spurr, L. F., Weichselbaum, R. R. & Pitroda, S. P. Tumor aneuploidy predicts survival following immunotherapy across multiple cancers. Nat. Genet. 54, 1782–1785 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Roudko, V. et al. Shared immunogenic poly-epitope frameshift mutations in microsatellite unstable tumors. Cell 183, 1634–1649.e17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ballhausen, A. et al. The shared frameshift mutation landscape of microsatellite-unstable cancers suggests immunoediting during tumor evolution. Nat. Commun. 11, 4740 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Saeterdal, I. et al. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Proc. Natl Acad. Sci. USA 98, 13255–13260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schwitalle, Y. et al. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology 134, 988–997 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Kang, Y. J. et al. A scoping review and meta-analysis on the prevalence of pan-tumour biomarkers (dMMR, MSI, high TMB) in different solid tumours. Sci. Rep. 12, 20495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Caris Life Sciences. Caris molecular database. Caris Life Sciences https://www.carislifesciences.com/ (2024).

  127. Bonneville, R. et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis. Oncol. 2017, PO.17.00073 (2017).

    PubMed  Google Scholar 

  128. Latham, A. et al. Microsatellite instability is associated with the presence of Lynch syndrome pan-cancer. J. Clin. Oncol. 37, 286–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Papke, D. J. et al. Prevalence of mismatch-repair deficiency in rectal adenocarcinomas. N. Engl. J. Med. 387, 1714–1716 (2022).

    Article  PubMed  Google Scholar 

  130. Gordhandas, S. et al. Comprehensive analysis of germline drivers in endometrial cancer. J. Natl Cancer Inst. 115, 560–569 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ryan, Na. J. et al. The proportion of endometrial cancers associated with Lynch syndrome: a systematic review of the literature and meta-analysis. Genet. Med. 21, 2167–2180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Post, C. C. B. et al. Prevalence and prognosis of Lynch syndrome and sporadic mismatch repair deficiency in endometrial cancer. J. Natl Cancer Inst. 113, 1212–1220 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Koopman, M. et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer 100, 266–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gutierrez, C., Ogino, S., Meyerhardt, J. A. & Iorgulescu, J. B. The prevalence and prognosis of microsatellite instability-high/mismatch repair-deficient colorectal adenocarcinomas in the United States. JCO Precis. Oncol. 7, e2200179 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Germano, G., Amirouchene-Angelozzi, N., Rospo, G. & Bardelli, A. The clinical impact of the genomic landscape of mismatch repair-deficient cancers. Cancer Discov. 8, 1518–1528 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. Popat, S., Hubner, R. & Houlston, R. S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 23, 609–618 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Goldstein, J. et al. Multicenter retrospective analysis of metastatic colorectal cancer (CRC) with high-level microsatellite instability (MSI-H). Ann. Oncol. 25, 1032–1038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Merok, M. A. et al. Microsatellite instability has a positive prognostic impact on stage II colorectal cancer after complete resection: results from a large, consecutive Norwegian series. Ann. Oncol. 24, 1274–1282 (2013).

    Article  CAS  PubMed  Google Scholar 

  140. Klingbiel, D. et al. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: results of the PETACC-3 trial. Ann. Oncol. 26, 126–132 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Cohen, R. et al. Microsatellite instability in patients with stage III colon cancer receiving fluoropyrimidine with or without oxaliplatin: an ACCENT pooled analysis of 12 adjuvant trials. J. Clin. Oncol. 39, 642–651 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Sargent, D. J. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J. Clin. Oncol. 28, 3219–3226 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Uhlig, J. et al. Microsatellite instability and KRAS mutation in stage IV colorectal cancer: prevalence, geographic discrepancies, and outcomes from the national cancer database. J. Natl Compr. Cancer Netw. 19, 307–318 (2021).

    Article  Google Scholar 

  144. Polom, K. et al. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br. J. Surg. 105, 159–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Anglesio, M. S. et al. Cancer-associated mutations in endometriosis without cancer. N. Engl. J. Med. 376, 1835–1848 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Leskela, S. et al. Mismatch repair deficiency in ovarian carcinoma: frequency, causes, and consequences. Am. J. Surg. Pathol. 44, 649–656 (2020).

    Article  PubMed  Google Scholar 

  147. Sinicrope, F. A. et al. Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy. J. Clin. Oncol. 31, 3664–3672 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cercek, A. et al. Mismatch repair-deficient rectal cancer and resistance to neoadjuvant chemotherapy. Clin. Cancer Res. 26, 3271–3279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jover, R. et al. The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur. J. Cancer Oxf. Engl. 45, 365–373 (2009).

    Article  CAS  Google Scholar 

  150. Tajima, A., Hess, M. T., Cabrera, B. L., Kolodner, R. D. & Carethers, J. M. The mismatch repair complex hMutS alpha recognizes 5-fluorouracil-modified DNA: implications for chemosensitivity and resistance. Gastroenterology 127, 1678–1684 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Dolcetti, R. et al. High prevalence of activated intraepithelial cytotoxic T lymphocytes and increased neoplastic cell apoptosis in colorectal carcinomas with microsatellite instability. Am. J. Pathol. 154, 1805–1813 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Phillips, S. M. et al. Tumour-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. Br. J. Surg. 91, 469–475 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Kim, H., Jen, J., Vogelstein, B. & Hamilton, S. R. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am. J. Pathol. 145, 148–156 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Alexander, J. et al. Histopathological identification of colon cancer with microsatellite instability. Am. J. Pathol. 158, 527–535 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Howitt, B. E. et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 1, 1319–1323 (2015).

    Article  PubMed  Google Scholar 

  156. Shin, S. J. et al. Mismatch repair status of gastric cancer and its association with the local and systemic immune response. Oncol 24, e835–e844 (2019).

    Article  CAS  Google Scholar 

  157. Tougeron, D. et al. Tumor-infiltrating lymphocytes in colorectal cancers with microsatellite instability are correlated with the number and spectrum of frameshift mutations. Mod. Pathol. 22, 1186–1195 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Maby, P. et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res. 75, 3446–3455 (2015).

    Article  CAS  PubMed  Google Scholar 

  159. Mlecnik, B. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Espenschied, C. R. et al. Multigene panel testing provides a new perspective on Lynch syndrome. J. Clin. Oncol. 35, 2568–2575 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lynch, H. T. et al. Phenotypic and genotypic heterogeneity of Lynch syndrome: a complex diagnostic challenge. Fam. Cancer 17, 403–414 (2018).

    Article  PubMed  Google Scholar 

  162. Ligtenberg, M. J. L. et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet. 41, 112–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Dámaso, E. et al. Primary constitutional MLH1 epimutations: a focal epigenetic event. Br. J. Cancer 119, 978–987 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Win, A. K. et al. Prevalence and penetrance of major genes and polygenes for colorectal cancer. Cancer Epidemiol. Biomark. Prev. 26, 404–412 (2017).

    Article  CAS  Google Scholar 

  165. Thompson, B. A. et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat. Genet. 46, 107–115 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. de la Chapelle, A. Genetic predisposition to colorectal cancer. Nat. Rev. Cancer 4, 769–780 (2004).

    Article  PubMed  Google Scholar 

  167. Fishel, R. & Kolodner, R. D. Identification of mismatch repair genes and their role in the development of cancer. Curr. Opin. Genet. Dev. 5, 382–395 (1995).

    Article  CAS  PubMed  Google Scholar 

  168. Hemminki, A. et al. Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Nat. Genet. 8, 405–410 (1994).

    Article  CAS  PubMed  Google Scholar 

  169. Liu, B. et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat. Genet. 9, 48–55 (1995).

    Article  CAS  PubMed  Google Scholar 

  170. Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57, 808–811 (1997).

    CAS  PubMed  Google Scholar 

  171. Pande, M. et al. Cancer spectrum in DNA mismatch repair gene mutation carriers: results from a hospital based Lynch syndrome registry. Fam. Cancer 11, 441–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Dominguez-Valentin, M. et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the prospective Lynch syndrome database. Genet. Med. 22, 15–25 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Ponti, G. & Ponz de Leon, M. Muir–Torre syndrome. Lancet Oncol. 6, 980–987 (2005).

    Article  PubMed  Google Scholar 

  174. Kempers, M. J. E. et al. Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study. Lancet Oncol. 12, 49–55 (2011).

    Article  PubMed  Google Scholar 

  175. Baglietto, L. et al. Risks of Lynch syndrome cancers for MSH6 mutation carriers. J. Natl Cancer Inst. 102, 193–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ten Broeke, S. W. et al. Cancer risks for PMS2-associated Lynch syndrome. J. Clin. Oncol. 36, 2961–2968 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Salem, M. E. et al. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int. J. Cancer 147, 2948–2956 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sekine, S. et al. Mismatch repair deficiency commonly precedes adenoma formation in Lynch syndrome-associated colorectal tumorigenesis. Mod. Pathol. 30, 1144–1151 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. De Jong, A. E. et al. The role of mismatch repair gene defects in the development of adenomas in patients with HNPCC. Gastroenterology 126, 42–48 (2004).

    Article  PubMed  Google Scholar 

  180. Ahadova, A. et al. Three molecular pathways model colorectal carcinogenesis in Lynch syndrome. Int. J. Cancer 143, 139–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Yurgelun, M. B. et al. Microsatellite instability and DNA mismatch repair protein deficiency in Lynch syndrome colorectal polyps. Cancer Prev. Res. 5, 574–582 (2012).

    Article  CAS  Google Scholar 

  182. Engel, C. et al. Associations of pathogenic variants in MLH1, MSH2, and MSH6 with risk of colorectal adenomas and tumors and with somatic mutations in patients with Lynch syndrome. Gastroenterology 158, 1326–1333 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Ahadova, A., von Knebel Doeberitz, M., Bläker, H. & Kloor, M. CTNNB1-mutant colorectal carcinomas with immediate invasive growth: a model of interval cancers in Lynch syndrome. Fam. Cancer 15, 579–586 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Ahadova, A. et al. A ‘Two-in-One Hit’ model of shortcut carcinogenesis in MLH1 Lynch syndrome carriers. Gastroenterology 165, 267–270.e4 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Pussila, M. et al. Mitotic abnormalities precede microsatellite instability in lynch syndrome-associated colorectal tumourigenesis. eBioMedicine 103, 105111 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Dominguez-Valentin, M. et al. No difference in penetrance between truncating and missense/aberrant splicing pathogenic variants in MLH1 and MSH2: a prospective Lynch syndrome database study. J. Clin. Med. 10, 2856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mecklin, J. P. et al. Development of colorectal tumors in colonoscopic surveillance in Lynch syndrome. Gastroenterology 133, 1093–1098 (2007).

    Article  PubMed  Google Scholar 

  188. Kloor, M. et al. Prevalence of mismatch repair-deficient crypt foci in Lynch syndrome: a pathological study. Lancet Oncol. 13, 598–606 (2012).

    Article  CAS  PubMed  Google Scholar 

  189. Møller, P. et al. Incidences of colorectal adenomas and cancers under colonoscopy surveillance suggest an accelerated “Big Bang” pathway to CRC in three of the four Lynch syndromes. Hered. Cancer Clin. Pract. 22, 6 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Staffa, L. et al. Mismatch repair-deficient crypt foci in Lynch syndrome-molecular alterations and association with clinical parameters. PLoS ONE 10, e0121980 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Brand, R. E. et al. Detection of DNA mismatch repair deficient crypts in random colonoscopic biopsies identifies Lynch syndrome patients. Fam. Cancer 19, 169–175 (2020).

    Article  CAS  PubMed  Google Scholar 

  192. Pai, R. K. et al. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome. Mod. Pathol. 31, 1608–1618 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ricciardone, M. D. et al. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res. 59, 290–293 (1999).

    CAS  PubMed  Google Scholar 

  194. Wang, Q. et al. Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res. 59, 294–297 (1999).

    CAS  PubMed  Google Scholar 

  195. Wimmer, K. et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium ‘care for CMMRD’ (C4CMMRD). J. Med. Genet. 51, 355–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Baris, H. N. et al. Constitutional mismatch repair deficiency in Israel: high proportion of founder mutations in MMR genes and consanguinity. Pediatr. Blood Cancer 63, 418–427 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Lavoine, N. et al. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort. J. Med. Genet. 52, 770–778 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Durno, C. et al. Survival benefit for individuals with constitutional mismatch repair deficiency undergoing surveillance. J. Clin. Oncol. 39, 2779–2790 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wimmer, K. & Kratz, C. P. Constitutional mismatch repair-deficiency syndrome. Haematologica 95, 699–701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Aronson, M. et al. Diagnostic criteria for constitutional mismatch repair deficiency (CMMRD): recommendations from the international consensus working group. J. Med. Genet. 59, 318–327 (2022).

    Article  CAS  PubMed  Google Scholar 

  201. Bouffet, E. et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 34, 2206–2211 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Gallon, R. et al. Constitutional microsatellite instability, genotype, and phenotype correlations in constitutional mismatch repair deficiency. Gastroenterology 164, 579–592.e8 (2023).

    Article  CAS  PubMed  Google Scholar 

  203. Pearlman, R. et al. Clinical characteristics of patients with colorectal cancer with double somatic mismatch repair mutations compared with Lynch syndrome. J. Med. Genet. 56, 462–470 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Cohen, R. et al. Clinical and molecular characterisation of hereditary and sporadic metastatic colorectal cancers harbouring microsatellite instability/DNA mismatch repair deficiency. Eur. J. Cancer 86, 266–274 (2017).

    Article  CAS  PubMed  Google Scholar 

  205. Parsons, M. T., Buchanan, D. D., Thompson, B., Young, J. P. & Spurdle, A. B. Correlation of tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for MMR variant classification. J. Med. Genet. 49, 151–157 (2012).

    Article  CAS  PubMed  Google Scholar 

  206. Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 38, 787–793 (2006).

    Article  CAS  PubMed  Google Scholar 

  207. Diaz, L. A. et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol. 23, 659–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ambrosini, M. et al. BRAF + EGFR +/− MEK inhibitors after immune checkpoint inhibitors in BRAF V600E mutated and deficient mismatch repair or microsatellite instability high metastatic colorectal cancer. Eur. J. Cancer 210, 114290 (2024).

    Article  CAS  PubMed  Google Scholar 

  209. Luchini, C. et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann. Oncol. 30, 1232–1243 (2019).

    Article  CAS  PubMed  Google Scholar 

  210. Wang, C., Zhang, L., Vakiani, E. & Shia, J. Detecting mismatch repair deficiency in solid neoplasms: immunohistochemistry, microsatellite instability, or both? Mod. Pathol. 35, 1515–1528 (2022).

    Article  CAS  PubMed  Google Scholar 

  211. Graham, R. P. et al. Heterogenous MSH6 loss is a result of microsatellite instability within MSH6 and occurs in sporadic and hereditary colorectal and endometrial carcinomas. Am. J. Surg. Pathol. 39, 1370–1376 (2015).

    Article  PubMed  Google Scholar 

  212. Bartley, A. N., Luthra, R., Saraiya, D. S., Urbauer, D. L. & Broaddus, R. R. Identification of cancer patients with Lynch syndrome: clinically significant discordances and problems in tissue-based mismatch repair testing. Cancer Prev. Res. 5, 320–327 (2012).

    Article  Google Scholar 

  213. Hampel, H. et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J. Clin. Oncol. 26, 5783–5788 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Hechtman, J. F. et al. Retained mismatch repair protein expression occurs in approximately 6% of microsatellite instability-high cancers and is associated with missense mutations in mismatch repair genes. Mod. Pathol. 33, 871–879 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Kato, A. et al. Isolated loss of PMS2 immunohistochemical expression is frequently caused by heterogenous MLH1 promoter hypermethylation in Lynch syndrome screening for endometrial cancer patients. Am. J. Surg. Pathol. 40, 770–776 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Goel, A., Nagasaka, T., Hamelin, R. & Boland, C. R. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers. PLoS ONE 5, e9393 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Suraweera, N. et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 123, 1804–1811 (2002).

    Article  CAS  PubMed  Google Scholar 

  218. Wang, Y., Shi, C., Eisenberg, R. & Vnencak-Jones, C. L. Differences in microsatellite instability profiles between endometrioid and colorectal cancers: a potential cause for false-negative results? J. Mol. Diagn. JMD 19, 57–64 (2017).

    Article  PubMed  Google Scholar 

  219. Kuismanen, S. A. et al. Endometrial and colorectal tumors from patients with hereditary nonpolyposis colon cancer display different patterns of microsatellite instability. Am. J. Pathol. 160, 1953–1958 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Middha, S. et al. Reliable pan-cancer microsatellite instability assessment by using targeted next-generation sequencing data. JCO Precis. Oncol. 2017, PO.17.00084 (2017).

    PubMed  Google Scholar 

  221. Rios-Doria, E. et al. Integration of clinical sequencing and immunohistochemistry for the molecular classification of endometrial carcinoma. Gynecol. Oncol. 174, 262–272 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Dedeurwaerdere, F. et al. Comparison of microsatellite instability detection by immunohistochemistry and molecular techniques in colorectal and endometrial cancer. Sci. Rep. 11, 12880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Willis, J. et al. Validation of microsatellite instability detection using a comprehensive plasma-based genotyping panel. Clin. Cancer Res. 25, 7035–7045 (2019).

    Article  CAS  PubMed  Google Scholar 

  224. Woodhouse, R. et al. Clinical and analytical validation of FoundationOne liquid CDx, a novel 324-gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS ONE 15, e0237802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Silveira, A. B. et al. High-accuracy determination of microsatellite instability compatible with liquid biopsies. Clin. Chem. 66, 606–613 (2020).

    Article  PubMed  Google Scholar 

  226. Ali-Fehmi, R. et al. Analysis of concordance between next-generation sequencing assessment of microsatellite instability and immunohistochemistry-mismatch repair from solid tumors. JCO Precis. Oncol. 8, e2300648 (2024).

    Article  PubMed  Google Scholar 

  227. Bartley, A. N. et al. Mismatch repair and microsatellite instability testing for immune checkpoint inhibitor therapy: guideline from the college of American pathologists in collaboration with the association for molecular pathology and fight colorectal cancer. Arch. Pathol. Lab. Med. 146, 1194–1210 (2022).

    Article  CAS  PubMed  Google Scholar 

  228. Niu, B. et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinforma. Oxf. Engl. 30, 1015–1016 (2014).

    Article  CAS  Google Scholar 

  229. Koh, W. J. et al. Uterine neoplasms, version 1.2018, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 16, 170–199 (2018).

    Article  Google Scholar 

  230. Ajani, J. A. et al. Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 20, 167–192 (2022).

    Article  CAS  Google Scholar 

  231. Benson, A. B. et al. Colon cancer, version 1.2017, NCCN clinical practice guidelines in oncology. J. Natl Compr. Cancer Netw. 15, 370–398 (2017).

    Article  CAS  Google Scholar 

  232. Heald, B. et al. Implementation of universal microsatellite instability and immunohistochemistry screening for diagnosing lynch syndrome in a large academic medical center. J. Clin. Oncol. 31, 1336–1340 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Ladabaum, U. et al. Strategies to identify the Lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis. Ann. Intern. Med. 155, 69–79 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Dhimal T. et al. Mismatch repair and microsatellite testing for individuals with colorectal cancer. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2024.4342 (2024).

  235. Hampel, H. et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N. Engl. J. Med. 352, 1851–1860 (2005).

    Article  CAS  PubMed  Google Scholar 

  236. Beamer, L. C. et al. Reflex immunohistochemistry and microsatellite instability testing of colorectal tumors for Lynch syndrome among US cancer programs and follow-up of abnormal results. J. Clin. Oncol. 30, 1058–1063 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Giardiello, F. M. et al. Guidelines on genetic evaluation and management of Lynch syndrome: a consensus statement by the US multi-society task force on colorectal cancer. Gastroenterology 147, 502–526 (2014).

    Article  PubMed  Google Scholar 

  238. Carnevali, I. W. et al. MLH1 promoter methylation could be the second hit in lynch syndrome carcinogenesis. Genes 14, 2060 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Lipson, E. J. et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res. 19, 462–468 (2013).

    Article  CAS  PubMed  Google Scholar 

  242. Overman, M. J. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 18, 1182–1191 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. André, T. et al. Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann. Oncol. 33, 1052–1060 (2022).

    Article  PubMed  Google Scholar 

  244. Overman, M. J. et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J. Clin. Oncol. 36, 773–779 (2018).

    Article  CAS  PubMed  Google Scholar 

  245. Le, D. T. et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J. Clin. Oncol. 38, 11–19 (2020).

    Article  CAS  PubMed  Google Scholar 

  246. O’Malley, D. M. et al. Pembrolizumab in patients with microsatellite instability-high advanced endometrial cancer: results from the KEYNOTE-158 study. J. Clin. Oncol. 40, 752–761 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Oaknin, A. et al. Clinical activity and safety of the anti-programmed death 1 monoclonal antibody dostarlimab for patients with recurrent or advanced mismatch repair-deficient endometrial cancer: a nonrandomized phase 1 clinical trial. JAMA Oncol. 6, 1766–1772 (2020).

    Article  PubMed  Google Scholar 

  248. Friedman, C. F. et al. Nivolumab for mismatch-repair-deficient or hypermutated gynecologic cancers: a phase 2 trial with biomarker analyses. Nat. Med. 30, 1330–1338 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Eskander, R. N. et al. Pembrolizumab plus chemotherapy in advanced endometrial cancer. N. Engl. J. Med. 388, 2159–2170 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Eskander, R. N. et al. Pembrolizumab plus chemotherapy in advanced or recurrent endometrial cancer: overall survival and exploratory analyses of the NRG GY018 phase 3 randomized trial. Nat. Med. 31, 1539–1546 (2025).

    Article  CAS  PubMed  Google Scholar 

  251. Powell, M. A. et al. Overall survival in patients with endometrial cancer treated with dostarlimab plus carboplatin-paclitaxel in the randomized ENGOT-EN6/GOG-3031/RUBY trial. Ann. Oncol. 35, 728–738 (2024).

    Article  CAS  PubMed  Google Scholar 

  252. Westin, S. N. et al. Durvalumab plus carboplatin/paclitaxel followed by maintenance durvalumab with or without olaparib as first-line treatment for advanced endometrial cancer: the phase III DUO-E trial. J. Clin. Oncol. 42, 283–299 (2024).

    Article  CAS  PubMed  Google Scholar 

  253. Subbiah, V., Gouda, M. A., Ryll, B., Burris, H. A. & Kurzrock, R. The evolving landscape of tissue-agnostic therapies in precision oncology. CA Cancer J. Clin. 74, 433–452 (2024).

    PubMed  Google Scholar 

  254. Lemery, S., Keegan, P. & Pazdur, R. First FDA approval agnostic of cancer site — when a biomarker defines the indication. N. Engl. J. Med. 377, 1409–1412 (2017).

    Article  PubMed  Google Scholar 

  255. Das, A. et al. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat. Med. 28, 125–135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Margalit, O. et al. Duration of immunotherapy in dMMR/MSI-H metastatic colorectal cancer patients. Eur. J. Cancer 212, 114336 (2024).

    Article  CAS  PubMed  Google Scholar 

  257. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  258. Chalabi, M. et al. Neoadjuvant immunotherapy in locally advanced mismatch repair-deficient colon cancer. N. Engl. J. Med. 390, 1949–1958 (2024).

    Article  CAS  PubMed  Google Scholar 

  259. de Gooyer, P. G. M. et al. Neoadjuvant nivolumab and relatlimab in locally advanced MMR-deficient colon cancer: a phase 2 trial. Nat. Med. 30, 3284–3290 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  260. André, T. et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in localized deficient mismatch repair/microsatellite instability-high gastric or esophagogastric junction adenocarcinoma: the GERCOR NEONIPIGA phase II study. J. Clin. Oncol. 41, 255–265 (2023).

    Article  PubMed  Google Scholar 

  261. Ludford, K. et al. Neoadjuvant pembrolizumab in localized microsatellite instability high/deficient mismatch repair solid tumors. J. Clin. Oncol. 41, 2181–2190 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Cercek, A. et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N. Engl. J. Med. 386, 2363–2376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Cercek, A. et al. Nonoperative management of mismatch repair-deficient tumors. N. Engl. J. Med. 392, 2297–2308 (2025).

    Article  CAS  PubMed  Google Scholar 

  264. Li, Y. et al. Efficacy and safety of neoadjuvant subcutaneous envafolimab in dMMR/MSI-H locally advanced colon cancer. Target. Oncol. 19, 601–610 (2024).

    Article  PubMed  Google Scholar 

  265. Li, J. et al. Biomarkers of pathologic complete response to neoadjuvant immunotherapy in mismatch repair-deficient colorectal cancer. Clin. Cancer Res. 30, 368–378 (2024).

    Article  CAS  PubMed  Google Scholar 

  266. Xie, Y. et al. Prevalent pseudoprogression and pseudoresidue in patients with rectal cancer treated with neoadjuvant immune checkpoint inhibitors. J. Natl Compr. Cancer Netw. 21, 133–142.e3 (2023).

    Article  Google Scholar 

  267. Zhang, X. et al. Efficacy and safety of neoadjuvant monoimmunotherapy with PD-1 Inhibitor for dMMR/MSI-H locally advanced colorectal cancer: a single-center real-world study. Front. Immunol. 13, 913483 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Pan, T. et al. Neoadjuvant immunotherapy with ipilimumab plus nivolumab in mismatch repair deficient/microsatellite instability-high colorectal cancer: a preliminary report of case series. Clin. Colorectal Cancer 23, 104–110 (2024).

    PubMed  Google Scholar 

  269. Yu, J. H. et al. Neoadjuvant camrelizumab plus apatinib for locally advanced microsatellite instability-high or mismatch repair-deficient colorectal cancer (NEOCAP): a single-arm, open-label, phase 2 study. Lancet Oncol. 25, 843–852 (2024).

    Article  CAS  PubMed  Google Scholar 

  270. Kothari, A. et al. Pathological response following neoadjuvant immunotherapy in mismatch repair-deficient/microsatellite instability-high locally advanced, non-metastatic colorectal cancer. Br. J. Surg. 109, 489–492 (2022).

    Article  PubMed  Google Scholar 

  271. Raimondi, A. et al. Multicentre, multi-cohort, single-arm phase II trial of tremelimumab and durvalumab as neoadjuvant or definitive treatment of patients (pts) with microsatellite instability-high (MSI) resectable gastric or gastroesophageal junction adenocarcinoma (GAC/GEJAC): the INFINITY study. Ann. Oncol. 35, S172 (2024).

    Article  Google Scholar 

  272. Pei, F. et al. Single-agent neoadjuvant immunotherapy with a PD-1 antibody in locally advanced mismatch repair-deficient or microsatellite instability-high colorectal cancer. Clin. Colorectal Cancer 22, 85–91 (2023).

    PubMed  Google Scholar 

  273. Shiu, K. K. et al. NEOPRISM-CRC: neoadjuvant pembrolizumab stratified to tumour mutation burden for high risk stage 2 or stage 3 deficient-MMR/MSI-high colorectal cancer. J. Clin. Oncol. 42, LBA3504 (2024).

    Article  Google Scholar 

  274. Chen, G. et al. Neoadjuvant PD-1 blockade with sintilimab in mismatch-repair deficient, locally advanced rectal cancer: an open-label, single-centre phase 2 study. Lancet Gastroenterol. Hepatol. 8, 422–431 (2023).

    Article  CAS  PubMed  Google Scholar 

  275. De La Fouchardiere, C. et al. IMHOTEP Phase II trial of neoadjuvant pembrolizumab in dMMR/MSI tumors: results of the colorectal cancer cohort. Ann. Oncol. 35, S429 (2024).

    Article  Google Scholar 

  276. De La Fouchardiere, C. et al. IMHOTEP phase II trial of neoadjuvant pembrolizumab in dMMR/MSI localized cancers: results of the digestive non-colorectal cancer cohorts. Ann. Oncol. 35, S899–S900 (2024).

    Article  Google Scholar 

  277. Eerkens, A. L. et al. Neoadjuvant immune checkpoint blockade in women with mismatch repair deficient endometrial cancer: a phase I study. Nat. Commun. 15, 7695 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Xu, R. H. et al. Neoadjuvant treatment of IBI310 (anti-CTLA-4 antibody) plus sintilimab (anti-PD-1 antibody) in patients with microsatellite instability-high/mismatch repair-deficient colorectal cancer: results from a randomized, open-labeled, phase Ib study. J. Clin. Oncol. 42, 3505 (2024).

    Article  Google Scholar 

  279. Avallone, A. et al. Neoadjuvant nivolumab in early stage colorectal cancer. Ann. Oncol. 31, S449 (2020).

    Article  Google Scholar 

  280. Rousseau, B., White, J. R., Cercek, A. & Diaz, L. A. The duration of immunotherapy for mismatch repair-deficient cancers. N. Engl. J. Med. 392, 824–826 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Cercek, A. et al. Durable complete responses to PD-1 blockade alone in mismatch repair deficient locally advanced rectal cancer. J. Clin. Oncol. 42, LBA3512 (2024).

    Article  Google Scholar 

  282. Van Gorp T. et al. ENGOT-en11/GOG-3053/KEYNOTE-B21: a randomised, double-blind, phase III study of pembrolizumab or placebo plus adjuvant chemotherapy with or without radiotherapy in patients with newly diagnosed, high-risk endometrial cancer. Ann. Oncol. https://doi.org/10.1016/j.annonc.2024.08.2242 (2024).

  283. Sinicrope, F. et al. Randomized trial of standard chemotherapy alone or combined with atezolizumab as adjuvant therapy for patients with stage III deficient DNA mismatch repair (dMMR) colon cancer (Alliance A021502; ATOMIC). J. Clin. Oncol. 43, LBA1 (2025).

    Article  Google Scholar 

  284. Janjigian, Y. Y. et al. Circulating tumor DNA status to direct adjuvant immunotherapy for mismatch repair deficient tumors [abstract]. Cancer Res. 85, CT002 (2025).

    Article  Google Scholar 

  285. Manning-Geist, B. L. et al. Microsatellite instability-high endometrial cancers with MLH1 promoter hypermethylation have distinct molecular and clinical profiles. Clin. Cancer Res. 28, 4302–4311 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Ramchander, N. C. et al. Distinct immunological landscapes characterize inherited and sporadic mismatch repair deficient endometrial cancer. Front. Immunol. 10, 3023 (2019).

    Article  CAS  PubMed  Google Scholar 

  287. Bellone, S. et al. A phase 2 evaluation of pembrolizumab for recurrent Lynch-like versus sporadic endometrial cancers with microsatellite instability. Cancer 128, 1206–1218 (2022).

    Article  CAS  PubMed  Google Scholar 

  288. Eskander, R. N. et al. LBA43 Updated response data and analysis of progression free survival by mechanism of mismatch repair loss in endometrial cancer (EC) patients (pts) treated with pembrolizumab plus carboplatin/paclitaxel (CP) as compared to CP plus placebo (PBO) in the NRG GY018 trial. J. Clin. Oncol. 34, S1284 (2024).

    Google Scholar 

  289. Mirza, M. R. et al. Post hoc analysis of progression-free survival (PFS) and overall survival (OS) by mechanism of mismatch repair (MMR) protein loss in patients with endometrial cancer (EC) treated with dostarlimab plus chemotherapy in the RUBY trial. J. Clin. Oncol. 42, 5606 (2024).

    Article  Google Scholar 

  290. Liu, G. C. et al. The heterogeneity between Lynch-associated and sporadic MMR deficiency in colorectal cancers. J. Natl Cancer Inst. 110, 975–984 (2018).

    Article  PubMed  Google Scholar 

  291. Khushman, M. M. et al. Differential responses to immune checkpoint inhibitors are governed by diverse mismatch repair gene alterations. Clin. Cancer Res. 30, 1906–1915 (2024).

    Article  CAS  PubMed  Google Scholar 

  292. Ratovomanana, T. et al. Prediction of response to immune checkpoint blockade in patients with metastatic colorectal cancer with microsatellite instability. Ann. Oncol. 34, 703–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  293. Hwang, H. S., Kim, D. & Choi, J. Distinct mutational profile and immune microenvironment in microsatellite-unstable and POLE-mutated tumors. J. Immunother. Cancer 9, e002797 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Sena, L. A. et al. Tumor frameshift mutation proportion predicts response to immunotherapy in mismatch repair-deficient prostate cancer. Oncologist 26, e270–e278 (2021).

    Article  CAS  PubMed  Google Scholar 

  295. von Loga, K. et al. Extreme intratumour heterogeneity and driver evolution in mismatch repair deficient gastro-oesophageal cancer. Nat. Commun. 11, 139 (2020).

    Article  Google Scholar 

  296. Clendenning, M. et al. Somatic mutations of the coding microsatellites within the beta-2-microglobulin gene in mismatch repair-deficient colorectal cancers and adenomas. Fam. Cancer 17, 91–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Ozcan, M., Janikovits, J., von Knebel Doeberitz, M. & Kloor, M. Complex pattern of immune evasion in MSI colorectal cancer. Oncoimmunology 7, e1445453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  298. Germano, G. et al. CD4 T cell-dependent rejection of beta-2 microglobulin null mismatch repair-deficient tumors. Cancer Discov. 11, 1844–1859 (2021).

    Article  CAS  PubMed  Google Scholar 

  299. de Vries, N. L. et al. γδ T cells are effectors of immunotherapy in cancers with HLA class I defects. Nature 613, 743–750 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Middha, S. et al. Majority of B2M-mutant and -deficient colorectal carcinomas achieve clinical benefit from immune checkpoint inhibitor therapy and are microsatellite instability-high. JCO Precis. Oncol. 3, PO.18.00321, https://doi.org/10.1200/PO.18.00321 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  301. Talhouk, A. et al. Molecular subtype not immune response drives outcomes in endometrial carcinoma. Clin. Cancer Res. 25, 2537–2548 (2019).

    Article  CAS  PubMed  Google Scholar 

  302. Narayanan, S. et al. Cytolytic activity score to assess anticancer immunity in colorectal cancer. Ann. Surg. Oncol. 25, 2323–2331 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Giannakis, M. et al. Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep. 17, 1206 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Chang, K. et al. Immune profiling of premalignant lesions in patients with Lynch syndrome. JAMA Oncol. 4, 1085–1092 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Liu, S. et al. Cellular localization of PD-L1 expression in mismatch-repair-deficient and proficient colorectal carcinomas. Mod. Pathol. 32, 110–121 (2019).

    Article  CAS  PubMed  Google Scholar 

  306. Andre, T. et al. Analysis of tumor PD-L1 expression and biomarkers in relation to clinical activity in patients (pts) with deficient DNA mismatch repair (dMMR)/hgih microsatellite instability (MSI-H) metastatic colorectal cancer (mCRC) treated with nivolumab (NIVO) + ipilimumab (IPI): CheckMate 142. Ann. Oncol. 28, V163 (2017).

    Article  Google Scholar 

  307. Angell, H. K. et al. PD-L1 and immune infiltrates are differentially expressed in distinct subgroups of gastric cancer. Oncoimmunology 8, e1544442 (2019).

    Article  CAS  PubMed  Google Scholar 

  308. Pelka, K. et al. Spatially organized multicellular immune hubs in human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Oaknin, A. et al. Safety, efficacy, and biomarker analyses of dostarlimab in patients with endometrial cancer: interim results of the phase I GARNET study. Clin. Cancer Res. 29, 4564–4574 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Lee, L. H. et al. Patterns and prognostic relevance of PD-1 and PD-L1 expression in colorectal carcinoma. Mod. Pathol. 29, 1433–1442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Rousseau, B., Cercek, A. & Diaz, L. A. From neoadjuvant to organ-sparing immunotherapy for colorectal cancer. Nat. Med. 30, 2407–2408 (2024).

    Article  CAS  PubMed  Google Scholar 

  312. Gallois, C. et al. Transcriptomic signatures of MSI-high metastatic colorectal cancer predict efficacy of immune checkpoint inhibitors. Clin. Cancer Res. 29, 3771–3778 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  314. Lu, C. et al. DNA sensing in mismatch repair-deficient tumor cells is essential for anti-tumor immunity. Cancer Cell 39, 96–108.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  315. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Dvorkin, S., Cambier, S., Volkman, H. E. & Stetson, D. B. New frontiers in the cGAS–STING intracellular DNA-sensing pathway. Immunity 57, 718–730 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Guan, J. et al. MLH1 deficiency-triggered DNA hyperexcision by exonuclease 1 activates the cGAS–STING pathway. Cancer Cell 39, 109–121.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  318. Pietrantonio, F. et al. Nomogram to predict the outcomes of patients with microsatellite instability-high metastatic colorectal cancer receiving immune checkpoint inhibitors. J. Immunother. Cancer 9, e003370 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  319. Maio, M. et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase II KEYNOTE-158 study. Ann. Oncol. 33, 929–938 (2022).

    Article  CAS  PubMed  Google Scholar 

  320. Alouani, E. et al. Efficacy of immunotherapy in mismatch repair-deficient advanced colorectal cancer in routine clinical practice. An AGEO study. ESMO Open. 8, 101574 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Belkouchi, Y. et al. Predicting immunotherapy outcomes in patients with MSI tumors using NLR and CT global tumor volume. Front. Oncol. 12, 982790 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Cohen, R. et al. Association of primary resistance to immune checkpoint inhibitors in metastatic colorectal cancer with misdiagnosis of microsatellite instability or mismatch repair deficiency status. JAMA Oncol. 5, 551–555 (2019).

    Article  PubMed  Google Scholar 

  323. Tian, J. et al. Combined PD-1, BRAF and MEK inhibition in BRAFV600E colorectal cancer: a phase 2 trial. Nat. Med. 29, 458–466 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Kopetz, S. et al. Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N. Engl. J. Med. 381, 1632–1643 (2019).

    Article  CAS  PubMed  Google Scholar 

  325. Gray, M. D. et al. The Werner syndrome protein is a DNA helicase. Nat. Genet. 17, 100–103 (1997).

    Article  CAS  PubMed  Google Scholar 

  326. Orren, D. K., Theodore, S. & Machwe, A. The Werner syndrome helicase/exonuclease (WRN) disrupts and degrades D-loops in vitro. Biochemistry 41, 13483–13488 (2002).

    Article  CAS  PubMed  Google Scholar 

  327. Mohaghegh, P., Karow, J. K., Brosh, R. M., Bohr, V. A. & Hickson, I. D. The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res. 29, 2843–2849 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. van Wietmarschen, N. et al. Repeat expansions confer WRN dependence in microsatellite-unstable cancers. Nature 586, 292–298 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Lieb, S. et al. Werner syndrome helicase is a selective vulnerability of microsatellite instability-high tumor cells. eLife 8, e43333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  330. Kategaya, L., Perumal, S. K., Hager, J. H. & Belmont, L. D. Werner syndrome helicase is required for the survival of cancer cells with microsatellite instability. iScience 13, 488–497 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Chan, E. M. et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature 568, 551–556 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Picco, G. et al. Novel WRN helicase inhibitors selectively target microsatellite-unstable cancer cells. Cancer Discov. 14, 1457–1475 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Baltgalvis, K. A. et al. Chemoproteomic discovery of a covalent allosteric inhibitor of WRN helicase. Nature 629, 435–442 (2024).

    Article  CAS  PubMed  Google Scholar 

  334. Ferretti, S. et al. Discovery of WRN inhibitor HRO761 with synthetic lethality in MSI cancers. Nature 629, 443–449 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Rubenstein, J. H., Enns, R., Heidelbaugh, J. & Barkun, A. Clinical guidelines committee. american gastroenterological association institute guideline on the diagnosis and management of Lynch syndrome. Gastroenterology 149, 777–782 (2015).

    Article  PubMed  Google Scholar 

  336. Seppälä, T. T. et al. European guidelines from the EHTG and ESCP for Lynch syndrome: an updated third edition of the Mallorca guidelines based on gene and gender. Br. J. Surg. 108, 484–498 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  337. Stjepanovic, N. et al. Hereditary gastrointestinal cancers: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†. Ann. Oncol. 30, 1558–1571 (2019).

    Article  CAS  PubMed  Google Scholar 

  338. National Comprehensive Cancer Network. Genetic/familial high-risk assessment: colorectal, endometrial, and gastric (version 2.2024). J. Natl Compr. Cancer Netw. https://www.nccn.org/professionals/physician_gls/pdf/genetics_ceg.pdf (2024).

  339. Schmeler, K. M. et al. Prophylactic surgery to reduce the risk of gynecologic cancers in the Lynch syndrome. N. Engl. J. Med. 354, 261–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  340. Syngal, S. et al. ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. Am. J. Gastroenterol. 110, 223–262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  341. Burn, J. et al. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet Lond. Engl. 395, 1855–1863 (2020).

    Article  CAS  Google Scholar 

  342. Kloor, M. et al. A frameshift peptide neoantigen-based vaccine for mismatch repair-deficient cancers: a phase I/IIa clinical trial. Clin. Cancer Res. 26, 4503–4510 (2020).

    Article  CAS  PubMed  Google Scholar 

  343. Leoni, G. et al. A genetic vaccine encoding shared cancer neoantigens to treat tumors with microsatellite instability. Cancer Res. 80, 3972–3982 (2020).

    Article  CAS  PubMed  Google Scholar 

  344. Overman, M. et al. Results of phase I–II bridging study for Nous-209, a neoantigen cancer immunotherapy, in combination with pembrolizumab as first line treatment in patients with advanced dMMR/MSI-h colorectal cancer. J. Clin. Oncol. 41, e14665 (2023).

    Article  Google Scholar 

  345. Fakih, M. et al. First clinical and immunogenicity results including all subjects enrolled in a phase I study of Nous-209, an off-the-shelf immunotherapy, with pembrolizumab, for the treatment of tumors with a deficiency in mismatch repair/microsatellite instability (dMMR/MSI). J. Clin. Oncol. 40, 2515 (2022).

    Article  Google Scholar 

  346. D’Alise, A. M. et al. Adenoviral-based vaccine promotes neoantigen-specific CD8+ T cell stemness and tumor rejection. Sci. Transl. Med. 14, eabo7604 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  347. Harrold, E. C. et al. Neoplasia risk in patients with Lynch syndrome treated with immune checkpoint blockade. Nat. Med. 29, 2458–2463 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  348. Feng, Y. et al. Spatially organized tumor-stroma boundary determines the efficacy of immunotherapy in colorectal cancer patients. Nat. Commun. 15, 10259 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Boland, C. R. & Lynch, H. T. The history of Lynch syndrome. Fam. Cancer 12, 145–157 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  350. Classics in oncology. Heredity with reference to carcinoma as shown by the study of the cases examined in the pathological laboratory of the University of Michigan, 1895–1913. By Aldred Scott Warthin. 1913. CA Cancer J. Clin. 35, 348–359 (1985).

    Google Scholar 

  351. Warthin, A. S. The further study of a cancer family. J. Cancer Res. 9, 279–286 (1925).

    Google Scholar 

  352. Hauser, I. & Weller, C. A further report on the cancer family of Warthin. J. Cancer Res. 27, 434–449 (1936).

    Google Scholar 

  353. Douglas, J. A. et al. History and molecular genetics of Lynch syndrome in family G: a century later. JAMA 294, 2195–2202 (2005).

    Article  CAS  PubMed  Google Scholar 

  354. Lynch, H. T., Shaw, M. W., Magnuson, C. W., Larsen, A. L. & Krush, A. J. Hereditary factors in cancer. Study of two large midwestern kindreds. Arch. Intern. Med. 117, 206–212 (1966).

    Article  CAS  PubMed  Google Scholar 

  355. Lynch, H. T. & Krush, A. J. Heredity and adenocarcinoma of the colon. Gastroenterology 53, 517–527 (1967).

    Article  CAS  PubMed  Google Scholar 

  356. Lynch, H. T., Krush, A. J. & Larsen, A. L. Heredity and multiple primary malignant neoplasms: six cancer families. Am. J. Med. Sci. 254, 322–329 (1967).

    Article  CAS  PubMed  Google Scholar 

  357. Lynch, H. T. & Krush, A. J. Cancer family ‘G’ revisited: 1895–1970. Cancer 27, 1505–1511 (1971).

    Article  CAS  PubMed  Google Scholar 

  358. Boland, C. Cancer family syndrome. Am. J. Dig. Dis. 23, S25–S27 (1978).

    Article  Google Scholar 

  359. Boland, C. R. Evolution of the nomenclature for the hereditary colorectal cancer syndromes. Fam. Cancer 4, 211–218 (2005).

    Article  PubMed  Google Scholar 

  360. Kalady, M. F., Kravochuck, S. E., Heald, B., Burke, C. A. & Church, J. M. Defining the adenoma burden in lynch syndrome. Dis. Colon. Rectum 58, 388–392 (2015).

    Article  PubMed  Google Scholar 

  361. Vasen, H. F., Mecklin, J. P., Khan, P. M. & Lynch, H. T. The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis. Colon. Rectum 34, 424–425 (1991).

    Article  CAS  PubMed  Google Scholar 

  362. Vasen, H. F., Watson, P., Mecklin, J. P. & Lynch, H. T. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116, 1453–1456 (1999).

    Article  CAS  PubMed  Google Scholar 

  363. Lynch, H. T. et al. History of the international collaborative group on hereditary non polyposis colorectal cancer. Fam. Cancer 2, 3–5 (2003).

    Article  PubMed  Google Scholar 

  364. Farabaugh, P. J., Schmeissner, U., Hofer, M. & Miller, J. H. Genetic studies of the lac repressor. VII. On the molecular nature of spontaneous hotspots in the lacI gene of Escherichia coli. J. Mol. Biol. 126, 847–857 (1978).

    Article  CAS  PubMed  Google Scholar 

  365. Streisinger, G. & Owen, J. Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics 109, 633–659 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Levinson, G. & Gutman, G. A. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 15, 5323–5338 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  367. Schaaper, R. M. & Dunn, R. L. Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc. Natl Acad. Sci. USA 84, 6220–6224 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Peinado, M. A., Malkhosyan, S., Velazquez, A. & Perucho, M. Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc. Natl Acad. Sci. USA 89, 10065–10069 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. & Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363, 558–561 (1993).

    Article  CAS  PubMed  Google Scholar 

  370. Thibodeau, S. N., Bren, G. & Schaid, D. Microsatellite instability in cancer of the proximal colon. Science 260, 816–819 (1993).

    Article  CAS  PubMed  Google Scholar 

  371. Peltomäki, P. et al. Genetic mapping of a locus predisposing to human colorectal cancer. Science 260, 810–812 (1993).

    Article  PubMed  Google Scholar 

  372. Aaltonen LA et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

    Article  PubMed  Google Scholar 

  373. Lindblom, A., Tannergård, P., Werelius, B. & Nordenskjöld, M. Genetic mapping of a second locus predisposing to hereditary non-polyposis colon cancer. Nat. Genet. 5, 279–282 (1993).

    Article  CAS  PubMed  Google Scholar 

  374. Leach, F. S. et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75, 1215–1225 (1993).

    Article  CAS  PubMed  Google Scholar 

  375. Papadopoulos, N. et al. Mutation of a mutL homolog in hereditary colon cancer. Science 263, 1625–1629 (1994).

    Article  CAS  PubMed  Google Scholar 

  376. Fishel, R. et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75, 1027–1038 (1993).

    Article  CAS  PubMed  Google Scholar 

  377. Bronner, C. E. et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368, 258–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  378. Liu, B. et al. hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res. 54, 4590–4594 (1994).

    CAS  PubMed  Google Scholar 

  379. Nicolaides, N. C. et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371, 75–80 (1994).

    Article  CAS  PubMed  Google Scholar 

  380. Miyaki, M. et al. Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat. Genet. 17, 271–272 (1997).

    Article  CAS  PubMed  Google Scholar 

  381. Strand, M., Earley, M. C., Crouse, G. F. & Petes, T. D. Mutations in the MSH3 gene preferentially lead to deletions within tracts of simple repetitive DNA in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 92, 10418–10421 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Tran, H. T., Keen, J. D., Kricker, M., Resnick, M. A. & Gordenin, D. A. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol. Cell Biol. 17, 2859–2865 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Risinger, J. I., Umar, A., Barrett, J. C. & Kunkel, T. A. A hPMS2 mutant cell line is defective in strand-specific mismatch repair. J. Biol. Chem. 270, 18183–18186 (1995).

    Article  CAS  PubMed  Google Scholar 

  384. Parsons, R. et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75, 1227–1236 (1993).

    Article  CAS  PubMed  Google Scholar 

  385. Umar, A. et al. Defective mismatch repair in extracts of colorectal and endometrial cancer cell lines exhibiting microsatellite instability. J. Biol. Chem. 269, 14367–14370 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Luis A. Diaz Jr..

Ethics declarations

Competing interests

B.R. has acted as a consultant and/or adviser for Neophore and Artios Pharma and is an inventor of a patent related to MMRd and immunotherapy. C.A. has received grants or contracts from Abbvie, Artios, AstraZeneca, Clovis and Genentech/Roche; has participated on a Data Safety Monitoring Board or Advisory Board for AstraZeneca, Merck and WIRB-Copernicus Group (WCG); and has served in a leadership or fiduciary role for the GOG Foundation and NRG Oncology. M.B.F. has acted as a consultant and/or adviser to Abbott Laboratories, Bristol Myers Squibb and Genzyme. L.A.D.J. is a member of the board of directors of Epitope and Quest Diagnostics and is a compensated consultant to Absci, Blackstone, Delfi, GSK, Innovatus Capital Partners, Seer and Neophore. L.A.D.J. is also an inventor of multiple licenced patents related to technology for circulating tumour DNA analyses and MMRd for diagnosis and therapy; some of these licences and relationships are associated with equity or royalty payments to the inventors. He holds equity in Absci, Delfi, Epitope, Neophore, Quest Diagnostics and Seer. He divested his equity in Personal Genome Diagnostics to LabCorp in February 2022 and divested his equity in Thrive Earlier Detection to Exact Biosciences in January 2021. His spouse holds equity in Amgen. The terms of all these arrangements are being managed by Memorial Sloan Kettering in accordance with their conflict-of-interest policy. P.J. declares no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks Toni Seppälä, who co-reviewed with Joni Panula; Julien Taieb; and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johannet, P., Rousseau, B., Aghajanian, C. et al. Therapeutic targeting of mismatch repair-deficient cancers. Nat Rev Clin Oncol 22, 734–759 (2025). https://doi.org/10.1038/s41571-025-01054-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-025-01054-6

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer