Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Schistosomiasis

Abstract

Schistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms (blood flukes) of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia and, particularly, in sub-Saharan Africa. Infective larvae grow in an intermediate host (fresh-water snails) before penetrating the skin of the definitive human host. Mature adult worms reside in the mesenteric (Schistosoma mansoni and Schistosoma japonicum) or pelvic (Schistosoma haematobium) veins, where female worms lay eggs, which are secreted in stool or urine. Eggs trapped in the surrounding tissues and organs, such as the liver and bladder, cause inflammatory immune responses (including granulomas) that result in intestinal, hepato-splenic or urogenital disease. Diagnosis requires the detection of eggs in excreta or worm antigens in the serum, and sensitive, rapid, point-of-care tests for populations living in endemic areas are needed. The anti-schistosomal drug praziquantel is safe and efficacious against adult worms of all the six Schistosoma spp. infecting humans; however, it does not prevent reinfection and the emergence of drug resistance is a concern. Schistosomiasis elimination will require a multifaceted approach, including: treatment; snail control; information, education and communication; improved water, sanitation and hygiene; accurate diagnostics; and surveillance-response systems that are readily tailored to social-ecological settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schistosome life cycle exemplified by Schistosoma mansoni.
Fig. 2: Prevalence of schistosomiasis.
Fig. 3: Hepatic granulomas.
Fig. 4: Established active and late chronic schistosomiasis.
Fig. 5: Urogenital schistosomiasis.

Similar content being viewed by others

References

  1. Jordan, P. From Katayama to the Dakhla Oasis: the beginning of epidemiology and control of bilharzia. Acta Trop. 77, 9–40 (2000).

    CAS  PubMed  Google Scholar 

  2. Ross, A. G. et al. Schistosomiasis. N. Engl. J. Med. 346, 1212–1220 (2002). This review article describes the latest updates at the turn of the new millennium with an emphasis on the pathophysiology, diagnosis, genomics, host infection susceptibility, epidemiology, treatment, control and vaccine development for human schistosomiasis.

    PubMed  Google Scholar 

  3. Gryseels, B., Polman, K., Clerinx, J. & Kestens, L. Human schistosomiasis. Lancet 368, 1106–1118 (2006).

    PubMed  Google Scholar 

  4. Colley, D. G., Bustinduy, A. L., Secor, W. E. & King, C. H. Human schistosomiasis. Lancet 383, 2253–2264 (2014). This authoritative review pertains to all aspects of human schistosomiasis, including diagnosis, epidemiology, immunology, mapping and surveillance, pathogenesis, morbidity and comorbidities, treatment and control and elimination.

    PubMed  PubMed Central  Google Scholar 

  5. World Health Organization. Schistosomiasis (WHO, 2017).

  6. Steinmann, P., Keiser, J., Bos, R., Tanner, M. & Utzinger, J. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk. Lancet Infect. Dis. 6, 411–425 (2006). This highly cited paper presents global estimates of people at risk of schistosomiasis, number of people infected and evidence of changing risk patterns due to water resource developments, specifically the construction and management of large dams and irrigation systems.

    PubMed  Google Scholar 

  7. McCreesh, N., Nikulin, G. & Booth, M. Predicting the effects of climate change on Schistosoma mansoni transmission in eastern Africa. Parasit. Vectors 8, 4 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Zhou, X.-N. et al. Potential impact of climate change on schistosomiasis transmission in China. Am. J. Trop. Med. Hyg. 78, 188–194 (2008).

    PubMed  Google Scholar 

  9. Ross, A. G., Vickers, D., Olds, G. R., Shah, S. M. & McManus, D. P. Katayama syndrome. Lancet Infect. Dis. 7, 218–224 (2007).

    PubMed  Google Scholar 

  10. Olveda, D. U. et al. The chronic enteropathogenic disease schistosomiasis. Int. J. Infect. Dis. 28, 193–203 (2014).

    PubMed  Google Scholar 

  11. Hatz, C. F. The use of ultrasound in schistosomiasis. Adv. Parasitol. 48, 225–284 (2001).

    CAS  PubMed  Google Scholar 

  12. van der Werf, M. J. et al. Quantification of clinical morbidity associated with schistosome infection in sub-Saharan Africa. Acta Trop. 86, 125–139 (2003). This paper reviews and quantifies clinical morbidity due to S. haematobium and S. mansoni and puts forward annual mortality estimates of schistosomiasis in excess of 200,000 in Africa alone.

    PubMed  Google Scholar 

  13. King, C. H. Parasites and poverty: the case of schistosomiasis. Acta Trop. 113, 95–104 (2010).

    PubMed  Google Scholar 

  14. Secor, W. E. The effects of schistosomiasis on HIV/AIDS infection, progression and transmission. Curr. Opin. HIV AIDS 7, 254–259 (2012).

    CAS  PubMed  Google Scholar 

  15. Kjetland, E. F. et al. Genital schistosomiasis and its unacknowledged role on HIV transmission in the STD intervention studies. Int. J. STD AIDS 25, 705–715 (2014).

    PubMed  Google Scholar 

  16. Rollinson, D. et al. Time to set the agenda for schistosomiasis elimination. Acta Trop. 128, 423–440 (2013). This paper reviews schistosomiasis control and elimination efforts in different parts of the world and puts forward a schistosomiasis elimination agenda.

    PubMed  Google Scholar 

  17. Boissier, J. et al. Outbreak of urogenital schistosomiasis in Corsica (France): an epidemiological case study. Lancet Infect. Dis. 16, 971–979 (2016). The study describes the epidemiology of an outbreak of urogenital schistosomiasis in Corsica, France, showing that the causative parasite (that is, S. haematobium) was imported by individuals infected in West Africa, that suitable intermediate hosts were present to close the life cycle and that hybridization between S. haematobium and the cattle schistosome Schistosoma bovis had a putative role in this outbreak. The study recommends future monitoring to offset the potential risk of schistosomiasis outbreaks elsewhere in Europe.

    PubMed  Google Scholar 

  18. Kurup, R. & Hunjan, G. S. Epidemiology and control of schistosomiasis and other intestinal parasitic infections among school children in three rural villages of south Saint Lucia. J. Vector Borne Dis. 47, 228–234 (2010).

    PubMed  Google Scholar 

  19. Tchuem Tchuenté, L.-A., Southgate, V. R., Jourdane, J., Webster, B. L. & Vercruysse, J. Schistosoma intercalatum: an endangered species in Cameroon? Trends Parasitol. 19, 389–393 (2003).

    PubMed  Google Scholar 

  20. Ekpo, U. F. et al. Mapping and prediction of schistosomiasis in Nigeria using compiled survey data and Bayesian geospatial modelling. Geospat. Health 7, 355 (2013).

    PubMed  Google Scholar 

  21. Muth, S. et al. Schistosoma mekongi in Cambodia and Lao People’s Democratic Republic. Adv. Parasitol. 72, 179–203 (2010).

    PubMed  Google Scholar 

  22. Zhou, X.-N. et al. Schistosomiasis japonica control and research needs. Adv. Parasitol. 72, 145–178 (2010).

    PubMed  Google Scholar 

  23. Latif, B., Heo, C. C., Razuin, R., Shamalaa, D. V. & Tappe, D. Autochthonous human schistosomiasis, Malaysia. Emerg. Infect. Dis. 19, 1340–1341 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Greer, G. J., Ow-Yang, C. K. & Yong, H.-S. Schistosoma malayensis n. sp.: a Schistosoma japonicum-complex schistosome from Peninsular Malaysia. J. Parasitol. 74, 471 (1988).

    CAS  PubMed  Google Scholar 

  25. Utzinger, J. et al. Schistosomiasis and neglected tropical diseases: towards integrated and sustainable control and a word of caution. Parasitology 136, 1859 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hotez, P. J. et al. The Global Burden of Disease Study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl. Trop. Dis. 8, e2865 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Lai, Y.-S. et al. Spatial distribution of schistosomiasis and treatment needs in sub-Saharan Africa: a systematic review and geostatistical analysis. Lancet Infect. Dis. 15, 927–940 (2015). This systematic review and geostatistical meta-analysis describes the use of advanced Bayesian-based geostatistical modelling to produce high-resolution risk estimates of infection with Schistosoma spp. in sub-Saharan Africa. Additionally, through the use of gridded population estimates, the authors determined the annualized numbers of doses of praziquantel treatment needed to prevent morbidity in sub-Saharan Africa countries for spatial targeting of schistosomiasis control interventions.

    PubMed  Google Scholar 

  28. Walz, Y., Wegmann, M., Dech, S., Raso, G. & Utzinger, J. Risk profiling of schistosomiasis using remote sensing: approaches, challenges and outlook. Parasit. Vectors 8, 163 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Simoonga, C. et al. Remote sensing, geographical information system and spatial analysis for schistosomiasis epidemiology and ecology in Africa. Parasitology 136, 1683–1693 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Schur, N., Vounatsou, P. & Utzinger, J. Determining treatment needs at different spatial scales using geostatistical model-based risk estimates of schistosomiasis. PLoS Negl. Trop. Dis. 6, e1773 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Grimes, J. E. T. et al. The relationship between water, sanitation and schistosomiasis: a systematic review and meta-analysis. PLoS Negl. Trop. Dis. 8, e3296 (2014).

    PubMed  PubMed Central  Google Scholar 

  32. GBD 2016 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1260–1344 (2017).

    Google Scholar 

  33. WHO Expert Committee on the Control of Schistosomiasis. Prevention and control of schistosomiasis and soil-transmitted helminthiasis: WHO Technical Report Series N°912, (WHO, 2002).

  34. Utzinger, J. & Keiser, J. Schistosomiasis and soil-transmitted helminthiasis: common drugs for treatment and control. Expert Opin. Pharmacother. 5, 263–285 (2004).

    CAS  PubMed  Google Scholar 

  35. World Health Organization. The World Health Report 2004 – changing history (WHO, 2004).

  36. King, C. H., Dickman, K. & Tisch, D. J. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365, 1561–1569 (2005).This systematic review of data on disability-associated outcomes for all forms of schistosomiasis shows that the disease is significantly associated with anaemia, chronic pain, diarrhoea, exercise intolerance and undernutrition, suggesting that the disability burden previously assigned to schistosomiasis by the WHO is an underestimate and indicating a need to reassess priorities for treating this silent pandemic.

    PubMed  Google Scholar 

  37. Gillespie, S. H. & Pearson, R. D. Principles and Practice of Clinical Parasitology (John Wiley & Sons, Ltd, 2001).

  38. Ross, A. G. P. et al. Schistosomiasis in the People’s Republic of China: prospects and challenges for the 21st century. Clin. Microbiol. Rev. 14, 270–295 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ishii, A., Tsuji, M. & Tada, I. History of Katayama disease: schistosomiasis japonica in Katayama district, Hiroshima, Japan. Parasitol. Int. 52, 313–319 (2003).

    PubMed  Google Scholar 

  40. Clerinx, J. & Van Gompel, A. Schistosomiasis in travellers and migrants. Travel Med. Infect. Dis. 9, 6–24 (2011).

    PubMed  Google Scholar 

  41. King, C. L. et al. B cell sensitization to helminthic infection develops in utero in humans. J. Immunol. 160, 3578–3584 (1998).

    CAS  PubMed  Google Scholar 

  42. Sanin, D. E., Prendergast, C. T., Bourke, C. D. & Mountford, A. P. Helminth infection and commensal microbiota drive early IL-10 production in the skin by CD4+ T cells that are functionally suppressive. PLoS Pathog. 11, e1004841 (2015). This study reports the use of a murine model of repeated infection with S. mansoni larvae, showing that the site of infection in the skin becomes rich in regulatory IL-10, whereas in its absence, inflammation, neutrophil recruitment and local lymphocyte proliferation are increased, and suggests how tolerance and pathogen clearance are co-regulated early after exposure to an infectious agent.

    PubMed  PubMed Central  Google Scholar 

  43. Wu, X.-H. et al. Effect of floods on the transmission of schistosomiasis in the Yangtze River valley, People’s Republic of China. Parasitol. Int. 57, 271–276 (2008).

    PubMed  Google Scholar 

  44. Colley, D. G. & Secor, W. E. Immunology of human schistosomiasis. Parasite Immunol. 36, 347–357 (2014). This paper comprehensively summarizes the range of immunological studies that have been carried out on immunopathogenesis mechanisms, resistance to reinfection and diagnostics in experimental and human schistosomiasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wilkins, H. A., Goll, P. H., de Marshall, C. T. F. & Moore, P. J. Dynamics of Schistosoma haematobium infection in a Gambian community. III. Acquisition and loss of infection. Trans. R. Soc. Trop. Med. Hyg. 78, 227–232 (1984).

    CAS  PubMed  Google Scholar 

  46. Fitzsimmons, C. M. et al. Progressive cross-reactivity in IgE responses: an explanation for the slow development of human immunity to schistosomiasis? Infect. Immun. 80, 4264–4270 (2012). This important study provides a possible explanation of why individuals in S. mansoni -endemic areas slowly acquire immunity to schistosomiasis over many years.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Barron, L. & Wynn, T. A. Macrophage activation governs schistosomiasis-induced inflammation and fibrosis. Eur. J. Immunol. 41, 2509–2514 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, X. et al. Follicular helper T cells promote liver pathology in mice during Schistosoma japonicum infection. PLoS Pathog. 10, e1004097 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Cook, P. C. et al. A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells. Nat. Commun. 6, 6920 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen, M. Assessment of morbidity due to Schistosoma japonicum infection in China. Infect. Dis. Poverty 3, 6 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Lambertucci, J. R., Voieta, I. & Barbosa, A. J. A. Colonic polyps in hepatosplenic schistosomiasis mansoni. Rev. Soc. Bras. Med. Trop. 38, 80–81 (2005).

    PubMed  Google Scholar 

  52. Vennervald, B. J. et al. Detailed clinical and ultrasound examination of children and adolescents in a Schistosoma mansoni endemic area in Kenya: hepatosplenic disease in the absence of portal fibrosis. Trop. Med. Int. Health 9, 461–470 (2004).

    Google Scholar 

  53. Wilson, S., Vennervald, B. J. & Dunne, D. W. Chronic hepatosplenomegaly in African school children: a common but neglected morbidity associated with schistosomiasis and malaria. PLOS Negl. Trop. Dis. 5, e1149 (2011).

    PubMed  PubMed Central  Google Scholar 

  54. Wilson, S. et al. Health implications of chronic hepatosplenomegaly in Kenyan school-aged children chronically exposed to malarial infections and Schistosoma mansoni. Trans. R. Soc. Trop. Med. Hyg. 104, 110–116 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Gray, D. J., Ross, A. G., Li, Y.-S. & McManus, D. P. Diagnosis and management of schistosomiasis. BMJ 342, d2651 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Lambertucci, J. R., Voieta, I. & Resende, V. Mild, moderate and intense Symmers’s fibrosis in hepatosplenic schistosomiasis mansoni. Rev. Soc. Bras. Med. Trop. 42, 611–612.

  57. Randrianasolo, B. S. et al. Gynecological manifestations, histopathological findings, and schistosoma-specific polymerase chain reaction results among women with Schistosoma haematobium infection: a cross-sectional study in Madagascar. J. Infect. Dis. 212, 275–284 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. Ghoneim, M. A. Bilharziasis of the genitourinary tract. BJU Int. 89, 22–30 (2002).

    PubMed  Google Scholar 

  59. Burki, A. et al. Comparison of ultrasonography, intravenous pyelography and cystoscopy in detection of urinary tract lesions due to Schistosoma haematobium. Acta Trop. 43, 139–151 (1986).

    CAS  PubMed  Google Scholar 

  60. Hatz, C. et al. Measurement of schistosomiasis-related morbidity at community level in areas of different endemicity. Bull. World Health Organ. 68, 777–787 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kayange, N. M. et al. Kidney disease among children in sub-Saharan Africa: systematic review. Pediatr. Res. 77, 272–281 (2014).

    PubMed  PubMed Central  Google Scholar 

  62. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. Volume 100 B. A review of human carcinogens. IARC Monogr. Eval. Carcinog. Risks Hum. 100, 1–441 (2012).

    PubMed Central  Google Scholar 

  63. Vennervald, B. J. & Polman, K. Helminths and malignancy. Parasite Immunol. 31, 686–696 (2009).

    CAS  PubMed  Google Scholar 

  64. Leutscher, P. et al. Schistosoma haematobium induced lesions in the female genital tract in a village in Madagascar. Acta Trop. 66, 27–33 (1997).

    CAS  PubMed  Google Scholar 

  65. Leutscher, P. et al. Community-based study of genital schistosomiasis in men from Madagascar. Lancet 355, 117–118 (2000).

    CAS  PubMed  Google Scholar 

  66. Kjetland, E. F. et al. Classification of the lesions observed in female genital schistosomiasis. Int. J. Gynecol. Obstet. 127, 227–228 (2014).

    Google Scholar 

  67. Leutscher, P. D. C. et al. Increased prevalence of leukocytes and elevated cytokine levels in semen from Schistosoma haematobium–infected individuals. J. Infect. Dis. 191, 1639–1647 (2005).

    CAS  PubMed  Google Scholar 

  68. Midzi, N., Mduluza, T., Mudenge, B., Foldager, L. & Leutscher, P. D. C. Decrease in seminal HIV-1 RNA load after praziquantel treatment of urogenital schistosomiasis coinfection in HIV-Positive men-an observational study. Open Forum Infect. Dis. 4, ofx199 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Booth, M. et al. Hepatosplenic morbidity in two neighbouring communities in Uganda with high levels of Schistosoma mansoni infection but very different durations of residence. Trans. R. Soc. Trop. Med. Hyg. 98, 125–136 (2004).

    CAS  PubMed  Google Scholar 

  70. Strauss, E. Hepatosplenic schistosomiasis: a model for the study of portal hypertension. Ann. Hepatol. 1, 6–11 (2002).

  71. Ganapathi, L. & Somers, M. A. Child with gross hematuria. N. Engl. J. Med. 373, e11 (2015).

    PubMed  Google Scholar 

  72. Ismail, H. et al. Prevalence, risk factors, and clinical manifestations of schistosomiasis among school children in the White Nile River basin, Sudan. Parasit. Vectors 7, 478 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Wagatsuma, Y. et al. Resolution and resurgence of Schistosoma haematobium-induced pathology after community-based chemotherapy in Ghana, as detected by ultrasound. J. Infect. Dis. 179, 1515–1522 (1999).

    CAS  PubMed  Google Scholar 

  74. Hegertun, I. E. A. et al. S. haematobium as a common cause of genital morbidity in girls: a cross-sectional study of children in South Africa. PLoS Negl. Trop. Dis. 7, e2104 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. van Delft, F., Visser, L., Polderman, A. & van Lieshout, L. Cough and alterations in semen after a tropical swim. Neth. J. Med. 65, 304–306 (2007).

    PubMed  Google Scholar 

  76. Kjetland, E. F. et al. Association between genital schistosomiasis and HIV in rural Zimbabwean women. AIDS 20, 593–600 (2006).

    PubMed  Google Scholar 

  77. Ferrari, T. C. A. & Moreira, P. R. R. Neuroschistosomiasis: clinical symptoms and pathogenesis. Lancet Neurol. 10, 853–864 (2011).

    PubMed  Google Scholar 

  78. Ross, A. G. et al. Neuroschistosomiasis. J. Neurol. 259, 22–32 (2011).

    PubMed  Google Scholar 

  79. Vale, T. C., de Sousa-Pereira, S. R., Ribas, J. G. R. & Lambertucci, J. R. Neuroschistosomiasis mansoni: literature review and guidelines. Neurologist 18, 333–342 (2012).

    PubMed  Google Scholar 

  80. Graham, B. B., Bandeira, A. P., Morrell, N. W., Butrous, G. & Tuder, R. M. Schistosomiasis-associated pulmonary hypertension: pulmonary vascular disease: the global perspective. Chest 137, 20S–29S (2010).

    PubMed  Google Scholar 

  81. Weerakoon, K. G., Gobert, G. N., Cai, P. & McManus, D. P. Advances in the diagnosis of human schistosomiasis. Clin. Microbiol. Rev. 28, 939–967 (2015). This authoritative review considers some of the earlier approaches in the search for new diagnostics for schistosomiasis but emphasizes the more-recent developments that have practical applications in the laboratory, the clinic and the field.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Coltart, C. E. et al. Schistosomiasis presenting in travellers: a 15 year observational study at the Hospital for Tropical Diseases, London. Trans. R. Soc. Trop. Med. Hyg. 109, 214–220 (2015).

    PubMed  Google Scholar 

  83. Checkley, A. M. et al. Eosinophilia in returning travellers and migrants from the tropics: UK recommendations for investigation and initial management. J. Infect. 60, 1–20 (2010).

    PubMed  Google Scholar 

  84. Katz, N., Chaves, A. & Pellegrino, J. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev. Inst. Med. Trop. Sao Paulo 14, 397–400.

  85. Feldmeier, H., Doehring, E. & Daffalla, A. A. Simultaneous use of a sensitive filtration technique and reagent strips in urinary schistosomiasis. Trans. R. Soc. Trop. Med. Hyg. 76, 416–421 (1982).

    CAS  PubMed  Google Scholar 

  86. Feldmeier, H. & Poggensee, G. Diagnostic techniques in schistosomiasis control. A review. Acta Trop. 52, 205–220 (1993).

    CAS  PubMed  Google Scholar 

  87. Utzinger, J., Becker, S. L., van Lieshout, L., van Dam, G. J. & Knopp, S. New diagnostic tools in schistosomiasis. Clin. Microbiol. Infect. 21, 529–542 (2015). This comprehensive review of past, current and potential future diagnostic tools for schistosomiasis emphasizes target product profiles that are required for different stages of control and elimination efforts.

    CAS  PubMed  Google Scholar 

  88. Polman, K., Deelder, A. M., Fathers, L., Gryseels, B. & Engels, D. Day-to-day fluctuation of schistosome circulating antigen levels in serum and urine of humans infected with Schistosoma mansoni in Burundi. Am. J. Trop. Med. Hyg. 59, 150–154 (1998).

    CAS  PubMed  Google Scholar 

  89. Doehring, E., Feldmeier, H. & Daffalla, A. A. Day-to-day variation and circadian rhythm of egg excretion in urinary schistosomiasis in the Sudan. Ann. Trop. Med. Parasitol. 77, 587–594 (1983).

    CAS  PubMed  Google Scholar 

  90. Fritzsche, C. et al. Confocal laser scanning microscopy, a new in vivo diagnostic tool for schistosomiasis. PLoS ONE 7, e34869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Deelder, A. M., Kornelis, D., Van Marck, E. A. E., Eveleigh, P. C. & Van Egmond, J. G. Schistosoma mansoni: characterization of two circulating polysaccharide antigens and the immunological response to these antigens in mouse, hamster, and human infections. Exp. Parasitol. 50, 16–32 (1980).

    CAS  PubMed  Google Scholar 

  92. van Dam, G. J. et al. A robust dry reagent lateral flow assay for diagnosis of active schistosomiasis by detection of Schistosoma circulating anodic antigen. Exp. Parasitol. 135, 274–282 (2013).

    PubMed  PubMed Central  Google Scholar 

  93. van Dam, G. J., Bogitsh, B. J., van Zeyl, R. J. M., Rotmans, J. P. & Deelder, A. M. Schistosoma mansoni: in vitro and in vivo excretion of CAA and CCA by developing schistosomula and adult worms. J. Parasitol. 82, 557 (1996).

    PubMed  Google Scholar 

  94. Van Lieshout, L. et al. Analysis of worm burden variation in human Schistosoma mansoni infections by determination of serum levels of circulating anodic antigen and circulating cathodic antigen. J. Infect. Dis. 172, 1336–1342 (1995).

    PubMed  Google Scholar 

  95. van Lieshout, L., Polderman, A. M., Visser, L. G., Verwey, J. J. & Deelder, A. M. Detection of the circulating antigens CAA and CCA in a group of Dutch travellers with acute schistosomiasis. Trop. Med. Int. Health 2, 551–557 (1997).

    Google Scholar 

  96. Ochodo, E. A. et al. Circulating antigen tests and urine reagent strips for diagnosis of active schistosomiasis in endemic areas. Cochrane Database Syst. Rev. 3, CD009579 https://doi.org/10.1002/14651858.cd009579.pub2 (2015). This systematic review shows that microhaematuria correctly detected the largest proportions of infections and non-infections identified by microscopy for S. haematobium infections, whereas the POC-CCA urine cassette test for S. mansoni detected a high proportion of infections identified by microscopy but misclassified a large number of microscopy negatives as positives in endemic areas with a moderate to high prevalence of infection.

    Google Scholar 

  97. Grenfell, R. F. Q. et al. Innovative methodology for point-of-care circulating cathodic antigen with rapid urine concentration for use in the field for detecting low Schistosoma mansoni infection and for control of cure with high accuracy. Trans. R. Soc. Trop. Med. Hyg. 112, 1–7 (2018).

    PubMed  Google Scholar 

  98. Meurs, L. et al. Is PCR the next reference standard for the diagnosis of Schistosoma in stool? A comparison with microscopy in Senegal and Kenya. PLoS Negl. Trop. Dis. 9, e0003959 (2015).

    PubMed  PubMed Central  Google Scholar 

  99. Obeng, B. B. et al. Application of a circulating-cathodic-antigen (CCA) strip test and real-time PCR, in comparison with microscopy, for the detection of Schistosoma haematobiumin urine samples from Ghana. Ann. Trop. Med. Parasitol. 102, 625–633 (2008).

    CAS  PubMed  Google Scholar 

  100. He, P. et al. Real-time PCR diagnosis of Schistosoma japonicum in low transmission areas of China. Infect. Dis. Poverty 7, 8 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Härter, G. et al. Diagnosis of neuroschistosomiasis by antibody specificity index and semi-quantitative real-time PCR from cerebrospinal fluid and serum. J. Med. Microbiol. 63, 309–312 (2014).

    PubMed  Google Scholar 

  102. Cnops, L., Tannich, E., Polman, K., Clerinx, J. & Van Esbroeck, M. Schistosoma real-time PCR as diagnostic tool for international travellers and migrants. Trop. Med. Int. Health 17, 1208–1216 (2012).

    Google Scholar 

  103. Whitty, C. J. M., Mabey, D. C., Armstrong, M., Wright, S. G. & Chiodini, P. L. Presentation and outcome of 1107 cases of schistosomiasis from Africa diagnosed in a non-endemic country. Trans. R. Soc. Trop. Med. Hyg. 94, 531–534 (2000).

    CAS  PubMed  Google Scholar 

  104. Doenhoff, M. J., Chiodini, P. L. & Hamilton, J. V. Specific and sensitive diagnosis of schistosome infection: can it be done with antibodies? Trends Parasitol. 20, 35–39 (2004).

    PubMed  Google Scholar 

  105. Nausch, N. et al. Field evaluation of a new antibody-based diagnostic for Schistosoma haematobium and S. mansoni at the point-of-care in northeast Zimbabwe. BMC Infect. Dis. 14, 165 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. Cai, Y.-C. et al. Field comparison of circulating antibody assays versus circulating antigen assays for the detection of schistosomiasis japonica in endemic areas of China. Parasit. Vectors 7, 138 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Barata, C. H., Pinto-Silva, R. A. & Lambertucci, J. R. Abdominal ultrasound in acute schistosomiasis mansoni. Br. J. Radiol. 72, 949–952 (1999).

    CAS  PubMed  Google Scholar 

  108. Akpata, R. et al. The WHO ultrasonography protocol for assessing morbidity due to Schistosoma haematobium. Acceptance and evolution over 14 years. Syst. Rev. Parasitol. Res. 114, 1279–1289 (2015).

    Google Scholar 

  109. Chigusa, Y. et al. Effects of repeated praziquantel treatment on schistosomiasis mekongi morbidity as detected by ultrasonography. Parasitol. Int. 55, 261–265 (2006).

    CAS  PubMed  Google Scholar 

  110. World Health Organization. Ultrasound in schistosomiasis: a practical guide to the standard use of ultrasonography for assessment of schistosomiasis-related morbidity (WHO, 2016).

  111. Chofle, A. A. et al. Oesophageal varices, schistosomiasis, and mortality among patients admitted with haematemesis in Mwanza, Tanzania: a prospective cohort study. BMC Infect. Dis. 14, 303 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. Ahmed, F. O., Hamdan, H. Z., Abdelgalil, H. B. & Sharfi, A. A. A comparison between transabdominal ultrasonographic and cystourethroscopy findings in adult Sudanese patients presenting with haematuria. Int. Urol. Nephrol. 47, 223–228 (2014).

    PubMed  Google Scholar 

  113. Henriques-Souza, A. M. & Valença, M. M. Schistosomal myelopathy in childhood: findings of magnetic resonance imaging in 26 patients. Pediatr. Neurol. 45, 373–376 (2011).

    PubMed  Google Scholar 

  114. Norseth, H. M. et al. The colposcopic atlas of schistosomiasis in the lower female genital tract based on studies in Malawi, Zimbabwe, Madagascar and South Africa. PLoS Negl. Trop. Dis. 8, e3229 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Ramarokoto, C. E. et al. Eosinophil granule proteins ECP and EPX as markers for a potential early-stage inflammatory lesion in female genital schistosomiasis (FGS). PLoS Negl. Trop. Dis. 8, e2974 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Shiff, C., Naples, J. M., Isharwal, S., Bosompem, K. M. & Veltri, R. W. Non-invasive methods to detect schistosome-based bladder cancer: is the association sufficient for epidemiological use? Trans. R. Soc. Trop. Med. Hyg. 104, 3–5 (2010).

    PubMed  Google Scholar 

  117. King, C. H. & Bertsch, D. Meta-analysis of urine heme dipstick diagnosis of Schistosoma haematobium infection, including low-prevalence and previously-treated populations. PLoS Negl. Trop. Dis. 7, e2431 (2013).

    PubMed  PubMed Central  Google Scholar 

  118. Kittur, N., Castleman, J. D., Campbell, C. H., King, C. H. & Colley, D. G. Comparison of Schistosoma mansoni prevalence and intensity of infection, as determined by the circulating cathodic antigen urine assay or by the Kato-Katz fecal assay: a systematic review. Am. J. Trop. Med. Hyg. 94, 605–610 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Sturrock, R. F., Karamsadkar, S. J. & Ouma, J. Schistosome infection rates in field snails: Schistosoma mansoni in Biomphalaria pfeifferi from Kenya. Ann. Trop. Med. Parasitol. 73, 369–375 (1979).

    CAS  PubMed  Google Scholar 

  120. Hamburger, J. et al. Evaluation of loop-mediated isothermal amplification suitable for molecular monitoring of schistosome-infected snails in field laboratories. Am. J. Trop. Med. Hyg. 88, 344–351 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tong, Q.-B. et al. A new surveillance and response tool: risk map of infected Oncomelania hupensis detected by loop-mediated isothermal amplification (LAMP) from pooled samples. Acta Trop. 141, 170–177 (2015).

    PubMed  Google Scholar 

  122. Grimes, J. E. T. et al. The roles of water, sanitation and hygiene in reducing schistosomiasis: a review. Parasit. Vectors 8, 156 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Olsen, A., Kinung’hi, S. & Magnussen, P. Schistosoma mansoni infection along the coast of Lake Victoria in Mwanza region, Tanzania. Am. J. Trop. Med. Hyg. 92, 1240–1244 (2015).

    PubMed  PubMed Central  Google Scholar 

  124. Wang, L.-D. et al. China’s new strategy to block Schistosoma japonicum transmission: experiences and impact beyond schistosomiasis. Trop. Med. Int. Health 14, 1475–1483 (2009).

    Google Scholar 

  125. Mo, A. X., Gordon, L., Hall, B. F., Walson, J. L. & Agosti, J. M. Schistosomiasis elimination strategies and potential role of a vaccine in achieving global health goals. Am. J. Trop. Med. Hyg. 90, 54–60 (2014). This paper describes the outcomes of a 2013 meeting co-sponsored by the National Institute of Allergy and Infectious Diseases and the Bill & Melinda Gates Foundation and concludes that an integrated, multifaceted approach involving chemotherapy; water, sanitation and hygiene (WASH); snail control; vaccines and other innovative tools will be necessary to have a permanent effect on schistosomiasis.

    PubMed  PubMed Central  Google Scholar 

  126. Mo, A. X. & Colley, D. G. Workshop report: schistosomiasis vaccine clinical development and product characteristics. Vaccine 34, 995–1001 (2016).

    PubMed  Google Scholar 

  127. Doenhoff, M. J., Cioli, D. & Utzinger, J. Praziquantel: mechanisms of action, resistance and new derivatives for schistosomiasis. Curr. Opin. Infect. Dis. 21, 659–667 (2008).

    CAS  PubMed  Google Scholar 

  128. Knopp, S., Becker, S. L., Ingram, K. J., Keiser, J. & Utzinger, J. Diagnosis and treatment of schistosomiasis in children in the era of intensified control. Expert Rev. Anti. Infect. Ther. 11, 1237–1258 (2013).

    CAS  PubMed  Google Scholar 

  129. Stothard, J. R., Sousa-Figueiredo, J. C. & Navaratnam, A. M. D. Advocacy, policies and practicalities of preventive chemotherapy campaigns for African children with schistosomiasis. Expert Rev. Anti. Infect. Ther. 11, 733–752 (2013).

    CAS  PubMed  Google Scholar 

  130. Friedman, J. F., Olveda, R. M., Mirochnick, M. H., Bustinduy, A. L. & Elliott, A. M. Praziquantel for the treatment of schistosomiasis during human pregnancy. Bull. World Health Organization 96, 59–65 (2018).

    Google Scholar 

  131. Fenwick, A. Praziquantel: do we need another antischistosoma treatment? Future Med. Chem. 7, 677–680 (2015).

    CAS  Google Scholar 

  132. Zwang, J. & Olliaro, P. L. Clinical efficacy and tolerability of praziquantel for intestinal and urinary schistosomiasis—a meta-analysis of comparative and non-comparative clinical trials. PLoS Negl. Trop. Dis. 8, e3286 (2014).

    PubMed  PubMed Central  Google Scholar 

  133. World Health Organization. Preventive chemotherapy in human helminthiasis – coordinated use of anthelminthic drugs in control interventions (WHO, 2006).

  134. Ross, A. G. P., Olveda, R. M. & Li, Y. An audacious goal: the elimination of schistosomiasis in our lifetime through mass drug administration. Lancet 385, 2220–2221 (2015).

    PubMed  Google Scholar 

  135. Bustinduy, A. L. et al. Population pharmacokinetics and pharmacodynamics of praziquantel in Ugandan children with intestinal schistosomiasis: higher dosages are required for maximal efficacy. MBio 7, e00227–00216 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Montresor, A. et al. Development and validation of a ‘tablet pole’ for the administration of praziquantel in sub-Saharan Africa. Trans. R. Soc. Trop. Med. Hyg. 95, 542–544 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Sousa-Figueiredo, J. C., Betson, M. & Stothard, J. R. Treatment of schistosomiasis in African infants and preschool-aged children: downward extension and biometric optimization of the current praziquantel dose pole. Int. Health 4, 95–102 (2012).

    PubMed  PubMed Central  Google Scholar 

  138. Sousa-Figueiredo, J. C. et al. Performance and safety of praziquantel for treatment of intestinal schistosomiasis in infants and preschool children. PLoS Negl. Trop. Dis. 6, e1864 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. World Health Organization. Preventive chemotherapy in human helminthiasis: coordinated use of anthelminthic drugs in control interventions: a manual for health professionals and programme managers. (WHO, 2006).

  140. Patel, T. A., Bailey, R. L., Lukawska, J. & Rowe, J. Treatment of schistosomiasis in a patient allergic to praziquantel: a desensitization and treatment protocol. Am. J. Trop. Med. Hyg. 95, 1041–1043 (2016).

    PubMed  PubMed Central  Google Scholar 

  141. Fong, G. C. & Cheung, R. T. Caution with praziquantel in neurocysticercosis. Stroke 28, 1648–1649 (1997).

    CAS  PubMed  Google Scholar 

  142. Braae, U. et al. Taenia solium taeniosis/cysticercosis and the co-distribution with schistosomiasis in Africa. Parasit. Vectors 8, 323 (2015).

    PubMed  PubMed Central  Google Scholar 

  143. Gray, D. J. et al. Schistosomiasis elimination: lessons from the past guide the future. Lancet Infect. Dis. 10, 733–736 (2010). This personal view argues that current praziquantel-based schistosomiasis control programmes are not effective or sustainable in the long term, whereas multifaceted, integrated control options would have a greater and longer lasting effect in reducing morbidity and on disease transmission.

    PubMed  Google Scholar 

  144. Crellen, T. et al. Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin. Infect. Dis. 63, ciw506 (2016).

    Google Scholar 

  145. Pica-Mattoccia, L. et al. Genetic analysis of decreased praziquantel sensitivity in a laboratory strain of Schistosoma mansoni. Acta Trop. 111, 82–85 (2009).

    CAS  PubMed  Google Scholar 

  146. Messerli, S. M., Kasinathan, R. S., Morgan, W., Spranger, S. & Greenberg, R. M. Schistosoma mansoni P-glycoprotein levels increase in response to praziquantel exposure and correlate with reduced praziquantel susceptibility. Mol. Biochem. Parasitol. 167, 54–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, W., Wang, L. & Liang, Y.-S. Susceptibility or resistance of praziquantel in human schistosomiasis: a review. Parasitol. Res. 111, 1871–1877 (2012).

    PubMed  Google Scholar 

  148. McManus, D. P. et al. Schistosomiasis in the People’s Republic of China: the era of the Three Gorges dam. Clin. Microbiol. Rev. 23, 442–466 (2010).

    PubMed  PubMed Central  Google Scholar 

  149. Yang, J. et al. Design, synthesis and biological evaluation of praziquantel and endoperoxide conjugates as antischistosomal agents. Future Med. Chem. 7, 713–725 (2015).

    CAS  PubMed  Google Scholar 

  150. Almeida, G. T. et al. Synergy of omeprazole and praziquantel in vitro treatment against Schistosoma mansoni adult worms. PLoS Negl. Trop. Dis. 9, e0004086 (2015).

    PubMed  PubMed Central  Google Scholar 

  151. Barda, B. et al. Efficacy and safety of moxidectin, synriam, synriam-praziquantel versus praziquantel against Schistosoma haematobium and S. mansoni infections: a randomized, exploratory phase 2 trial. PLoS Negl. Trop. Dis. 10, e0005008 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Cupit, P. M. & Cunningham, C. What is the mechanism of action of praziquantel and how might resistance strike? Future Med. Chem. 7, 701–705 (2015). This paper discusses current thinking regarding the mechanism of action of praziquantel and the potential for widespread drug resistance.

    CAS  PubMed  Google Scholar 

  153. Stothard, J. R., Sousa-Figueiredo, J. C., Betson, M., Bustinduy, A. & Reinhard-Rupp, J. Schistosomiasis in African infants and preschool children: let them now be treated! Trends Parasitol. 29, 197–205 (2013).

    PubMed  PubMed Central  Google Scholar 

  154. Bustinduy, A. L. et al. Expanding praziquantel (PZQ) access beyond mass drug administration programs: paving a way forward for a pediatric PZQ formulation for schistosomiasis. PLoS Negl. Trop. Dis. 10, e0004946 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. Xiao, S. H., Binggui, S., Chollet, J., Utzinger, J. & Tanner, M. Tegumental alterations in juvenile Schistosoma haematobium harboured in hamsters following artemether treatment. Parasitol. Int. 50, 175–183 (2001).

    CAS  Google Scholar 

  156. Saeed, M. E. M., Krishna, S., Greten, H. J., Kremsner, P. G. & Efferth, T. Antischistosomal activity of artemisinin derivatives in vivo and in patients. Pharmacol. Res. 110, 216–226 (2016).

    CAS  PubMed  Google Scholar 

  157. Xiao, S. H. Development of antischistosomal drugs in China, with particular consideration to praziquantel and the artemisinins. Acta Trop. 96, 153–167 (2005).

    Google Scholar 

  158. Utzinger, J. et al. Oral artemether for prevention of Schistosoma mansoni infection: randomised controlled trial. Lancet 355, 1320–1325 (2000).

    CAS  PubMed  Google Scholar 

  159. Pérez del Villar, L., Burguillo, F. J., López-Abán, J. & Muro, A. Systematic review and meta-analysis of artemisinin based therapies for the treatment and prevention of schistosomiasis. PLoS ONE 7, e45867 (2012).

    PubMed  PubMed Central  Google Scholar 

  160. Hou, X. Y. et al. A randomized, double-blind, placebo-controlled trial of safety and efficacy of combined praziquantel and artemether treatment for acute schistosomiasis japonica in China. Bull. World Health Organ. 86, 788–795 (2008).

    PubMed  PubMed Central  Google Scholar 

  161. Obonyo, C. O., Muok, E. M. O. & Mwinzi, P. N. Efficacy of artesunate with sulfalene plus pyrimethamine versus praziquantel for treatment of Schistosoma mansoni in Kenyan children: an open-label randomised controlled trial. Lancet Infect. Dis. 10, 603–611 (2010).

    CAS  PubMed  Google Scholar 

  162. Keiser, J. et al. Praziquantel, mefloquine-praziquantel, and mefloquine-artesunate-praziquantel against Schistosoma haematobium: a randomized, exploratory, open-label trial. PLoS Negl. Trop. Dis. 8, e2975 (2014).

    PubMed  PubMed Central  Google Scholar 

  163. Utzinger, J., Tanner, M. & Keiser, J. ACTs for schistosomiasis: do they act? Lancet Infect. Dis. 10, 579–581 (2010).

    PubMed  Google Scholar 

  164. Carod-Artal, F. J. Neuroschistosomiasis. Expert Rev. Anti. Infect. Ther. 8, 1307–1318 (2010).

    PubMed  Google Scholar 

  165. Leite, L. A. C. et al. Splenectomy improves hemostatic and liver functions in hepatosplenic schistosomiasis mansoni. PLoS ONE 10, e0135370 (2015).

    PubMed  PubMed Central  Google Scholar 

  166. Richter, J. et al. Severe liver fibrosis caused by Schistosoma mansoni: management and treatment with a transjugular intrahepatic portosystemic shunt. Lancet Infect. Dis. 15, 731–737 (2015).

    PubMed  Google Scholar 

  167. Bergquist, R., Johansen, M. V. & Utzinger, J. Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol. 25, 151–156 (2009).

    PubMed  Google Scholar 

  168. Bärenbold, O. et al. Estimating sensitivity of the Kato-Katz technique for the diagnosis of Schistosoma mansoni and hookworm in relation to infection intensity. PLoS Negl. Trop. Dis. 11, e0005953 (2017).

    PubMed  PubMed Central  Google Scholar 

  169. Stothard, J. R. et al. Schistosoma mansoni infections in young children: when are schistosome antigens in urine, eggs in stool and antibodies to eggs first detectable? PLoS Negl. Trop. Dis. 5, e938 (2011).

    PubMed  PubMed Central  Google Scholar 

  170. Chami, G. F. et al. Influence of Schistosoma mansoni and hookworm infection intensities on anaemia in Ugandan villages. PLoS Negl. Trop. Dis. 9, e0004193 (2015).

    PubMed  PubMed Central  Google Scholar 

  171. Olveda, D. U. et al. Bilharzia in the Philippines: past, present, and future. Int. J. Infect. Dis. 18, 52–56 (2014).

    PubMed  Google Scholar 

  172. World Health Organization. The world health report 1999 – making a difference (WHO, 2013).

  173. Hotez, P. J. & Fenwick, A. Schistosomiasis in Africa: an emerging tragedy in our new global health decade. PLoS Negl. Trop. Dis. 3, e485 (2009).

    PubMed  PubMed Central  Google Scholar 

  174. World Health Organization. Schistosomiasis: progress report 2001–2011, strategic plan 2012–2020 (WHO, 2013).

  175. Secor, W. E. Early lessons from schistosomiasis mass drug administration programs. F1000Res. 4 (2015).

  176. Mutapi, F., Maizels, R., Fenwick, A. & Woolhouse, M. Human schistosomiasis in the post mass drug administration era. Lancet Infect. Dis. 17, e42–e48 (2017). This paper considers the potential consequences of the current extensive MDA programmes for schistosomiasis, which, although curing infection, could have profound effects in the future on schistosome biology, immunoepidemiology and public health.

    PubMed  Google Scholar 

  177. Colley, D. G. & Secor, W. E. A. Schistosomiasis research agenda. PLoS Negl. Trop. Dis. 1, e32 (2007).

    PubMed  PubMed Central  Google Scholar 

  178. Riveau, G. et al. Safety and immunogenicity of rSh28GST antigen in humans: phase 1 randomized clinical study of a vaccine candidate against urinary schistosomiasis. PLoS Negl. Trop. Dis. 6, e1704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Bergquist, R. & McManus, D. P. in Schistosoma: biology, pathology, and control (ed. Jamieson, B.G.M.) 462–478 (CRC Press,2016).

  180. McManus, D. P. & Loukas, A. Current status of vaccines for schistosomiasis. Clin. Microbiol. Rev. 21, 225–242 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Tebeje, B. M., Harvie, M., You, H., Loukas, A. & McManus, D. P. Schistosomiasis vaccines: where do we stand? Parasit. Vectors 9, 528 (2016).

    PubMed  PubMed Central  Google Scholar 

  182. Alsallaq, R. A., Gurarie, D., Ndeffo Mbah, M., Galvani, A. & King, C. Quantitative assessment of the impact of partially protective anti-schistosomiasis vaccines. PLoS Negl. Trop. Dis. 11, e0005544 (2017).

    PubMed  PubMed Central  Google Scholar 

  183. Sokolow, S. H. et al. Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host. Proc. Natl Acad. Sci. USA 112, 9650–9655 (2015).

    CAS  PubMed  Google Scholar 

  184. Marques, D. P. & de, A. et al. Reduced susceptibility of a Biomphalaria tenagophila population to Schistosoma mansoni after introducing the resistant Taim/RS strain of B. tenagophila into Herivelton Martins stream. PLoS ONE 9, e99573 (2014).

    PubMed  PubMed Central  Google Scholar 

  185. Sokolow, S. H. et al. Global assessment of schistosomiasis control over the past century shows targeting the snail intermediate host works best. PLoS Negl. Trop. Dis. 10, e0004794 (2016).

    PubMed  PubMed Central  Google Scholar 

  186. Trainor-Moss, S. & Mutapi, F. Schistosomiasis therapeutics: whats in the pipeline? Expert Rev. Clin. Pharmacol. 9, 157–160 (2015).

    PubMed  Google Scholar 

  187. Cioli, D., Pica-Mattoccia, L., Basso, A. & Guidi, A. Schistosomiasis control: praziquantel forever? Mol. Biochem. Parasitol. 195, 23–29 (2014).

    CAS  PubMed  Google Scholar 

  188. Schistosoma japonicum Genome Sequencing & Functional Analysis Consortium. et al. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460, 345–351 (2009). This paper presents a draft genomic sequence for S. japonicum, along with S. mansoni, the first reported for any flatworm, and provides a unique resource for facilitating the development of new control interventions against schistosomiasis.

    Google Scholar 

  189. Berriman, M. et al. The genome of the blood fluke Schistosoma mansoni. Nature 460, 352–358 (2009). This study describes the sequence and analysis of the S. mansoni genome and identifies targets to accelerate drug discovery, leading to new treatments for the control and elimination of schistosomiasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Young, N. D. et al. Whole-genome sequence of Schistosoma haematobium. Nat. Genet. 44, 221–225 (2012). This article describes the genome of S. haematobium, providing new insights for studying parasite development, host–parasite interactions and schistosome-associated bladder cancer, and offers a resource for the design and development of new anti-schistosomal drugs, vaccines and diagnostic tools.

    CAS  PubMed  Google Scholar 

  191. Cowan, N. & Keiser, J. Repurposing of anticancer drugs: in vitro and in vivo activities against Schistosoma mansoni. Parasit. Vectors 8, 417 (2015).

    PubMed  PubMed Central  Google Scholar 

  192. Gouveia, M., Brindley, P., Gärtner, F., Costa, J. & Vale, N. Drug repurposing for schistosomiasis: combinations of drugs or biomolecules. Pharmaceuticals 11, 15 (2018).

    PubMed Central  Google Scholar 

  193. Mansour, N. R. et al. High throughput screening identifies novel lead compounds with activity against larval, juvenile and adult Schistosoma mansoni. PLoS Negl. Trop. Dis. 10, e0004659 (2016).

    PubMed  PubMed Central  Google Scholar 

  194. Mafud, A. C., Ferreira, L. G., Mascarenhas, Y. P., Andricopulo, A. D. & de Moraes, J. Discovery of novel antischistosomal agents by molecular modeling approaches. Trends Parasitol. 32, 874–886 (2016).

    CAS  PubMed  Google Scholar 

  195. Lee, E. F., Young, N. D., Lim, N. T. Y., Gasser, R. B. & Fairlie, W. D. Apoptosis in schistosomes: toward novel targets for the treatment of schistosomiasis. Trends Parasitol. 30, 75–84 (2014).

    CAS  PubMed  Google Scholar 

  196. Lee, E. F. & Fairlie, W. D. Repurposing apoptosis-inducing cancer drugs to treat schistosomiasis. Future Med. Chem. 7, 707–711 (2015).

    CAS  PubMed  Google Scholar 

  197. Cabezas-Cruz, A., Lancelot, J., Caby, S., Oliveira, G. & Pierce, R. J. Epigenetic control of gene function in schistosomes: a source of therapeutic targets? Front. Genet. 5, 317 (2014).

    PubMed  PubMed Central  Google Scholar 

  198. Hess, J., Keiser, J. & Gasser, G. Toward organometallic antischistosomal drug candidates. Future Med. Chem. 7, 821–830 (2015).

    CAS  PubMed  Google Scholar 

  199. Wangchuk, P., Giacomin, P. R., Pearson, M. S., Smout, M. J. & Loukas, A. Identification of lead chemotherapeutic agents from medicinal plants against blood flukes and whipworms. Sci. Rep. 6, 32101 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Julé, A. M., Vaillant, M., Lang, T. A., Guérin, P. J. & Olliaro, P. L. The schistosomiasis clinical trials landscape: a systematic review of antischistosomal treatment efficacy studies and a case for sharing individual participant-level data (IPD). PLoS Negl. Trop. Dis. 10, e0004784 (2016).

    PubMed  PubMed Central  Google Scholar 

  201. Aagaard-Hansen, J., Nombela, N. & Alvar, J. Population movement: a key factor in the epidemiology of neglected tropical diseases. Trop. Med. Int. Health 15, 1281–1288 (2010).

    Google Scholar 

  202. Gnanasekar, M., Salunkhe, A. M., Mallia, A. K., He, Y. X. & Kalyanasundaram, R. Praziquantel affects the regulatory myosin light chain of Schistosoma mansoni. Antimicrob. Agents Chemother. 53, 1054–1060 (2008).

    PubMed  PubMed Central  Google Scholar 

  203. Angelucci, F. et al. The anti-schistosomal drug praziquantel is an adenosine antagonist. Parasitology 134, 1215 (2007).

    CAS  PubMed  Google Scholar 

  204. Thomas, C. M., Fitzsimmons, C. M., Dunne, D. W. & Timson, D. J. Comparative biochemical analysis of three members of the Schistosoma mansoni TAL family: differences in ion and drug binding properties. Biochimie 108, 40–47 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Taylor, A. B. et al. Structural and functional characterization of the enantiomers of the antischistosomal drug oxamniquine. PLoS Negl. Trop. Dis. 9, e0004132 (2015).

    PubMed  PubMed Central  Google Scholar 

  206. Rojo-Arreola, L. et al. Chemical and genetic validation of the statin drug target to treat the helminth disease, schistosomiasis. PLoS ONE 9, e87594 (2014).

    PubMed  PubMed Central  Google Scholar 

  207. Buro, C. et al. Imatinib treatment causes substantial transcriptional changes in adult Schistosoma mansoni in vitro exhibiting pleiotropic effects. PLoS Negl. Trop. Dis. 8, e2923 (2014).

    PubMed  PubMed Central  Google Scholar 

  208. Anderson, L. et al. Histone deacetylase inhibition modulates histone acetylation at gene promoter regions and affects genome-wide gene transcription in Schistosoma mansoni. PLoS Negl. Trop. Dis. 11, e0005539 (2017).

    PubMed  PubMed Central  Google Scholar 

  209. Lancelot, J. et al. Schistosome sirtuins as drug targets. Future Med. Chem. 7, 765–782 (2015).

    CAS  PubMed  Google Scholar 

  210. Ishida, K. & Jolly, E. R. Hsp70 may be a molecular regulator of schistosome host invasion. PLoS Negl. Trop. Dis. 10, e0004986 (2016).

    PubMed  PubMed Central  Google Scholar 

  211. Johann, L. et al. Synthesis and evaluation of 1,4-naphthoquinone ether derivatives asSmTGR inhibitors and new anti-schistosomal drugs. FEBS J. 282, 3199–3217 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Fajtová, P. et al. Prolyl oligopeptidase from the blood fluke Schistosoma mansoni: from functional analysis to anti-schistosomal inhibitors. PLoS Negl. Trop. Dis. 9, e0003827 (2015).

    PubMed  PubMed Central  Google Scholar 

  213. Cabezas-Cruz, A., Valdés, J. J., Lancelot, J. & Pierce, R. J. Fast evolutionary rates associated with functional loss in class I glucose transporters of Schistosoma mansoni. BMC Genomics 16, 980 (2015).

    PubMed  PubMed Central  Google Scholar 

  214. Chan, J. D. et al. A miniaturized screen of a Schistosoma mansoni serotonergic G protein-coupled receptor identifies novel classes of parasite-selective inhibitors. PLoS Pathog. 12, e1005651 (2016).

    PubMed  PubMed Central  Google Scholar 

  215. Bais, S. & Greenberg, R. M. TRP channels in schistosomes. Int. J. Parasitol. Drugs Drug Resist. 6, 335–342 (2016).

    PubMed  PubMed Central  Google Scholar 

  216. Sundaraneedi, M. K. et al. Polypyridylruthenium(II) complexes exert anti-schistosome activity and inhibit parasite acetylcholinesterases. PLoS Negl. Trop. Dis. 11, e0006134 (2017).

    PubMed  PubMed Central  Google Scholar 

  217. Chuah, C., Jones, M. K., Burke, M. L., McManus, D. P. & Gobert, G. N. Cellular and chemokine-mediated regulation in schistosome-induced hepatic pathology. Trends Parasitol. 30, 141–150 (2014).

    CAS  PubMed  Google Scholar 

  218. Harder, A. & Mehlhorn, H. in Treatment of Human Parasitosis in Traditional Chinese Medicine. (eds Mehlhorn, H., Wu, Z. & Ye, B.) 79–115 (Springer, 2014).

Download references

Reviewer information

Nature Reviews Disease Primers thanks P. M. Z. Coelho, J. Friedman, N. Midzi, E. Secor and the other anonymous referee(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.P.M. and J.U.); Epidemiology (X.-N.Z. and J.U.); Mechanisms/pathophysiology (B.J.V., D.W.D. and M.S.); Diagnosis, screening and prevention (B.J.V., M.S., D.W.D. and D.P.M.); Management (D.P.M.); Quality of life (J.U.); Outlook (D.P.M. and B.J.V.); Overview of Primer (D.P.M.).

Corresponding author

Correspondence to Donald P. McManus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McManus, D.P., Dunne, D.W., Sacko, M. et al. Schistosomiasis. Nat Rev Dis Primers 4, 13 (2018). https://doi.org/10.1038/s41572-018-0013-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-018-0013-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology