Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular blueprint of targeted radionuclide therapy

Abstract

Targeted radionuclide therapy (TRT) is a cutting-edge treatment approach in oncology that combines the molecular precision of targeted agents with the effect of radiotherapy to selectively deliver cytotoxic radiation to cancer cells. Research efforts from the past few decades have led to a diverse molecular landscape of TRT and have provided lessons for further rational development of targeted radiopharmaceuticals and expansion of the clinical applications of this treatment modality. In this Review, we discuss TRT in the context of therapeutic approaches currently available in oncology, describe the broad range of established and emerging targets for TRT including innovative approaches to exploit vulnerabilities presented by the tumour microenvironment, and address the challenges for clinical translation and molecular optimization. By bridging technological innovation and preclinical discoveries with real-world clinical implementation, ongoing research on TRT is seeking to provide effective and safe treatment options for patients across a variety of cancer types and treatment settings. Overall, we emphasize the transformative potential of TRT and highlight how a comprehensive understanding of what constitutes an optimal target can redefine clinical practice, fostering the evolution of TRT as a highly individualized and adaptable therapeutic option that improves outcomes across a broad range of cancer types.

Key points

  • Targeted radionuclide therapy (TRT) is a systemic therapeutic modality that uses ligands to tumour-associated targets to deliver radioactive payloads, leveraging molecular recognition to cause selective radiation-induced cancer cell damage while minimizing the toxicities in non-malignant tissues.

  • Increased radionuclide accessibility and advances in vector design have unlocked the potential of TRTs against a broad spectrum of tumour-associated targets, spanning pan-cancer markers that leverage tumour and microenvironmental vulnerabilities to targets confined to specific cancers.

  • Owing to advances in profiling technologies, artificial intelligence-powered tools and drug repurposing, the identification and validation of novel TRT targets is progressing at unprecedented speed.

  • Robust clinical translation requires trials that emulate real-world complexities and dynamically adapt treatments to shifting target expression, with continuous monitoring to overcome heterogeneity and resistance, while minimizing the toxicities that typically arise with conventional cancer therapies.

  • Innovations in multimerized, multitargeted, covalent-bond ligation and pretargeting strategies can improve tumour targeting while overcoming off-target and on-target off-tumour effects, and penetration barriers, expanding the potential of TRT across complex cancer landscapes.

  • Incorporating TRT early in the course of treatment and strategically selecting combination partners, such as chemotherapy, immunotherapy and targeted therapies, can help to maximize therapeutic efficacy, address resistance and enable broader oncology applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical application of TRT in oncology.
Fig. 2: Components of targeted radionuclide therapy.
Fig. 3: Molecular targeting mechanisms in TRT.
Fig. 4: Timeline of advances and innovations in TRT molecular targeting.

Similar content being viewed by others

References

  1. Bodei, L., Herrmann, K., Schöder, H., Scott, A. M. & Lewis, J. S. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat. Rev. Clin. Oncol. 19, 534–550 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sgouros, G., Bodei, L., McDevitt, M. R. & Nedrow, J. R. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat. Rev. Drug. Discov. 19, 589–608 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Strosberg, J. et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Sartor, O. et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N. Engl. J. Med. 385, 1091–1103 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Kratochwil, C. et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med. 57, 1941–1944 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. Delpassand, E. S. et al. Targeted α-emitter therapy with 212Pb-DOTAMTATE for the treatment of metastatic SSTR-expressing neuroendocrine tumors: first-in-humans dose-escalation clinical trial. J. Nucl. Med. 63, 1326–1333 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pouget, J. P. & Constanzo, J. Revisiting the radiobiology of targeted alpha therapy. Front. Med. 8, 692436 (2021).

    Article  Google Scholar 

  8. Marcu, L., Bezak, E. & Allen, B. J. Global comparison of targeted alpha vs targeted beta therapy for cancer: in vitro, in vivo and clinical trials. Crit. Rev. Oncol. Hematol. 123, 7–20 (2018).

    Article  PubMed  Google Scholar 

  9. O’Donoghue, J. A., Bardiès, M. & Wheldon, T. E. Relationships between tumor size and curability for uniformly targeted therapy with beta-emitting radionuclides. J. Nucl. Med. 36, 1902–1909 (1995).

    PubMed  Google Scholar 

  10. Aghevlian, S., Boyle, A. J. & Reilly, R. M. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. Adv. Drug. Deliv. Rev. 109, 102–118 (2017).

    Article  PubMed  CAS  Google Scholar 

  11. Rogoza, O., Megnis, K., Kudrjavceva, M., Gerina-Berzina, A. & Rovite, V. Role of somatostatin signalling in neuroendocrine tumours. Int. J. Mol. Sci. 23, 1447 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bakht, M. K. & Beltran, H. Biological determinants of PSMA expression, regulation and heterogeneity in prostate cancer. Nat. Rev. Urol. 22, 26–45 (2025).

    Article  PubMed  CAS  Google Scholar 

  13. Piccart-Gebhart, M. J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. Bhusari, P. et al. Development of Lu-177-trastuzumab for radioimmunotherapy of HER2 expressing breast cancer and its feasibility assessment in breast cancer patients. Int. J. Cancer 140, 938–947 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. Pougoue Ketchemen, J. et al. Complete remissions of HER2-positive trastuzumab-resistant xenografts using a potent [225Ac]Ac-labeled anti-HER2 antibody–drug radioconjugate. Clin. Cancer Res. 31, 685–696 (2025).

    Article  PubMed  Google Scholar 

  16. Privé, B. M. et al. Fibroblast activation protein-targeted radionuclide therapy: background, opportunities, and challenges of first (pre)clinical studies. Eur. J. Nucl. Med. Mol. Imaging 50, 1906–1918 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Strosberg, J. et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu-dotatate in the phase III NETTER-1 trial. J. Clin. Oncol. 36, 2578–2584 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fizazi, K. et al. Health-related quality of life and pain outcomes with [177Lu]Lu-PSMA-617 plus standard of care versus standard of care in patients with metastatic castration-resistant prostate cancer (VISION): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 24, 597–610 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Baltussen, J. C. et al. Chemotherapy-related toxic effects and quality of life and physical functioning in older patients. JAMA Netw. Open. 6, e2339116 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hofman, M. S. et al. [177Lu]Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397, 797–804 (2021).

    Article  PubMed  CAS  Google Scholar 

  21. Hofman, M. S. et al. Overall survival with [177Lu]Lu-PSMA-617 versus cabazitaxel in metastatic castration-resistant prostate cancer (TheraP): secondary outcomes of a randomised, open-label, phase 2 trial. Lancet Oncol. 25, 99–107 (2024).

    Article  PubMed  CAS  Google Scholar 

  22. Morris, M. J. et al. 177Lu-PSMA-617 versus a change of androgen receptor pathway inhibitor therapy for taxane-naive patients with progressive metastatic castration-resistant prostate cancer (PSMAfore): a phase 3, randomised, controlled trial. Lancet 404, 1227–1239 (2024).

    Article  PubMed  CAS  Google Scholar 

  23. Feuerecker, B. et al. Activity and adverse events of actinium-225-PSMA-617 in advanced metastatic castration-resistant prostate cancer after failure of lutetium-177-PSMA. Eur. Urol. 79, 343–350 (2021).

    Article  PubMed  CAS  Google Scholar 

  24. Sathekge, M. M. et al. Actinium-225-PSMA radioligand therapy of metastatic castration-resistant prostate cancer (WARMTH Act): a multicentre, retrospective study. Lancet Oncol. 25, 175–183 (2024).

    Article  PubMed  CAS  Google Scholar 

  25. Zeng, Z. C. et al. Comparison between radioimmunotherapy and external beam radiation therapy for patients with hepatocellular carcinoma. Eur. J. Nucl. Med. Mol. Imaging 29, 1657–1668 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. Partelli, S. et al. Neoadjuvant 177Lu-DOTATATE for non-functioning pancreatic neuroendocrine tumours (NEOLUPANET): multicentre phase II study. Br. J. Surg. 111, znae178 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  27. van Vliet, E. I. et al. Neoadjuvant treatment of nonfunctioning pancreatic neuroendocrine tumors with [177Lu-DOTA0,Tyr3]octreotate. J. Nucl. Med. 56, 1647–1653 (2015).

    Article  PubMed  Google Scholar 

  28. Camidge, D. R., Pao, W. & Sequist, L. V. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat. Rev. Clin. Oncol. 11, 473–481 (2014).

    Article  PubMed  CAS  Google Scholar 

  29. Fu, H. et al. Fibroblast activation protein-targeted radioligand therapy with 177Lu-EB-FAPI for metastatic radioiodine-refractory thyroid cancer: first-in-human, dose-escalation study. Clin. Cancer Res. 29, 4740–4750 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kryza, D. et al. A multicentric, single arm, open-label, phase I/II study evaluating PSMA targeted radionuclide therapy in adult patients with metastatic clear cell renal cancer (PRadR). BMC Cancer 24, 163 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Escorcia, F. E. et al. ImmunoPET predicts response to Met-targeted radioligand therapy in models of pancreatic cancer resistant to Met kinase inhibitors. Theranostics 10, 151–165 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Chan, J. A. et al. Phase 3 trial of cabozantinib to treat advanced neuroendocrine tumors. N. Engl. J. Med. 392, 653–665 (2025).

    Article  PubMed  CAS  Google Scholar 

  34. Tsuchikama, K., Anami, Y., Ha, S. Y. Y. & Yamazaki, C. M. Exploring the next generation of antibody–drug conjugates. Nat. Rev. Clin. Oncol. 21, 203–223 (2024).

    Article  PubMed  CAS  Google Scholar 

  35. Chi, K. N. et al. Safety analyses of the phase 3 VISION trial of [17Lu]Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Eur. Urol. 85, 382–391 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Petrylak, D. P. et al. PSMA ADC monotherapy in patients with progressive metastatic castration-resistant prostate cancer following abiraterone and/or enzalutamide: efficacy and safety in open-label single-arm phase 2 study. Prostate 80, 99–108 (2020).

    Article  PubMed  CAS  Google Scholar 

  37. de Bono, J. S. et al. Phase I study of MEDI3726: a prostate-specific membrane antigen-targeted antibody–drug conjugate, in patients with mCRPC after failure of abiraterone or enzalutamide. Clin. Cancer Res. 27, 3602–3609 (2021).

    Article  PubMed  Google Scholar 

  38. André, F. et al. Trastuzumab deruxtecan versus treatment of physician’s choice in patients with HER2-positive metastatic breast cancer (DESTINY-Breast02): a randomised, open-label, multicentre, phase 3 trial. Lancet 401, 1773–1785 (2023).

    Article  PubMed  Google Scholar 

  39. Sands, J. et al. Analysis of drug-related interstitial lung disease (ILD) inpatients (pts) treated with datopotamab deruxtecan (Dato-DXd) [abstract]. J. Clin. Oncol. 42, 8623 (2024).

    Article  Google Scholar 

  40. Rao, Y. et al. Statins enhance the efficacy of HER2-targeting radioligand therapy in drug-resistant gastric cancers. Proc. Natl Acad. Sci. USA 120, e2220413120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Natangelo, S. et al. Radiation therapy, tissue radiosensitization, and potential synergism in the era of novel antibody–drug conjugates. Crit. Rev. Oncol. Hematol. 195, 104270 (2024).

    Article  PubMed  Google Scholar 

  42. Sridaran, D. et al. Prostate cancer immunotherapy: improving clinical outcomes with a multi-pronged approach. Cell Rep. Med. 4, 101199 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Abida, W. et al. Analysis of the prevalence of microsatellite instability in prostate cancer and response to immune checkpoint blockade. JAMA Oncol. 5, 471–478 (2019).

    Article  PubMed  Google Scholar 

  44. Antonarakis, E. S. et al. Pembrolizumab for treatment-refractory metastatic castration-resistant prostate cancer: multicohort, open-label phase II KEYNOTE-199 study. J. Clin. Oncol. 38, 395–405 (2020).

    Article  PubMed  CAS  Google Scholar 

  45. Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345–1356 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    Article  PubMed  CAS  Google Scholar 

  47. Patel, R. B. et al. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci. Transl. Med. 13, eabb3631 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ertveldt, T. et al. Targeted radionuclide therapy with low and high-dose lutetium-177-labeled single domain antibodies induces distinct immune signatures in a mouse melanoma model. Mol. Cancer Ther. 21, 1136–1148 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Vardaki, I. et al. Radium-223 treatment increases immune checkpoint expression in extracellular vesicles from the metastatic prostate cancer bone microenvironment. Clin. Cancer Res. 27, 3253–3264 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Pouget, J. P., Chan, T. A., Galluzzi, L. & Constanzo, J. Radiopharmaceuticals as combinatorial partners for immune checkpoint inhibitors. Trends Cancer 9, 968–981 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Brudno, J. N. & Kochenderfer, J. N. Current understanding and management of CAR T cell-associated toxicities. Nat. Rev. Clin. Oncol. 21, 501–521 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Palecki, J. et al. T-cell redirecting bispecific antibodies: a review of a novel class of immuno-oncology for advanced prostate cancer. Cancer Biol. Ther. 25, 2356820 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tran, B. et al. Results from a phase I study of AMG 160, a half-life extended (HLE), PSMA-targeted, bispecific T-cell engager (BiTE®) immune therapy for metastatic castration-resistant prostate cancer (mCRPC) [abstract 609O]. Ann. Oncol. 31, S507 (2020).

    Article  Google Scholar 

  54. Kelly, W. K. et al. Interim results from a phase I study of AMG 509 (xaluritamig), a STEAP1 x CD3 XmAb 2+1 immune therapy in patients with metastatic castration-resistant prostate cancer (mCRPC) [abstract 264P]. Ann. Oncol. 34, S1576 (2023).

    Article  Google Scholar 

  55. Carballo, M. & Quiros, R. M. To treat or not to treat: the role of adjuvant radioiodine therapy in thyroid cancer patients. J. Oncol. 2012, 707156 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Müller, C., van der Meulen, N. P. & Schibli, R. Opportunities and potential challenges of using terbium-161 for targeted radionuclide therapy in clinics. Eur. J. Nucl. Med. Mol. Imaging 50, 3181–3184 (2023).

    Article  PubMed  Google Scholar 

  57. Wang, X. et al. Druggability of targets for diagnostic radiopharmaceuticals. ACS Pharmacol. Transl. Sci. 6, 1107–1119 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  PubMed  CAS  Google Scholar 

  59. Cooper, A. J., Sequist, L. V. & Lin, J. J. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat. Rev. Clin. Oncol. 19, 499–514 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bejarano, L., Jordāo, M. J. C. & Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 11, 933–959 (2021).

    Article  PubMed  CAS  Google Scholar 

  61. Rummel, S., Valente, A. L., Kane, J. L., Shriver, C. D. & Ellsworth, R. E. Genomic (in)stability of the breast tumor microenvironment. Mol. Cancer Res. 10, 1526–1531 (2012).

    Article  PubMed  CAS  Google Scholar 

  62. Qiu, W. et al. No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat. Genet. 40, 650–655 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hosein, A. N. et al. Breast carcinoma-associated fibroblasts rarely contain p53 mutations or chromosomal aberrations. Cancer Res. 70, 5770–5777 (2010).

    Article  PubMed  CAS  Google Scholar 

  64. Palumbo, A. Jr., Da Costa Nde, O., Bonamino, M. H., Pinto, L. F. & Nasciutti, L. E. Genetic instability in the tumor microenvironment: a new look at an old neighbor. Mol. Cancer 14, 145 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. van der Heide, C. D. & Dalm, S. U. Radionuclide imaging and therapy directed towards the tumor microenvironment: a multi-cancer approach for personalized medicine. Eur. J. Nucl. Med. Mol. Imaging 49, 4616–4641 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Galogre, M., Rodin, D., Pyatnitskiy, M., Mackelprang, M. & Koman, I. A review of HER2 overexpression and somatic mutations in cancers. Crit. Rev. Oncol. Hematol. 186, 103997 (2023).

    Article  PubMed  Google Scholar 

  67. Zhang, T. et al. Carrier systems of radiopharmaceuticals and the application in cancer therapy. Cell Death Discov. 10, 16 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Albert, N. L. et al. Translating the theranostic concept to neuro-oncology: disrupting barriers. Lancet Oncol. 25, e441–e451 (2024).

    Article  PubMed  Google Scholar 

  69. Jain, R. K. & Baxter, L. T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48, 7022–7032 (1988).

    PubMed  CAS  Google Scholar 

  70. van Osdol, W., Fujimori, K. & Weinstein, J. N. An analysis of monoclonal antibody distribution in microscopic tumor nodules: consequences of a “binding site barrier”. Cancer Res. 51, 4776–4784 (1991).

    PubMed  Google Scholar 

  71. Thurber, G. M., Schmidt, M. M. & Wittrup, K. D. Antibody tumor penetration: transport opposed by systemic and antigen-mediated clearance. Adv. Drug. Deliv. Rev. 60, 1421–1434 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Thurber, G. M., Zajic, S. C. & Wittrup, K. D. Theoretic criteria for antibody penetration into solid tumors and micrometastases. J. Nucl. Med. 48, 995–999 (2007).

    Article  PubMed  CAS  Google Scholar 

  73. Sgouros, G. Plasmapheresis in radioimmunotherapy of micrometastases: a mathematical modeling and dosimetrical analysis. J. Nucl. Med. 33, 2167–2179 (1992).

    PubMed  CAS  Google Scholar 

  74. Le Rhun, E. et al. Targeted radionuclide therapy for patients with central nervous system metastasis: overlooked potential? Neuro-Oncol. 26, S229–S241 (2024).

    Article  PubMed  Google Scholar 

  75. Zhang, V., Taparra, K., Fisher, G., Aparici, C. & Soltys, S. G. Definitive treatment of brain metastases from a neuroendocrine tumor with peptide receptor radionuclide therapy with 117Lutetium DOTATATE: a case report. Cureus 15, e45327 (2023).

    PubMed  PubMed Central  Google Scholar 

  76. Sathekge, M. M. et al. Treatment of brain metastases of castration-resistant prostate cancer with 225Ac-PSMA-617. Eur. J. Nucl. Med. Mol. Imaging 46, 1756–1757 (2019).

    Article  PubMed  Google Scholar 

  77. Puttemans, J., Lahoutte, T., D’Huyvetter, M. & Devoogdt, N. Beyond the barrier: targeted radionuclide therapy in brain tumors and metastases. Pharmaceutics 11, 376 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Amerein, A. et al. Intraarterial administration of peptide receptor radionuclide therapy in patients with advanced meningioma: initial safety and efficacy. J. Nucl. Med. 65, 1911–1916 (2024).

    PubMed  CAS  Google Scholar 

  79. Cheal, S. M., Chung, S. K., Vaughn, B. A., Cheung, N.-K. V. & Larson, S. M. Pretargeting: a path forward for radioimmunotherapy. J. Nucl. Med. 63, 1302–1315 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Paillas, S. et al. Localized irradiation of cell membrane by Auger electrons is cytotoxic through oxidative stress-mediated nontargeted effects. Antioxid. Redox Signal. 25, 467–484 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Stock, J. K., Jones, N. P., Hammonds, T., Roffey, J. & Dillon, C. Addressing the right targets in oncology: challenges and alternative approaches. SLAS Discov. 20, 305–317 (2015).

    Article  Google Scholar 

  82. Tomuleasa, C. et al. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal. Transduct. Target. Ther. 9, 201 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Akhoundova, D. & Rubin, M. A. Clinical application of advanced multi-omics tumor profiling: shaping precision oncology of the future. Cancer Cell 40, 920–938 (2022).

    Article  PubMed  CAS  Google Scholar 

  84. Chang, K. et al. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet. 45, 1113–1120 (2013).

    Article  CAS  Google Scholar 

  85. Lonsdale, J. et al. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

    Article  CAS  Google Scholar 

  86. Edwards, N. J. et al. The CPTAC data portal: a resource for cancer proteomics research. J. Proteome Res. 14, 2707–2713 (2015).

    Article  PubMed  CAS  Google Scholar 

  87. Aksoy, B. A. et al. CTD2 dashboard: a searchable web interface to connect validated results from the cancer target discovery and development network. Database 2017, bax054 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ghoussaini, M. et al. Open targets genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 49, D1311–D1320 (2020).

    Article  PubMed Central  Google Scholar 

  89. Piñero, J. et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 48, D845–D855 (2019).

    PubMed Central  Google Scholar 

  90. Knox, C. et al. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 52, D1265–D1275 (2024).

    Article  PubMed  CAS  Google Scholar 

  91. Wenteler, A., Cabrera, C. P., Wei, W., Neduva, V. & Barnes, M. R. AI approaches for the discovery and validation of drug targets. Camb. Prisms: Precis. Med. 2, e7 (2024).

    Google Scholar 

  92. You, Y. et al. Artificial intelligence in cancer target identification and drug discovery. Signal. Transduct. Target. Ther. 7, 156 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold all-atom. Science 384, eadl2528 (2024).

    Article  PubMed  CAS  Google Scholar 

  95. Wallach, I., Dzamba, M. & Heifets, A. AtomNet: a deep convolutional neural network for bioactivity prediction in structure-based drug discovery. Preprint at ArXiv abs/1510.02855 (2015).

  96. Lee, J. et al. BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36, 1234–1240 (2020).

    Article  PubMed  CAS  Google Scholar 

  97. Huang, K. et al. A foundation model for clinician-centered drug repurposing. Nat. Med. 30, 3601–3613 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Zeng, X. et al. deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics 35, 5191–5198 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Mullowney, M. W. et al. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug. Discov. 22, 895–916 (2023).

    Article  PubMed  CAS  Google Scholar 

  100. Baratto, L. et al. PSMA- and GRPR-targeted PET: results from 50 patients with biochemically recurrent prostate cancer. J. Nucl. Med. 62, 1545–1549 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Schollhammer, R. et al. Comparison of 68Ga-PSMA-617 PET/CT and 68Ga-RM2 PET/CT in patients with localized prostate cancer who are candidates for radical prostatectomy: a prospective, single-arm, single-center, phase II study. J. Nucl. Med. 64, 379–385 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Witzig, T. E. et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J. Clin. Oncol. 20, 2453–2463 (2002).

    Article  PubMed  CAS  Google Scholar 

  103. Kaminski, M. S. et al. Pivotal study of iodine I 131 tositumomab for chemotherapy-refractory low-grade or transformed low-grade B-cell non-Hodgkin’s lymphomas. J. Clin. Oncol. 19, 3918–3928 (2001).

    Article  PubMed  CAS  Google Scholar 

  104. Ertveldt, T. et al. Targeted α-therapy using 225Ac radiolabeled single-domain antibodies induces antigen-specific immune responses and instills immunomodulation both systemically and at the tumor microenvironment. J. Nucl. Med. 64, 751–758 (2023).

    Article  PubMed  CAS  Google Scholar 

  105. Kang, L. et al. Noninvasive evaluation of CD20 expression using 64Cu-labeled F(ab’)2 fragments of obinutuzumab in lymphoma. J. Nucl. Med. 62, 372–378 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Longtine, M. et al. Radiolabeling of anti-CD20 ofatumumab with actinium-225 (225Ac) and therapeutic efficacy in a preclinical disseminated lymphoma model. J. Nucl. Med. 63, 4031–4031 (2022).

    Google Scholar 

  107. Pryma, D. A. et al. Efficacy and safety of high-specific-activity 131I-MIBG therapy in patients with advanced pheochromocytoma or paraganglioma. J. Nucl. Med. 60, 623–630 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. de Kraker, J. et al. Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur. J. Cancer 44, 551–556 (2008).

    Article  PubMed  Google Scholar 

  109. Maric, I. et al. Efficacy and safety of 124I-MIBG dosimetry-guided high-activity 11)I-MIBG therapy of advanced pheochromocytoma or neuroblastoma. J. Nucl. Med. 64, 885–891 (2023).

    Article  PubMed  CAS  Google Scholar 

  110. Society of Nuclear Medicine and Molecular Imaging. Lantheus to discontinue production of Azedra. SNMMI https://snmmi.org/Web/News/Articles/Lantheus-to-Discontinue-Production-of-Azedra.aspx (2023).

  111. US Food and Drug Administration. NDA 209607: Azedra. fda.gov https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=209607 (2024).

  112. Strosberg, J. R., Al-Toubah, T., El-Haddad, G., Reidy Lagunes, D. & Bodei, L. Sequencing of somatostatin-receptor-based therapies in neuroendocrine tumor patients. J. Nucl. Med. 65, 340–348 (2024).

    Article  PubMed  CAS  Google Scholar 

  113. Strosberg, J. R. et al. 177Lu-dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 22, 1752–1763 (2021).

    Article  PubMed  CAS  Google Scholar 

  114. Strosberg, J. et al. Impact of liver tumour burden, alkaline phosphatase elevation, and target lesion size on treatment outcomes with 177Lu-dotatate: an analysis of the NETTER-1 study. Eur. J. Nucl. Med. Mol. Imaging 47, 2372–2382 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Singh, S. et al. [177Lu]Lu-DOTA-TATE plus long-acting octreotide versus high-dose long-acting octreotide for the treatment of newly diagnosed, advanced grade 2-3, well-differentiated, gastroenteropancreatic neuroendocrine tumours (NETTER-2): an open-label, randomised, phase 3 study. Lancet 403, 2807–2817 (2024).

    Article  PubMed  CAS  Google Scholar 

  116. Singh, S. et al. First-line efficacy of [177Lu]Lu-DOTA-TATE in patients with advanced grade 2 and grade 3, well-differentiated gastroenteropancreatic neuroendocrine tumors by tumor grade and primary origin: subgroup analysis of the phase III NETTER-2 study [abstract 211MO]. Ann. Oncol. 35, S92–S93 (2024).

    Article  Google Scholar 

  117. Gaze, M. N. et al. Safety and dosimetry of [177Lu]Lu-DOTA-TATE in adolescent patients with somatostatin receptor-positive gastroenteropancreatic neuroendocrine tumours, or pheochromocytomas and paragangliomas: primary analysis of the phase II NETTER-P study. Eur. J. Nucl. Med. Mol. Imaging https://doi.org/10.1007/s00259-025-07246-7 (2025).

  118. Sen, I., Malik, D., Thakral, P. & Schultz, M. 212Pb-VMT-α-NET targeted alpha therapy in metastatic neuroendocrine tumors: first in human study on safety and efficacy [abstract]. J. Nucl. Med. 65, 242556 (2024).

    Google Scholar 

  119. Sgouros, G. et al. 225Ac-DOTATATE dosimetry results from part 1 of the ACTION-1 trial. J. Nucl. Med. 64, P129–P129 (2023).

    Google Scholar 

  120. Reidy-Lagunes, D. et al. Phase I trial of well-differentiated neuroendocrine tumors (NETs) with radiolabeled somatostatin antagonist 177Lu-satoreotide tetraxetan. Clin. Cancer Res. 25, 6939–6947 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wild, D. et al. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: a pilot study. J. Nucl. Med. 55, 1248–1252 (2014).

    Article  PubMed  CAS  Google Scholar 

  122. Wild, D. et al. A phase I/II study of the safety and efficacy of [177Lu]Lu-satoreotide tetraxetan in advanced somatostatin receptor-positive neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 51, 183–195 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Fricke, J. et al. First-in-human administration of terbium-161-labelled somatostatin receptor subtype 2 antagonist ([161Tb]Tb-DOTA-LM3) in a patient with a metastatic neuroendocrine tumour of the ileum. Eur. J. Nucl. Med. Mol. Imaging 51, 2517–2519 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Nock, B. A., Kanellopoulos, P., Joosten, L., Mansi, R. & Maina, T. Peptide radioligands in cancer theranostics: agonists and antagonists. Pharmaceuticals 16, 674 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Dalm, S. U. et al. Comparison of the therapeutic response to treatment with a 177Lu-labeled somatostatin receptor agonist and antagonist in preclinical models. J. Nucl. Med. 57, 260–265 (2016).

    Article  PubMed  CAS  Google Scholar 

  126. Krebs, S. et al. Comparison of 68Ga-DOTA-JR11 PET/CT with dosimetric 177Lu-satoreotide tetraxetan (177Lu-DOTA-JR11) SPECT/CT in patients with metastatic neuroendocrine tumors undergoing peptide receptor radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 47, 3047–3057 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Somvanshi, R. K. & Kumar, U. Pathophysiology of GPCR homo- and heterodimerization: special emphasis on somatostatin receptors. Pharmaceuticals 5, 417–446 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Cantone, M. C., Dicitore, A. & Vitale, G. Somatostatin-dopamine chimeric molecules in neuroendocrine neoplasms. J. Clin. Med. 10, 501 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Liu, S. et al. EP14.01-020 trial in progress: [177Lu]Lu-DOTA-TATE combination therapy in treatment-naive extensive stage small cell lung cancer. J. Thorac. Oncol. 17, S534 (2022).

    Article  Google Scholar 

  130. Kurz, S. C. et al. Evaluation of the SSTR2-targeted radiopharmaceutical 177Lu-DOTATATE and SSTR2-specific 68Ga-DOTATATE PET as imaging biomarker in patients with intracranial meningioma. Clin. Cancer Res. 30, 680–686 (2024).

    Article  PubMed  CAS  Google Scholar 

  131. Curium Pharma. Curium announces ECLIPSE trial has met primary endpoint, demonstrating a statistically significant and clinically meaningful benefit for patients with PSMA-positive metastatic castration resistant prostate cancer. Curium https://www.curiumpharma.com/2024/11/13/eclipse-tiral-psma-prostate-cancer/ (2024).

  132. Kim, H. et al. PSMAddition: phase 3 trial of [177Lu]Lu-PSMA-617 plus standard of care (SoC) vs. Soc alone in patients with metastatic hormone-sensitive prostate cancer. Int. J. Radiat. Oncol. Biol., Phys. 120, e546 (2024).

    Google Scholar 

  133. Emmett, L. et al. [(177)Lu]Lu-PSMA-617 plus enzalutamide in patients with metastatic castration-resistant prostate cancer (ENZA-p): an open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 25, 563–571 (2024).

    Article  PubMed  CAS  Google Scholar 

  134. Emmett, L. et al. Overall survival and quality of life with [177Lu]Lu-PSMA-617 plus enzalutamide versus enzalutamide alone in metastatic castration-resistant prostate cancer (ENZA-p): secondary outcomes from a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 26, 291–299 (2025).

    Article  PubMed  CAS  Google Scholar 

  135. Azad, A. A. et al. Sequential [177Lu]Lu-PSMA-617 and docetaxel versus docetaxel in patients with metastatic hormone-sensitive prostate cancer (UpFrontPSMA): a multicentre, open-label, randomised, phase 2 study. Lancet Oncol. 25, 1267–1276 (2024).

    Article  PubMed  CAS  Google Scholar 

  136. Eapen, R. S. et al. Administering [177Lu]Lu-PSMA-617 prior to radical prostatectomy in men with high-risk localised prostate cancer (LuTectomy): a single-centre, single-arm, phase 1/2 study. Eur. Urol. 85, 217–226 (2024).

    Article  PubMed  CAS  Google Scholar 

  137. Tagawa, S. T. et al. Phase 1/2 study of fractionated dose lutetium-177–labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Cancer 125, 2561–2569 (2019).

    Article  PubMed  CAS  Google Scholar 

  138. Tagawa, S. T. et al. Prostate-specific membrane antigen-targeting alpha emitter via antibody delivery for metastatic castration-resistant prostate cancer: a phase I dose-escalation study of 225Ac-J591. J. Clin. Oncol. 42, 842–851 (2024).

    Article  PubMed  CAS  Google Scholar 

  139. Pandit-Taskar, N. et al. A phase 0 study to assess the biodistribution and pharmacokinetics of a radiolabeled antibody targeting human kallikrein 2 in participants with metastatic castration-resistant prostate cancer. J. Nucl. Med. 65, 1051–1056 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Vaz, S. et al. Influence of androgen deprivation therapy on PSMA expression and PSMA-ligand PET imaging of prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging 47, 9–15 (2020).

    Article  PubMed  CAS  Google Scholar 

  141. Fanti, S. et al. EAU-EANM consensus statements on the role of prostate-specific membrane antigen positron emission tomography/computed tomography in patients with prostate cancer and with respect to [177Lu]Lu-PSMA radioligand therapy. Eur. Urol. Oncol. 5, 530–536 (2022).

    Article  PubMed  Google Scholar 

  142. Lauri, C., Chiurchioni, L., Russo, V. M., Zannini, L. & Signore, A. PSMA expression in solid tumors beyond the prostate gland: ready for theranostic applications? J. Clin. Med. 11, 6590 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Baratto, L., Duan, H., Mäcke, H. & Iagaru, A. Imaging the distribution of gastrin-releasing peptide receptors in cancer. J. Nucl. Med. 61, 792–798 (2020).

    Article  PubMed  CAS  Google Scholar 

  144. Minamimoto, R. et al. Pilot comparison of 68Ga-RM2 PET and 68Ga-PSMA-11 PET in patients with biochemically recurrent prostate cancer. J. Nucl. Med. 57, 557–562 (2016).

    Article  PubMed  CAS  Google Scholar 

  145. Duan, H. et al. 68Ga-RM2 PET-MRI versus MRI alone for evaluation of patients with biochemical recurrence of prostate cancer: a single-centre, single-arm, phase 2/3 imaging trial. Lancet Oncol. 25, 501–508 (2024).

    Article  PubMed  CAS  Google Scholar 

  146. Gruber, L. et al. MITIGATE-NeoBOMB1, a phase I/IIa study to evaluate safety, pharmacokinetics, and preliminary imaging of 68Ga-NeoBOMB1, a gastrin-releasing peptide receptor antagonist, in GIST patients. J. Nucl. Med. 61, 1749–1755 (2020).

    Article  PubMed  CAS  Google Scholar 

  147. Ruigrok, E. A. M. et al. Safety of [177Lu]Lu-NeoB treatment: a preclinical study characterizing absorbed dose and acute, early, and late organ toxicity. Eur. J. Nucl. Med. Mol. Imaging 49, 4440–4451 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Damiana, T. S. T. et al. Side-by-side comparison of the two widely studied GRPR radiotracers, radiolabeled NeoB and RM2, in a preclinical setting. Eur. J. Nucl. Med. Mol. Imaging 50, 3851–3861 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Nordquist, L. et al. COMBAT: a study of 64Cu-SAR-BBN and 67Cu-SAR-BBN for identification and treatment of GRPr-expressing metastatic castrate resistant prostate cancer ineligible for therapy with 177Lu-PSMA-617 [abstract TPS247]. J. Nucl. Med. 65, 241478 (2024).

    Google Scholar 

  150. Kurth, J. et al. GRPr antagonist [177Lu]Lu-AMTG for treatment of castration resistant prostate cancer: first in-human biodistribution and dosimetry [abstract]. J. Nucl. Med. 65, 242300 (2024).

    Google Scholar 

  151. Holzleitner, N. et al. Preclinical evaluation of gastrin-releasing peptide receptor antagonists labeled with 161Tb and 177Lu: a comparative study. J. Nucl. Med. 65, 481–484 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. McDevitt, M. R. et al. Feed-forward alpha particle radiotherapy ablates androgen receptor-addicted prostate cancer. Nat. Commun. 9, 1629 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Morris, M. J. et al. A phase 1 study of JNJ-69086420 (JNJ-6420), an actinium-225 (225Ac)-labeled antibody targeting human kallikrein 2 (hK2), for metastatic castration-resistant prostate cancer (mCRPC) [abstract]. J. Clin. Oncol. 42, 5010 (2024).

    Article  Google Scholar 

  154. Lezaic, L. et al. [111In]In-CP04 as a novel cholecystokinin-2 receptor ligand with theranostic potential in patients with progressive or metastatic medullary thyroid cancer: final results of a GRAN-T-MTC phase I clinical trial. Eur. J. Nucl. Med. Mol. Imaging 50, 892–907 (2023).

    Article  PubMed  CAS  Google Scholar 

  155. Klingler, M. et al. DOTA-MGS5, a new cholecystokinin-2 receptor-targeting peptide analog with an optimized targeting profile for theranostic use. J. Nucl. Med. 60, 1010–1016 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Rottenburger, C. et al. Cholecystokinin 2 receptor agonist 177Lu-PP-F11N for radionuclide therapy of medullary thyroid carcinoma: results of the lumed phase 0a study. J. Nucl. Med. 61, 520–526 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Rottenburger, C. et al. In-vivo inhibition of neutral endopeptidase 1 results in higher absorbed tumor doses of [177Lu]Lu-PP-F11N in humans: the lumed phase 0b study. EJNMMI Res. 14, 37 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Christou, N. et al. Neurotensin pathway in digestive cancers and clinical applications: an overview. Cell Death Dis. 11, 1027 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Baum, R. P. et al. (177)Lu-3BP-227 for neurotensin receptor 1-targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J. Nucl. Med. 59, 809–814 (2018).

    Article  PubMed  CAS  Google Scholar 

  160. Liu, F. et al. Development of 177Lu-FL-091 for the treatment of NTSR1-positive cancers [abstract]. J. Nucl. Med. 65, 241875 (2024).

    Google Scholar 

  161. Sahlmann, C. O. et al. Repeated adjuvant anti-CEA radioimmunotherapy after resection of colorectal liver metastases: safety, feasibility, and long-term efficacy results of a prospective phase 2 study. Cancer 123, 638–649 (2017).

    Article  PubMed  CAS  Google Scholar 

  162. Li, L. et al. Immuno-PET of colorectal cancer with a CEA-targeted [68 Ga]Ga-nanobody: from bench to bedside. Eur. J. Nucl. Med. Mol. Imaging 50, 3735–3749 (2023).

    Article  PubMed  CAS  Google Scholar 

  163. Xiao, Y. et al. Identification of a CEACAM5 targeted nanobody for positron emission tomography imaging and near-infrared fluorescence imaging of colorectal cancer. Eur. J. Nucl. Med. Mol. Imaging 50, 2305–2318 (2023).

    Article  PubMed  CAS  Google Scholar 

  164. Minnix, M. et al. Improved tumor responses with sequential targeted α-particles followed by interleukin 2 immunocytokine therapies in treatment of CEA-positive breast and colon tumors in CEA transgenic mice. J. Nucl. Med. 63, 1859–1864 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Akhavan, D. et al. Phase I study of yttrium-90 radiolabeled M5A anti-carcinoembryonic antigen humanized antibody in patients with advanced carcinoembryonic antigen producing malignancies. Cancer Biother Radiopharm. 35, 10–15 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  166. Buck, A. K. et al. Imaging of C-X-C motif chemokine receptor 4 expression in 690 patients with solid or hematologic neoplasms using 68Ga-pentixafor PET. J. Nucl. Med. 63, 1687–1692 (2022).

    PubMed  CAS  Google Scholar 

  167. Lapa, C. et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed multiple myeloma. Theranostics 7, 1589–1597 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Werner, R. A. et al. CXCR4-directed imaging in solid tumors. Front. Oncol. 9, 770 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Rosenblat, T. L. et al. Treatment of patients with acute myeloid leukemia with the targeted alpha-particle nanogenerator actinium-225-lintuzumab. Clin. Cancer Res. 28, 2030–2037 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Orchard, K. et al. Efficient bone marrow irradiation and low uptake by non-haematological organs with an yttrium-90-anti-CD66 antibody prior to haematopoietic stem cell transplantation. Bone Marrow Transplant. 59, 1247–1257 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Tuazon, S. A. et al. 90Y-labeled anti-CD45 antibody allogeneic hematopoietic cell transplantation for high-risk multiple myeloma. Bone Marrow Transpl. 56, 202–209 (2021).

    Article  CAS  Google Scholar 

  172. Lindén, O. et al. 227Th-labeled anti-CD22 antibody (BAY 1862864) in relapsed/refractory CD22-positive non-Hodgkin lymphoma: a first-in-human, phase I study. Cancer Biother Radiopharm. 36, 672–681 (2021).

    PubMed  Google Scholar 

  173. Kolstad, A. et al. Phase 1/2a study of 177Lu-lilotomab satetraxetan in relapsed/refractory indolent non-Hodgkin lymphoma. Blood Adv. 4, 4091–4101 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Rioja-Blanco, E. et al. 161Tb radioimmunotherapy as a treatment for CD30-positive lymphomas. J. Nucl. Med. 66, 909–915 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Gayton, J. et al. Dose escalation study to evaluate safety, dosimetry, and PD of the HER2-directed radioligand CAM-H2 in patients with advanced HER2+ breast, gastric, GEJ, and other HER2+ solid tumors (trial ID: NCT04467515) [abstract]. J. Nucl. Med. 65, 242035 (2024).

    Google Scholar 

  176. Liu, Y. et al. Evaluation of a novel 177Lu-labelled therapeutic Affibody molecule with a deimmunized ABD domain and improved biodistribution profile. Eur. J. Nucl. Med. Mol. Imaging 51, 4038–4048 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Tikum, T. et al. Effectiveness of 225Ac-labeled anti-EGFR radioimmunoconjugate in EGFR-positive kirsten rat sarcoma viral oncogene and BRAF mutant colorectal cancer models. J. Nucl. Med. https://doi.org/10.2967/jnumed.123.266204 (2024).

    Article  PubMed  Google Scholar 

  178. Ulaner, G. et al. A phase 1, first-in-human, multicentre, open-label, dose-escalation study of [225Ac]-FPI-2068 in adult patients with advanced solid tumors[abstract]. J. Nucl. Med. 65, 242181 (2024).

    Google Scholar 

  179. Li, C. et al. 177Lu-labeled bispecific antibodies targeting EGFR and c-MET as radiotheranostics in murine NSCLC tumor model [abstract]. J. Nucl. Med. 65, 241901 (2024).

    Google Scholar 

  180. Pandit-Taskar, N. et al. Dose-escalation study of [225Ac]-FPI-1434 (FPI-1434) in patients (pts) with IGF-1R expressing advanced solid tumors: preliminary pharmacology and dosimetry results [abstract]. J. Nucl. Med. 64, P630 (2023).

    Google Scholar 

  181. Feng, X. et al. Clinical translation of a 68Ga-labeled integrin αvβ6)-targeting cyclic radiotracer for PET imaging of pancreatic cancer. J. Nucl. Med. 61, 1461–1467 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Quigley, N. G. et al. PET/CT imaging of head-and-neck and pancreatic cancer in humans by targeting the “cancer integrin” αvβ6 with Ga-68-trivehexin. Eur. J. Nucl. Med. Mol. Imaging 49, 1136–1147 (2022).

    Article  PubMed  CAS  Google Scholar 

  183. Davis, R. et al. First-in-human study of the theranostic pair [68Ga]Ga DOTA-5G and [177Lu]Lu DOTA-ABM-5G in pancreatic adenocarcinoma [abstract]. J. Nucl. Med. 64, P1300 (2023).

    Google Scholar 

  184. Koivisto, L., Bi, J., Häkkinen, L. & Larjava, H. Integrin αvβ6: structure, function and role in health and disease. Int. J. Biochem. Cell Biol. 99, 186–196 (2018).

    Article  PubMed  CAS  Google Scholar 

  185. Quigley, N. G. et al. Tracking a TGF-β activator in vivo: sensitive PET imaging of αvβ8-integrin with the Ga-68-labeled cyclic RGD octapeptide trimer Ga-68-triveoctin. EJNMMI Res. 10, 133 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Kossatz, S., Beer, A. J. & Notni, J. It’s time to shift the paradigm: translation and clinical application of non-αvβ3 integrin targeting radiopharmaceuticals. Cancers 13, 5958 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Immunomedics. Immunomedics provides update on phase 3 PANCRIT-1 trial of clivatuzumab tetraxetan in patients with advanced pancreatic cancer. MarketScreener https://www.marketscreener.com/quote/stock/IMMUNOMEDICS-INC-9671/news/Immunomedics-Inc-Provides-Update-on-Phase-3-PANCRIT-1-Trial-of-Clivatuzumab-Tetraxetan-in-Patients-38065612/ (2016).

  188. Hull, A. et al. The expression profile and textural characteristics of C595-reactive MUC1 in pancreatic ductal adenocarcinoma for targeted radionuclide therapy. Cancers 13, 61 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Hull, A. et al. In vitro characterisation of [177Lu]Lu-DOTA-C595 as a novel radioimmunotherapy for MUC1-CE positive pancreatic cancer. EJNMMI Radiopharm. Chem. 8, 18 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Mack, K. N. et al. Interrogating the theranostic capacity of a MUC16-targeted antibody for ovarian cancer. J. Nucl. Med. 65, 580–585 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Broer, L. N. et al. 89Zr-3,2-HOPO-mesothelin antibody PET imaging reflects tumor uptake of mesothelin-targeted 227Th-conjugate therapy in mice. J. Nucl. Med. 63, 1715–1721 (2022).

    PubMed  CAS  Google Scholar 

  192. Lu, Z. et al. Preclinical evaluation of 89Zr/177Lu-labeled amatuximab for theranostic application in pancreatic ductal adenocarcinoma. Int. J. Pharm. 667, 124946 (2024).

    Article  PubMed  CAS  Google Scholar 

  193. Wang, X. et al. Construction and preclinical evaluation of 211At labeled anti-mesothelin antibodies as potential targeted alpha therapy drugs. J. Radiat. Res. 61, 684–690 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Bayer. An open-label, first-in-human, multi-center study to evaluate the safety, tolerability, pharmacokinetics and anti-tumor activity of a thorium-227 labeled antibody-chelator conjugate, BAY2287411 injection, in patients with tumors known to express mesothelin. Bayer https://clinicaltrials.bayer.com/study/18795 (2023).

  195. Guzik, P. et al. Promising potential of [(177)Lu]Lu-DOTA-folate to enhance tumor response to immunotherapy — a preclinical study using a syngeneic breast cancer model. Eur. J. Nucl. Med. Mol. Imaging 48, 984–994 (2021).

    Article  PubMed  CAS  Google Scholar 

  196. Müller, C. et al. Direct in vitro and in vivo comparison of 161Tb and 177Lu using a tumour-targeting folate conjugate. Eur. J. Nucl. Med. Mol. Imaging 41, 476–485 (2014).

    Article  PubMed  Google Scholar 

  197. Zhang, C. et al. Preclinical melanoma imaging with 68Ga-labeled α-melanocyte-stimulating hormone derivatives using PET. Theranostics 7, 805–813 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Wharton, L. et al. Preclinical evaluation of MC1R targeting theranostic pair [155Tb]Tb-crown-αMSH and [161Tb]Tb-crown-αMSH. Nucl. Med. Biol. 136-137, 108925 (2024).

    Article  PubMed  CAS  Google Scholar 

  199. Zhang, C. et al. 177Lu melanoma therapy with a novel, metabolically stabilized MC1R-targeting ligand in a human melanoma model [abstract]. J. Nucl. Med. 63, 2872 (2022).

    Google Scholar 

  200. Orcutt, K. D. et al. Dosimetry of [212Pb]VMT01, a MC1R-targeted alpha therapeutic compound, and effect of free 208Tl on tissue absorbed doses. Molecules 27, 5831 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Morris, Z. S. et al. Interim safety and efficacy data of 212Pb-VMT01 in MC1R expressing melanoma [abstract]. J. Clin. Oncol. 43, 3099 (2025).

    Article  Google Scholar 

  202. Khushalani, N. I. et al. Preliminary results of first-in-human study of 225-actinium MTI-201 (225Ac-MTI-201) in metastatic uveal melanoma [abstract 1128P]. Ann. Oncol. 35, S742 (2024).

    Article  Google Scholar 

  203. Zhang, J. et al. Translational PET imaging of nectin-4 expression in multiple different cancers with 68Ga-N188. J. Nucl. Med. 65, 12S–18S (2024).

    Article  PubMed  CAS  Google Scholar 

  204. Esposito, T. V. et al. Adaptation of the antibody-drug conjugate PADCEV into an ImmunoPET agent against Nectin-4 [abstract]. J. Nucl. Med. 65, 242152 (2024).

    Google Scholar 

  205. Babeker, H. et al. 225Ac/89Zr-labeled N4MU01 radioimmunoconjugates as theranostics against nectin-4–positive triple-negative breast cancer. J. Nucl. Med. 66, 592–598 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Sathekge, M. et al. 10 Oral: AKY-1189, a novel, first-in-class miniprotein radiopharmaceutical designed to deliver Actinium-225 (225Ac) to nectin-4 expressing tumors with broad therapeutic applications in metastatic urothelial carcinoma (mUC) and other Nectin-4 expressing tumors. Eur. J. Cancer 211, 114539 (2024).

    Article  Google Scholar 

  207. Aktis Oncology. Aktis Oncology initiates phase 1b clinical trial of its nectin-4-targeting radiopharmaceutical product candidate, AKY-1189, across multiple tumor types. Aktis Oncology https://www.aktisoncology.com/news/aktis-initiates-clinical-trial-of-potential-nectin-4-targeting-radiopharmaceutical-product-candidate/ (2025).

  208. Ahn, M.-J. et al. Tarlatamab for patients with previously treated small-cell lung cancer. N. Engl. J. Med. 389, 2063–2075 (2023).

    Article  PubMed  CAS  Google Scholar 

  209. Tendler, S. et al. Imaging with [89Zr]Zr-DFO-SC16.56 anti-DLL3 antibody in patients with high-grade neuroendocrine tumours of the lung and prostate: a phase 1/2, first-in-human trial. Lancet Oncol. 25, 1015–1024 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Tully, K. M. et al. Radioimmunotherapy targeting delta-like ligand 3 in small cell lung cancer exhibits antitumor efficacy with low toxicity. Clin. Cancer Res. 28, 1391–1401 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Korsen, J. A. et al. Delta-like ligand 3-targeted radioimmunotherapy for neuroendocrine prostate cancer. Proc. Natl Acad. Sci. USA 119, e2203820119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Lizak, C. et al. Lead-212 radio-DARPin therapeutic (RDT) targeting delta-like ligand 3 (DLL3) shows promising preclinical antitumor efficacy and tolerability in small cell lung cancer (SCLC) [abstract]. J. Nucl. Med. 65, 241995 (2024).

    Google Scholar 

  213. Baum, R. P. et al. Systemic endoradiotherapy with carrier-added 4-[131I]iodo-L-phenylalanine: clinical proof-of-principle in refractory glioma. Nucl. Med. Mol. Imaging 45, 299–307 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Pichler, J. et al. Results from a phase I study of 4-l-[131I]iodo-phenylalanine ([131I]IPA) with external radiation therapy in patients with recurrent glioblastoma (IPAX-1). Neurooncol. Adv. 6, vdae130 (2024).

    PubMed  PubMed Central  Google Scholar 

  215. Telix Pharmaceuticals. FDA grants orphan drug designation for TLX102. Telix https://telixpharma.com/news-views/fda-grants-orphan-drug-designation-for-tlx102/ (2020).

  216. Królicki, L. et al. Dose escalation study of targeted alpha therapy with [225Ac]Ac-DOTA-substance P in recurrence glioblastoma — safety and efficacy. Eur. J. Nucl. Med. Mol. Imaging 48, 3595–3605 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Królicki, L. et al. Safety and efficacy of targeted alpha therapy with 213Bi-DOTA-substance P in recurrent glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 46, 614–622 (2019).

    Article  PubMed  Google Scholar 

  218. Kramer, K. et al. A phase II study of radioimmunotherapy with intraventricular 131I-3F8 for medulloblastoma. Pediatr. Blood Cancer https://doi.org/10.1002/pbc.26754 (2018).

  219. Liatsou, I. et al. Therapeutic efficacy of an alpha-particle emitter labeled anti-GD2 humanized antibody against osteosarcoma — a proof of concept study. Eur. J. Nucl. Med. Mol. Imaging 51, 1409–1420 (2024).

    Article  PubMed  CAS  Google Scholar 

  220. Santich, B. H. et al. A self-assembling and disassembling (SADA) bispecific antibody (BsAb) platform for curative two-step pretargeted radioimmunotherapy. Clin. Cancer Res. 27, 532–541 (2021).

    Article  PubMed  CAS  Google Scholar 

  221. Radiopharm Theranostics. Radiopharm Theranostics and Cyclotek sign clinical supply agreement for 161Tb-KLK3-mAb phase I clinical trial in Australia. GlobeNewswire https://www.globenewswire.com/news-release/2025/06/24/3104176/0/en/Radiopharm-Theranostics-and-Cyclotek-Sign-Clinical-Supply-Agreement-for-Tb-KLK3-mAb-Phase-I-Clinical-Trial-in-Australia.html (2025).

  222. Striese, F. et al. Preclinical characterization of the 177Lu-labeled prostate stem cell antigen (PSCA)-specific monoclonal antibody 7F5. Int. J. Mol. Sci. 24, 9420 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Carrasquillo, J. A. et al. Imaging patients with metastatic castration-resistant prostate cancer using 89Zr-DFO-MSTP2109A anti-STEAP1 antibody. J. Nucl. Med. 60, 1517–1523 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Shitara, K. et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial. Lancet 401, 1655–1668 (2023).

    Article  PubMed  CAS  Google Scholar 

  225. Wang, Y. et al. Preparation of radiolabeled zolbetuximab targeting CLDN18.2 and its preliminary evaluation for potential clinical applications. Mol. Pharm. 21, 3838–3847 (2024).

    Article  PubMed  CAS  Google Scholar 

  226. Qi, C. et al. 68Ga-NC-BCH whole-body PET imaging rapidly targets claudin18.2 in lesions in gastrointestinal cancer patients. J. Nucl. Med. 65, 856–863 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Zeng, Z. et al. [177Lu]Lu-labeled anti-claudin-18.2 antibody demonstrated radioimmunotherapy potential in gastric cancer mouse xenograft models. Eur. J. Nucl. Med. Mol. Imaging 51, 1221–1232 (2024).

    Article  PubMed  CAS  Google Scholar 

  228. Li, D. et al. Exploration of radionuclide labeling of a novel scFv-Fc fusion protein targeting CLDN18.2 for tumor diagnosis and treatment. Eur. J. Med. Chem. 266, 116134 (2024).

    Article  PubMed  CAS  Google Scholar 

  229. Zeng, Z. et al. On the shoulder of ADC: the development of 124I-IMMU-132, an iodine-124-labelled Trop-2-targeting molecular probe for micro-PET imaging. Biomed. Pharmacother. 178, 117151 (2024).

    Article  PubMed  CAS  Google Scholar 

  230. Huang, W. et al. ImmunoPET imaging of Trop2 in patients with solid tumours. EMBO Mol. Med. 16, 1143–1161 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Chen, H. et al. 68Ga-MY6349 PET/CT imaging to assess Trop2 expression in multiple types of cancer. J. Clin. Invest. https://doi.org/10.1172/JCI185408 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Wu, Y. et al. Preclinical evaluation of the theranostic potential of 89Zr/177Lu-labeled anti-TROP-2 antibody in triple-negative breast cancer model. EJNMMI Radiopharm. Chem. 9, 5 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Yamaguchi, A. et al. 177Lu-labeled antibody–drug conjugate: a dual-mechanistic treatment modality in solid tumors. Mol. Cancer Ther. 24, 907–919 (2025).

    Article  PubMed  CAS  Google Scholar 

  234. Steffin, D. et al. Interleukin-15-armoured GPC3 CAR T cells for patients with solid cancers. Nature 637, 940–946 (2025).

    Article  PubMed  CAS  Google Scholar 

  235. Braat, A. et al. [68Ga]Ga-RYZ-GPC3; a glypican-3 targeted diagnostic radiopharmaceutical for hepatocellular carcinoma molecular imaging. A future game-changer in HCC? [abstract]. J. Nucl. Med. 65, 241739 (2024).

    Google Scholar 

  236. Poot, A. J. et al. [68Ga]Ga-RAYZ-8009: a glypican-3-targeted diagnostic radiopharmaceutical for hepatocellular carcinoma molecular imaging-a first-in-human case series. J. Nucl. Med. 65, 1597–1603 (2024).

    Article  PubMed  CAS  Google Scholar 

  237. Lin, F. et al. Peptide binder to glypican-3 as a theranostic agent for hepatocellular carcinoma. J. Nucl. Med. 65, 586–592 (2024).

    Article  PubMed  Google Scholar 

  238. Liu, Y. et al. 99mTc-labeled SWL specific peptide for targeting EphA2 receptor. Nucl. Med. Biol. 41, 450–456 (2014).

    Article  PubMed  CAS  Google Scholar 

  239. El Fakiri, M. et al. Development and preclinical characterization of a novel radiotheranostic EphA2-targeting bicyclic peptide. Theranostics 14, 4701–4712 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Sharma, A. K. et al. EphA2-targeted alpha-particle theranostics for enhancing PDAC treatment. Theranostics 15, 4229–4246 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Chan, C. Y. et al. [123I]CC1: a PARP-targeting, auger electron-emitting radiopharmaceutical for radionuclide therapy of cancer. J. Nucl. Med. 64, 1965–1971 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Makvandi, M. et al. Targeting PARP-1 with alpha-particles is potently cytotoxic to human neuroblastoma in preclinical models. Mol. Cancer Ther. 18, 1195–1204 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Welt, S. et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J. Clin. Oncol. 12, 1193–1203 (1994).

    Article  PubMed  CAS  Google Scholar 

  244. Fischer, E. et al. Radioimmunotherapy of fibroblast activation protein positive tumors by rapidly internalizing antibodies. Clin. Cancer Res. 18, 6208–6218 (2012).

    Article  PubMed  CAS  Google Scholar 

  245. Jansen, K. et al. Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J. Med. Chem. 57, 3053–3074 (2014).

    Article  PubMed  CAS  Google Scholar 

  246. Lindner, T. et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J. Nucl. Med. 59, 1415–1422 (2018).

    Article  PubMed  CAS  Google Scholar 

  247. Watabe, T. et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu- and 225Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models. J. Nucl. Med. 61, 563–569 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Kratochwil, C. et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J. Nucl. Med. 60, 801–805 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Loktev, A. et al. Development of fibroblast activation protein-targeted radiotracers with improved tumor retention. J. Nucl. Med. 60, 1421–1429 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Liu, Y. et al. Fibroblast activation protein targeted therapy using [177Lu]FAPI-46 compared with [225Ac]FAPI-46 in a pancreatic cancer model. Eur. J. Nucl. Med. Mol. Imaging 49, 871–880 (2022).

    Article  PubMed  CAS  Google Scholar 

  251. Fendler, W. P. et al. Safety and efficacy of 90Y-FAPI-46 radioligand therapy in patients with advanced sarcoma and other cancer entities. Clin. Cancer Res. 28, 4346–4353 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. McConathy, J. et al. 177Lu-FAP-2286 in patients with advanced or metastatic solid tumors: initial data from a phase 1/2 study investigating safety, pharmacokinetics, dosimetry, and preliminary antitumor activity (LuMIERE). J. Nucl. Med. 63, 2271–2271 (2022).

    Google Scholar 

  253. Juneau, D. et al. FRONTIER: FAPi radioligand OpeN-label, phase 1 study to evaluate safety, tolerability and dosImetry of [Lu-177]-PNT6555; a dose escalation study for tReatment of patients with select solid tumors [abstract]. J. Nucl. Med. 65, 241162 (2024).

    Google Scholar 

  254. Martin, M. et al. Novel generation of FAP inhibitor-based homodimers for improved application in radiotheranostics. Cancers 15, 1889 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Kurth, J. et al. Fibroblast activation protein-targeted radionuclide therapy of solid tumors using [177Lu]Lu-DOTAGA-Glu-(FAPi)2: biodistribution and dosimetry [abstract]. J. Nucl. Med. 65, 242022 (2024).

    Google Scholar 

  256. Galbiati, A. et al. Preclinical evaluation of 177Lu-OncoFAP-23, a multivalent FAP-targeted radiopharmaceutical therapeutic for solid tumors. J. Nucl. Med. 65, 1604–1610 (2024).

    Article  PubMed  CAS  Google Scholar 

  257. Fu, H. et al. 177Lu-LNC1004 radioligand therapy in patients with end-stage metastatic cancers: a single-center, single-arm, phase II study. Clin. Cancer Res. 31, 1415–1426 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Reschke, M. et al. FXX489, a FAP targeting ligand with best-in-class potential for radioligand therapy [abstract]. Cancer Res. 85, ND07 (2025).

    Article  Google Scholar 

  259. Geva, R. et al. Phase I open-label, multi-center study to evaluate the safety, tolerability, dosimetry, and preliminary activity of FXX489 ([177Lu]Lu-NNS309) in patients with pancreatic, lung, breast and colorectal cancers [abstract]. Cancer Res. 85, CT112 (2025).

    Article  Google Scholar 

  260. Storey, C. M. et al. Development of a LRRC15-targeted radio-immunotheranostic approach to deplete pro-tumorigenic mechanisms and immunotherapy resistance. Preprint at bioRxiv https://doi.org/10.1101/2024.01.30.577289 (2024).

  261. Reardon, D. A. et al. Phase II trial of murine 131I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J. Clin. Oncol. 20, 1389–1397 (2002).

    Article  PubMed  CAS  Google Scholar 

  262. Aloj, L. et al. Radioimmunotherapy with tenarad, a 131I-labelled antibody fragment targeting the extra-domain A1 of tenascin-C, in patients with refractory Hodgkin’s lymphoma. Eur. J. Nucl. Med. Mol. Imaging 41, 867–877 (2014).

    Article  PubMed  CAS  Google Scholar 

  263. Virotta, G. et al. Radioimmunotherapy with 131I-L19SIP (radretumab) in metastatic solid tumors: preliminary results. J. Nucl. Med. 53, 498–498 (2012).

    Google Scholar 

  264. Gao, S. et al. Synthesis and assessment of ZD2-(68Ga-NOTA) specific to extradomain B fibronectin in tumor microenvironment for PET imaging of pancreatic cancer. Am. J. Nucl. Med. Mol. Imaging 9, 216–229 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  265. Jailkhani, N. et al. Noninvasive imaging of tumor progression, metastasis, and fibrosis using a nanobody targeting the extracellular matrix. Proc. Natl Acad. Sci. USA 116, 14181–14190 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Carlsen, E. A. et al. Prospective phase II trial of prognostication by 68Ga-NOTA-AE105 uPAR PET in patients with neuroendocrine neoplasms: implications for uPAR-targeted therapy. J. Nucl. Med. 63, 1371–1377 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Azam, A. et al. Prospective phase II trial of [68Ga]Ga-NOTA-AE105 uPAR-PET/MRI in patients with primary gliomas: prognostic value and implications for uPAR-targeted radionuclide therapy. EJNMMI Res. 14, 100 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Persson, M. et al. uPAR targeted radionuclide therapy with 177Lu-DOTA-AE105 inhibits dissemination of metastatic prostate cancer. Mol. Pharm. 11, 2796–2806 (2014).

    Article  PubMed  CAS  Google Scholar 

  269. Chen, Z. et al. 177Lu-labeled aflibercept for theranostic application in renal cancer models [abstract]. J. Nucl. Med. 64, P633 (2023).

    Google Scholar 

  270. Steiger, K. et al. There is a world beyond αvβ3-integrin: multimeric ligands for imaging of the integrin subtypes αvβ6, αvβ8, αvβ3, and α5β1 by positron emission tomography. EJNMMI Res. 11, 106 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal. Transduct. Target. Ther. 8, 70 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Mittal, S. & Mallia, M. B. Molecular imaging of tumor hypoxia: evolution of nitroimidazole radiopharmaceuticals and insights for future development. Bioorg. Chem. 139, 106687 (2023).

    Article  PubMed  CAS  Google Scholar 

  273. Kudo, T. et al. Imaging of HIF-1-active tumor hypoxia using a protein effectively delivered to and specifically stabilized in HIF-1-active tumor cells. J. Nucl. Med. 50, 942–949 (2009).

    Article  PubMed  Google Scholar 

  274. Ueda, M. et al. Development of an oxygen-sensitive degradable peptide probe for the imaging of hypoxia-inducible factor-1-active regions in tumors. Mol. Imaging Biol. 15, 713–721 (2013).

    Article  PubMed  Google Scholar 

  275. Shuch, B. et al. [89Zr]Zr-girentuximab for PET-CT imaging of clear-cell renal cell carcinoma: a prospective, open-label, multicentre, phase 3 trial. Lancet Oncol. 25, 1277–1287 (2024).

    Article  PubMed  CAS  Google Scholar 

  276. Muselaers, C. H. et al. Phase 2 study of lutetium 177-labeled anti-carbonic anhydrase IX monoclonal antibody girentuximab in patients with advanced renal cell carcinoma. Eur. Urol. 69, 767–770 (2016).

    Article  PubMed  CAS  Google Scholar 

  277. Chafe, S. C. et al. Targeting hypoxia-induced carbonic anhydrase IX enhances immune-checkpoint blockade locally and systemically. Cancer Immunol. Res. 7, 1064–1078 (2019).

    Article  PubMed  CAS  Google Scholar 

  278. Kleinendorst, S. C. et al. Towards effective CAIX-targeted radionuclide and checkpoint inhibition combination therapy for advanced clear cell renal cell carcinoma. Theranostics 14, 3693–3707 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  279. Ferldman, D. R. STARLITE 2: phase 2 study of nivolumab plus 177Lutetium-labeled anti-carbonic anhydrase IX (CAIX) monoclonal antibody girentuximab (177Lu-girentuximab) in patients (pts) with advanced clear cell renal cell carcinoma (ccRCC) [abstract]. J. Clin. Oncol. 40, TPS460 (2022).

    Google Scholar 

  280. Hasanov, E. et al. STARLITE 1: phase 1b/2 study of combination 177Lu girentuximab plus cabozantinib and nivolumab in treatment naïve patients with advanced clear cell RCC [abstract]. Oncologist 28, S13 (2023).

    Article  PubMed Central  CAS  Google Scholar 

  281. Merkx, R. I. J. et al. Carbonic anhydrase IX-targeted α-radionuclide therapy with 225Ac inhibits tumor growth in a renal cell carcinoma model. Pharmaceuticals 15, 570 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Massière, F. et al. Preclinical characterization of DPI-4452: a 68Ga/177Lu theranostic ligand for carbonic anhydrase IX. J. Nucl. Med. 65, 761–767 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  283. He, H. et al. Imaging diagnosis and efficacy monitoring by [89Zr]Zr-DFO-KN035 immunoPET in patients with PD-L1-positive solid malignancies. Theranostics 14, 392–405 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Luna-Gutiérrez, M. et al. Lutetium-177 labeled iPD-L1 as a novel immunomodulator for cancer-targeted radiotherapy. EJNMMI Radiopharm. Chem. 10, 5 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Kramer, K. et al. Phase 1 study of intraventricular 131I-omburtamab targeting B7H3 (CD276)-expressing CNS malignancies. J. Hematol. Oncol. 15, 165 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. Prasad, K. et al. Feasibility of safe outpatient treatment in pediatric patients following intraventricular radioimmunotherapy with 131I-omburtamab for leptomeningeal disease. EJNMMI Res. 14, 70 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Khatua, S., Düring, M., Lind, C. L. & Nielsen, J. R. A phase I/II dose-escalation and expansion cohort study of intracerebroventricular radioimmunotherapy using 177Lu-DTPA-omburtamab in pediatric and adolescent patients with recurrent or refractory medulloblastoma [abstract 380TiP]. Ann. Oncol. 32, S528 (2021).

    Article  Google Scholar 

  288. Glazer, S. et al. A novel high affinity anti-B7H3 antibody selective for the 4Ig-B7H3 isoform when labeled with yttrium-90 provides long term survivors for established radioresistant colorectal carcinoma when administered as a single-dose treatment [abstract]. J. Nucl. Med. 64, P1021 (2023).

    Google Scholar 

  289. Jiao, X., Hong, H. & Cai, W. Nanoscale radiotheranostics for cancer treatment: from bench to bedside. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 16, e2006 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  290. Cui, X.-Y. et al. Covalent targeted radioligands potentiate radionuclide therapy. Nature 630, 206–213 (2024).

    Article  PubMed  CAS  Google Scholar 

  291. Li, Y. et al. Dual targeting PET tracer [68Ga]Ga-PSFA-01 in patients with prostate cancers: a pilot exploratory study. Theranostics 15, 4124–4134 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Bodei, L. et al. Toward individualized dosimetry for radiopharmaceutical therapy in day-to-day clinical practice of nuclear oncology: overcoming heterogeneity of radiation-absorbed dose to tumor and critical organs. Eur. J. Nucl. Med. Mol. Imaging 51, 325–329 (2024).

    Article  PubMed  Google Scholar 

  293. Del Prete, M. et al. Personalized 177Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: initial results from the P-PRRT trial. Eur. J. Nucl. Med. Mol. Imaging 46, 728–742 (2019).

    Article  PubMed  Google Scholar 

  294. Maccauro, M. et al. The LUTADOSE trial: tumour dosimetry after the first administration predicts progression free survival in gastro-entero-pancreatic neuroendocrine tumours (GEP NETs) patients treated with [177Lu]Lu-DOTATATE. Eur. J. Nucl. Med. Mol. Imaging 52, 291–304 (2024).

    Article  PubMed  CAS  Google Scholar 

  295. Bodei, L. et al. Dosimetry of [177Lu]Lu-DOTATATE in patients with advanced midgut neuroendocrine tumors: results from a substudy of the phase III NETTER-1 trial. J. Nucl. Med. 66, 449–456 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Violet, J. et al. Dosimetry of 177Lu-PSMA-617 in metastatic castration-resistant prostate cancer: correlations between pretherapeutic imaging and whole-body tumor dosimetry with treatment outcomes. J. Nucl. Med. 60, 517–523 (2019).

    Article  PubMed  CAS  Google Scholar 

  297. Herrmann, K. et al. Renal and multiorgan safety of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer in the VISION dosimetry substudy. J. Nucl. Med. 65, 71–78 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Mauguen, A. et al. The use of single-timepoint images to link administered radioiodine activity (MBq) to a prescribed lesion radiation-absorbed dose (cGy): a regression-based prediction interval tool for the management of well-differentiated thyroid cancer patients. Eur. J. Nucl. Med. Mol. Imaging 50, 2971–2983 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. Jewell, K., Kostos, L., Emmerson, B. & Hofman, M. S. Combination strategies and targeted radionuclide therapies. Semin. Nucl. Med. 54, 612–621 (2024).

    Article  PubMed  Google Scholar 

  300. Guenter, R. et al. Overexpression of somatostatin receptor type 2 in neuroendocrine tumors for improved Ga68-DOTATATE imaging and treatment. Surgery 167, 189–196 (2020).

    Article  PubMed  Google Scholar 

  301. Emmett, L. et al. Rapid modulation of PSMA expression by androgen deprivation: serial 68Ga-PSMA-11 PET in men with hormone-sensitive and castrate-resistant prostate cancer commencing androgen blockade. J. Nucl. Med. 60, 950–954 (2019).

    Article  PubMed  CAS  Google Scholar 

  302. Batra, J. S. et al. Phase I trial of docetaxel plus lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 (177Lu-J591) for metastatic castration-resistant prostate cancer. Urol. Oncol. 38, 848.e9–848.e16 (2020).

    Article  PubMed  CAS  Google Scholar 

  303. Kostos L. et al. Clinical trial protocol for LuCAB: a phase I-II trial evaluating cabazitaxel in combination with [(177)Lu]Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. J. Nucl. Med. 66, 572–578 (2025).

    Article  PubMed  CAS  Google Scholar 

  304. Sandhu, S. et al. LuPARP: phase 1 trial of 177Lu-PSMA-617 and olaparib in patients with metastatic castration resistant prostate cancer (mCRPC) [abstract]. J. Clin. Oncol. 41, 5005 (2023).

    Article  Google Scholar 

  305. Hallqvist, A. et al. 177Lu-DOTATATE in combination with PARP inhibitor olaparib is feasible in patients with somatostatin-positive tumors: results from the LuPARP phase I trial. J. Nucl. Med. 66, 707–712 (2025).

    Article  PubMed  Google Scholar 

  306. Kerr, C. P. et al. Developments in combining targeted radionuclide therapies and immunotherapies for cancer treatment. Pharmaceutics 15, 128 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Aggarwal, R. et al. Single-dose 177Lu-PSMA-617 followed by maintenance pembrolizumab in patients with metastatic castration-resistant prostate cancer: an open-label, dose-expansion, phase 1 trial. Lancet Oncol. 24, 1266–1276 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  308. Sandhu, S. et al. 177Lu-PSMA-617 with ipilimumab (ipi) and nivolumab (nivo) in metastatic castration-resistant prostate cancer (mCRPC): an investigator-initiated phase 2 trial (EVOLUTION; ANZUP2001) [abstract]. J. Clin. Oncol. 43, 5016 (2025).

    Article  Google Scholar 

  309. Kostos, L. et al. AlphaBet: combination of radium-223 and [177Lu]Lu-PSMA-I&T in men with metastatic castration-resistant prostate cancer (clinical trial protocol). Front. Med. 9, 1059122 (2022).

    Article  Google Scholar 

  310. Bushnell, D. L. et al. Addition of 131I-MIBG to PRRT (90Y-DOTATOC) for personalized treatment of selected patients with neuroendocrine tumors. J. Nucl. Med. 62, 1274–1277 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  311. Fizazi, K. et al. Final overall survival and safety analyses of the phase 3 PSMAfore trial of [177Lu]Lu-PSMA-617 versus change of androgen receptor pathway inhibitor in taxane-naive patients with metastatic castration-resistant prostate cancer. Ann. Oncol. https://doi.org/10.1016/j.annonc.2025.07.003 (2025).

    Article  PubMed  Google Scholar 

  312. Basu, E. et al. Compartmental radioimmunotherapy (cRIT) 131I-OMBURTAMAB in patients with neuroblastoma (NB) central nervous system (CNS) and/or leptomeningeal (LM) metastases: updated results from pivotal trial 101 [abstract LBA3]. Immunooncol. Technol. 16, 100364 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all the peer reviewers for their constructive and valuable feedback. They also sincerely thank C. Deroose and W. Fendler for proofreading the manuscript, and S. Himmen for providing images for Fig. 1. The research of I.P. and K.T. is supported by the Accelerate.EU and Thera4Care consortiums through the Innovative Health Initiative Joint Undertaking, under Grant Agreements no. 101173001 and no. 101172788, respectively. A.T. acknowledges the support of an Emmy Noether Award from the German Research Foundation (DFG, 467788900) and the Ministry of Culture and Science of the State of North Rhine-Westphalia (NRW-Nachwuchsgruppenprogramm). A.T. acknowledges the support of an ERC starting grant (METATARGET, 101078355). A.T. holds the Peter Hans Hofschneider endowed Professorship of Molecular Medicine from the Stiftung Experimentelle Biomedizin. The research of K.H. is supported by the ILLUMINATE and Thera4Care consortiums through the Innovative Health Initiative Joint Undertaking, under Grant Agreements no. 101172722 and no. 101172788, respectively.

Author information

Authors and Affiliations

Authors

Contributions

I.P. researched data for the article. All authors contributed substantially to discussion of the content, and wrote, reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Irina Primac.

Ethics declarations

Competing interests

A.T. has received honoraria as a speaker from Danone and MSD. K.H. has received consultant fees from Actithera, Advanced Accelerator Applications, a Novartis company, Amgen, AstraZeneca, Bain Capital, Bayer, Boston Scientific, Convergent, Curium, Debiopharm, EcoR1, Fusion, GE Healthcare, Immedica, Isotopen Technologien München, Janssen, Merck, Molecular Partners, MSD, NVision, Pentixapharm, Pfizer, POINT Biopharma, Radiopharm Theranostics, Rhine Pharma, Siemens Healthineers, Sofie Biosciences, Telix, Theragnostics and Ymabs; research grants from Advanced Accelerator Applications, a Novartis company, Boston Scientific and Janssen; and has stock or other ownership interests with AdvanCell, Aktis Oncology, Convergent, NVision, Sofie Biosciences and Yellowbird Diagnostics. I.P., K.T. and S.B. declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks R. Hicks, M. Sathekge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Primac, I., Tabury, K., Tasdogan, A. et al. The molecular blueprint of targeted radionuclide therapy. Nat Rev Clin Oncol (2025). https://doi.org/10.1038/s41571-025-01069-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41571-025-01069-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer