Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Acute respiratory distress syndrome

Abstract

The acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure in critically ill patients and is defined by the acute onset of noncardiogenic pulmonary oedema, hypoxaemia and the need for mechanical ventilation. ARDS occurs most often in the setting of pneumonia, sepsis, aspiration of gastric contents or severe trauma and is present in ~10% of all patients in intensive care units worldwide. Despite some improvements, mortality remains high at 30–40% in most studies. Pathological specimens from patients with ARDS frequently reveal diffuse alveolar damage, and laboratory studies have demonstrated both alveolar epithelial and lung endothelial injury, resulting in accumulation of protein-rich inflammatory oedematous fluid in the alveolar space. Diagnosis is based on consensus syndromic criteria, with modifications for under-resourced settings and in paediatric patients. Treatment focuses on lung-protective ventilation; no specific pharmacotherapies have been identified. Long-term outcomes of patients with ARDS are increasingly recognized as important research targets, as many patients survive ARDS only to have ongoing functional and/or psychological sequelae. Future directions include efforts to facilitate earlier recognition of ARDS, identifying responsive subsets of patients and ongoing efforts to understand fundamental mechanisms of lung injury to design specific treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The normal alveolus.
Fig. 2: Microscopic findings in lung tissue in patients with ARDS.
Fig. 3: The injured alveolus.
Fig. 4: Epithelial cell regeneration in ARDS.
Fig. 5: The repaired alveolus.
Fig. 6: Distinguishing ARDS on radiography.
Fig. 7: Common respiratory pathogens in ARDS and associated demographic features and comorbidities.
Fig. 8: Identifying patients with early acute lung injury before progression to ARDS by the Berlin criteria.

Similar content being viewed by others

References

  1. Ashbaugh, D. G., Bigelow, D. B., Petty, T. L. & Levine, B. E. Acute respiratory distress in adults. Lancet 2, 319–323 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Bernard, G. R. et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med. 149, 818–824 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Ranieri, V. M. et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA 307, 2526–2533 (2012). This article describes the standard clinical definition for adult ARDS that was proposed in 2012 and has been widely adopted.

    PubMed  Google Scholar 

  4. Rubenfeld, G. D. et al. Incidence and outcomes of acute lung injury. N. Engl. J. Med. 353, 1685–1693 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Bellani, G. et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315, 788–800 (2016). This international study provides major new insights into the challenges in recognizing and diagnosing ARDS, the high prevalence in intensive care units and the shortcomings in applying treatment with lung-protective ventilation to a substantial proportion of patients with ARDS.

    Article  CAS  PubMed  Google Scholar 

  6. Pham, T. & Rubenfeld, G. D. Fifty years of research in ARDS. The epidemiology of acute respiratory distress syndrome. A 50th birthday review. Am. J. Respir. Crit. Care Med. 195, 860–870 (2017).

    Article  PubMed  Google Scholar 

  7. Cortegiani, A. et al. Immunocompromised patients with acute respiratory distress syndrome: secondary analysis of the LUNG SAFE database. Crit. Care 22, 157 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moss, M., Bucher, B., Moore, F. A., Moore, E. E. & Parsons, P. E. The role of chronic alcohol abuse in the development of acute respiratory distress syndrome in adults. JAMA 275, 50–54 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Calfee, C. S. et al. Active and passive cigarette smoking and acute lung injury after severe blunt trauma. Am. J. Respir. Crit. Care Med. 183, 1660–1665 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Calfee, C. S. et al. Cigarette smoke exposure and the acute respiratory distress syndrome. Crit. Care Med. 43, 1790–1797 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ware, L. B. et al. Long-term ozone exposure increases the risk of developing the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 193, 1143–1150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reilly, J. P. et al. Low to moderate air pollutant exposure and acute respiratory distress syndrome after severe trauma. Am. J. Respir. Crit. Care Med. 199, 62–70 (2018).

    Article  Google Scholar 

  13. Mangialardi, R. J. et al. Hypoproteinemia predicts acute respiratory distress syndrome development, weight gain, and death in patients with sepsis. Ibuprofen Sepsis Study Group. Crit. Care Med. 28, 3137–3145 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Moss, M. et al. Diabetic patients have a decreased incidence of acute respiratory distress syndrome. Crit. Care Med. 28, 2187–2192 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Honiden, S. & Gong, M. N. Diabetes, insulin, and development of acute lung injury. Crit. Care Med. 37, 2455–2464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boyle, A. J. et al. Identifying associations between diabetes and acute respiratory distress syndrome in patients with acute hypoxemic respiratory failure: an analysis of the LUNG SAFE database. Crit. Care 22, 268 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Toy, P. et al. Transfusion-related acute lung injury: incidence and risk factors. Blood 119, 1757–1767 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson, B. R. et al. Application of the Berlin definition in PROMMTT patients: the impact of resuscitation on the incidence of hypoxemia. J. Trauma Acute Care Surg. 75, S61–S67 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Howard, B. M. et al. Differences in degree, differences in kind: characterizing lung injury in trauma. J. Trauma Acute Care Surg. 78, 735–741 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Erickson, S. E. et al. Racial and ethnic disparities in mortality from acute lung injury. Crit. Care Med. 37, 1–6 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ryb, G. E. & Cooper, C. Race/ethnicity and acute respiratory distress syndrome: a National Trauma Data Bank study. J. Natl Med. Assoc. 102, 865–869 (2010).

    Article  PubMed  Google Scholar 

  22. Cochi, S. E., Kempker, J. A., Annangi, S., Kramer, M. R. & Martin, G. S. Mortality trends of acute respiratory distress syndrome in the United States from 1999 to 2013. Ann. Am. Thorac Soc. 13, 1742–1751 (2016).

    PubMed  PubMed Central  Google Scholar 

  23. Moss, M. & Mannino, D. M. Race and gender differences in acute respiratory distress syndrome deaths in the United States: an analysis of multiple-cause mortality data (1979–1996). Crit. Care Med. 30, 1679–1685 (2002).

    Article  PubMed  Google Scholar 

  24. Reilly, J. P., Christie, J. D. & Meyer, N. J. Fifty years of research in ARDS. Genomic contributions and opportunities. Am. J. Respir. Crit. Care Med. 196, 1113–1121 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meyer, N. J. & Calfee, C. S. Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome. Lancet Respir. Med. 5, 512–523 (2017).

    Article  PubMed  Google Scholar 

  26. Reilly, J. P. et al. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med. 44, 1849–1858 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Schouten, L. R. et al. Incidence and mortality of acute respiratory distress syndrome in children: a systematic review and meta-analysis. Crit. Care Med. 44, 819–829 (2016).

    Article  PubMed  CAS  Google Scholar 

  28. Khemani, R. G. et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir. Med. 7, 115–128 (2018).

    Article  PubMed  Google Scholar 

  29. Bindl, L. et al. Gender-based differences in children with sepsis and ARDS: the ESPNIC ARDS Database Group. Intensive Care Med. 29, 1770–1773 (2003).

    Article  PubMed  Google Scholar 

  30. Nye, S., Whitley, R. J. & Kong, M. Viral infection in the development and progression of pediatric acute respiratory distress syndrome. Front. Pediatr. 4, 128 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. de Roulet, A. et al. Pediatric trauma-associated acute respiratory distress syndrome: incidence, risk factors, and outcomes. J. Pediatr. Surg. https://doi.org/10.1016/j.jpedsurg.2018.07.005 (2018).

    Article  PubMed  Google Scholar 

  32. Randolph, A. G. Management of acute lung injury and acute respiratory distress syndrome in children. Crit. Care Med. 37, 2448–2454 (2009).

    Article  PubMed  Google Scholar 

  33. Spicer, A. C. et al. A simple and robust bedside model for mortality risk in pediatric patients with acute respiratory distress syndrome. Pediatr. Crit. Care Med. 17, 907–916 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bhattacharya, J. & Matthay, M. A. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu. Rev. Physiol. 75, 593–615 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Matthay, M. A. Resolution of pulmonary edema. Thirty years of progress. Am. J. Respir. Crit. Care Med. 189, 1301–1308 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Matthay, M. A., Ware, L. B. & Zimmerman, G. A. The acute respiratory distress syndrome. J. Clin. Invest. 122, 2731–2740 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bachofen, M. & Weibel, E. R. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin. Chest Med. 3, 35–56 (1982).

    CAS  PubMed  Google Scholar 

  38. Fein, A. et al. The value of edema fluid protein measurement in patients with pulmonary edema. Am. J. Med. 67, 32–38 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. Nuckton, T. J. et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N. Engl. J. Med. 346, 1281–1286 (2002).

    Article  PubMed  Google Scholar 

  40. Katzenstein, A. L., Bloor, C. M. & Leibow, A. A. Diffuse alveolar damage—the role of oxygen, shock, and related factors. A review. Am. J. Pathol. 85, 209–228 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mendez, J. L. & Hubmayr, R. D. New insights into the pathology of acute respiratory failure. Curr. Opin. Crit. Care 11, 29–36 (2005).

    Article  PubMed  Google Scholar 

  42. Cardinal-Fernandez, P., Lorente, J. A., Ballen-Barragan, A. & Matute-Bello, G. Acute respiratory distress syndrome and diffuse alveolar damage. New insights on a complex relationship. Ann. Am. Thorac Soc. 14, 844–850 (2017).

    Article  PubMed  Google Scholar 

  43. Thille, A. W. et al. Chronology of histological lesions in acute respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical autopsies. Lancet Respir. Med. 1, 395–401 (2013).

    Article  PubMed  Google Scholar 

  44. Thille, A. W. et al. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am. J. Respir. Crit. Care Med. 187, 761–767 (2013). This study provides 20 years of post-mortem pathology data from patients with ARDS, including a reduction in the frequency of DAD in the low tidal volume era (2000–2010).

    Article  PubMed  Google Scholar 

  45. Cardinal-Fernandez, P. et al. The presence of diffuse alveolar damage on open lung biopsy is associated with mortality in patients with acute respiratory distress syndrome: a systematic review and meta-analysis. Chest 149, 1155–1164 (2016).

    Article  PubMed  Google Scholar 

  46. Bachofen, M. & Weibel, E. R. Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am. Rev. Respir. Dis. 116, 589–615 (1977).

    Article  CAS  PubMed  Google Scholar 

  47. Tomashefski, J. F. Jr Pulmonary pathology of acute respiratory distress syndrome. Clin. Chest Med. 21, 435–466 (2000).

    Article  PubMed  Google Scholar 

  48. Albertine, K. H. et al. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Pathol. 161, 1783–1796 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang, L. et al. Novel role of the human alveolar epithelium in regulating intra-alveolar coagulation. Am. J. Respir. Cell Mol. Biol. 36, 497–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Bastarache, J. A., Fremont, R. D., Kropski, J. A., Bossert, F. R. & Ware, L. B. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L1035–L1041 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cheng, K. T. et al. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J. Clin. Invest. 127, 4124–4135 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Brigham, K. L., Woolverton, W. C., Blake, L. H. & Staub, N. C. Increased sheep lung vascular permeability caused by pseudomonas bacteremia. J. Clin. Invest. 54, 792–804 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wiener-Kronish, J. P., Albertine, K. H. & Matthay, M. A. Differential responses of the endothelial and epithelial barriers of the lung in sheep to Escherichia coli endotoxin. J. Clin. Invest. 88, 864–875 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gotts, J. E., Abbott, J. & Matthay, M. A. Influenza causes prolonged disruption of the alveolar-capillary barrier in mice unresponsive to mesenchymal stem cell therapy. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L395–L406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Frye, M. et al. Interfering with VE-PTP stabilizes endothelial junctions in vivo via Tie-2 in the absence of VE-cadherin. J. Exp. Med. 212, 2267–2287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Giannotta, M., Trani, M. & Dejana, E. VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev. Cell 26, 441–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Broermann, A. et al. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo. J. Exp. Med. 208, 2393–2401 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Corada, M. et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc. Natl Acad. Sci. USA 96, 9815–9820 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Schulte, D. et al. Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J. 30, 4157–4170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Williams, A. E. et al. Evidence for chemokine synergy during neutrophil migration in ARDS. Thorax 72, 66–73 (2017).

    Article  PubMed  Google Scholar 

  61. Lefrancais, E., Mallavia, B., Zhuo, H., Calfee, C. S. & Looney, M. R. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight 3, 98178 (2018).

    Article  PubMed  Google Scholar 

  62. Abdulnour, R. E. et al. Early intravascular events are associated with development of acute respiratory distress syndrome. A substudy of the LIPS-A clinical trial. Am. J. Respir. Crit. Care Med. 197, 1575–1585 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Short, K. R. et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 47, 954–966 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Schlingmann, B. et al. Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions. Nat. Commun. 7, 12276 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shaver, C. M. et al. Cell-free hemoglobin promotes primary graft dysfunction through oxidative lung endothelial injury. JCI Insight 3, 98546 (2018).

    Article  PubMed  Google Scholar 

  66. Budinger, G. R. et al. Epithelial cell death is an important contributor to oxidant-mediated acute lung injury. Am. J. Respir. Crit. Care Med. 183, 1043–1054 (2011).

    Article  PubMed  Google Scholar 

  67. Hogner, K. et al. Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. PLOS Pathog. 9, e1003188 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Vaughan, A. E. et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517, 621–625 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Imai, Y. et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. JAMA 289, 2104–2112 (2003).

    Article  PubMed  Google Scholar 

  70. Herrero, R. et al. The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region. J. Clin. Invest. 121, 1174–1190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Saffarzadeh, M. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLOS ONE 7, e32366 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brauer, R. et al. Syndecan-1 attenuates lung injury during influenza infection by potentiating c-Met signaling to suppress epithelial apoptosis. Am. J. Respir. Crit. Care Med. 194, 333–344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hook, J. L. et al. Disruption of staphylococcal aggregation protects against lethal lung injury. J. Clin. Invest. 128, 1074–1086 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vohwinkel, C. U. et al. Elevated CO(2) levels cause mitochondrial dysfunction and impair cell proliferation. J. Biol. Chem. 286, 37067 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ware, L. B. & Matthay, M. A. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 163, 1376–1383 (2001). This study establishes the critical contribution of alveolar epithelial injury to higher mortality in ARDS by impaired alveolar oedema fluid clearance early in the clinical course of acute respiratory failure.

    Article  CAS  PubMed  Google Scholar 

  76. Hogan, B. L. et al. Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell 15, 123–138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ray, S. et al. Rare SOX2(+) airway progenitor cells generate KRT5(+) cells that repopulate damaged alveolar parenchyma following influenza virus infection. Stem Cell Rep. 7, 817–825 (2016).

    Article  CAS  Google Scholar 

  78. Quantius, J. et al. Influenza virus infects epithelial stem/progenitor cells of the distal lung: impact on Fgfr2b-driven epithelial repair. PLOS Pathog. 12, e1005544 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Xi, Y. et al. Local lung hypoxia determines epithelial fate decisions during alveolar regeneration. Nat. Cell Biol. 19, 904–914 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nabhan, A. N., Brownfield, D. G., Harbury, P. B., Krasnow, M. A. & Desai, T. J. Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359, 1118–1123 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dial, C. F., Tune, M. K., Doerschuk, C. M. & Mock, J. R. Foxp3+regulatory T cell expression of keratinocyte growth factor enhances lung epithelial proliferation. Am. J. Respir. Cell Mol. Biol. 57, 162–173 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zemans, R. L. et al. Neutrophil transmigration triggers repair of the lung epithelium via beta-catenin signaling. Proc. Natl Acad. Sci. USA 108, 15990–15995 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Cong, X., Hubmayr, R. D., Li, C. & Zhao, X. Plasma membrane wounding and repair in pulmonary diseases. Am. J. Physiol. Lung Cell. Mol. Physiol. 312, L371–L391 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schumacker, P. T. et al. Mitochondria in lung biology and pathology: more than just a powerhouse. Am. J. Physiol. Lung Cell. Mol. Physiol. 306, L962–L974 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fang, X., Neyrinck, A. P., Matthay, M. A. & Lee, J. W. Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J. Biol. Chem. 285, 26211–26222 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koval, M. et al. Extracellular matrix influences alveolar epithelial claudin expression and barrier function. Am. J. Respir. Cell Mol. Biol. 42, 172–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Gwozdzinska, P. et al. Hypercapnia impairs ENaC cell surface stability by promoting phosphorylation, polyubiquitination and endocytosis of beta-ENaC in a human alveolar epithelial cell line. Front. Immunol. 8, 591 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Vadasz, I. & Sznajder, J. I. Gas exchange disturbances regulate alveolar fluid clearance during acute lung injury. Front. Immunol. 8, 757 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nikolaidis, N. M. et al. Mitogenic stimulation accelerates influenza-induced mortality by increasing susceptibility of alveolar type II cells to infection. Proc. Natl Acad. Sci. USA 114, E6613–E6622 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Albert, R. K. The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 185, 702–708 (2012).

    Article  PubMed  Google Scholar 

  91. Webb, H. H. & Tierney, D. F. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am. Rev. Respir. Dis. 110, 556–565 (1974).

    CAS  PubMed  Google Scholar 

  92. Parker, J. C., Townsley, M. I., Rippe, B., Taylor, A. E. & Thigpen, J. Increased microvascular permeability in dog lungs due to high peak airway pressures. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 57, 1809–1816 (1984).

    CAS  PubMed  Google Scholar 

  93. Dreyfuss, D., Soler, P., Basset, G. & Saumon, G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am. Rev. Respir. Dis. 137, 1159–1164 (1988).

    Article  CAS  PubMed  Google Scholar 

  94. Brower, R. G. et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 342, 1301–1308 (2000). This landmark clinical trial reports a 9% absolute mortality reduction with a low tidal volume and plateau airway pressure limit strategy compared with the traditional higher tidal volume approach.

    Article  PubMed  Google Scholar 

  95. Tremblay, L., Valenza, F., Ribeiro, S. P., Li, J. & Slutsky, A. S. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J. Clin. Invest. 99, 944–952 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Frank, J. A. et al. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am. J. Respir. Crit. Care Med. 165, 242–249 (2002).

    Article  PubMed  Google Scholar 

  97. Thompson, B. T., Chambers, R. C. & Liu, K. D. Acute respiratory distress syndrome. N. Engl. J. Med. 377, 562–572 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Sprung, C. L., Rackow, E. C., Fein, I. A., Jacob, A. I. & Isikoff, S. K. The spectrum of pulmonary edema: differentiation of cardiogenic, intermediate, and noncardiogenic forms of pulmonary edema. Am. Rev. Respir. Dis. 124, 718–722 (1981).

    CAS  PubMed  Google Scholar 

  99. Idell, S. et al. Angiotensin converting enzyme in bronchoalveolar lavage in ARDS. Chest 91, 52–56 (1987).

    Article  CAS  PubMed  Google Scholar 

  100. Rubin, D. B. et al. Elevated von Willebrand factor antigen is an early plasma predictor of acute lung injury in nonpulmonary sepsis syndrome. J. Clin. Invest. 86, 474–480 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Donnelly, S. C. et al. Role of selectins in development of adult respiratory distress syndrome. Lancet 344, 215–219 (1994).

    Article  CAS  PubMed  Google Scholar 

  102. Parsons, P. E., Matthay, M. A., Ware, L. B. & Eisner, M. D. Elevated plasma levels of soluble TNF receptors are associated with morbidity and mortality in patients with acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 288, L426–L431 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Meduri, G. U. et al. Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest 108, 1303–1314 (1995).

    Article  CAS  PubMed  Google Scholar 

  104. Agrawal, A. et al. Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am. J. Respir. Crit. Care Med. 187, 736–742 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Eisner, M. D. et al. Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury. Thorax 58, 983–988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Uchida, T. et al. Receptor for advanced glycation end-products is a marker of type I cell injury in acute lung injury. Am. J. Respir. Crit. Care Med. 173, 1008–1015 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ware, L. B. et al. Prognostic and pathogenetic value of combining clinical and biochemical indices in patients with acute lung injury. Chest 137, 288–296 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Parsons, P. E. et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit. Care Med. 33, 1–6; discussion 230–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Calfee, C. S. et al. Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax 63, 1083–1089 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ranieri, V. M. et al. Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282, 54–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  111. Calfee, C. S. et al. Distinct molecular phenotypes of direct versus indirect ARDS in single-center and multicenter studies. Chest 147, 1539–1548 (2015).

    Article  PubMed  Google Scholar 

  112. Calfee, C. S. et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir. Med. 2, 611–620 (2014). This study uses latent class analysis of two clinical trials to identify two subphenotypes of ARDS on the basis of biological and clinical variables (hyper-inflammatory and hypo-inflammatory); patients in these subphenotypes had different clinical outcomes and a differential treatment response to PEEP, thereby establishing the need to classify patients by biological and clinical factors to test new therapies.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Famous, K. R. et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am. J. Respir. Crit. Care Med. 195, 331–338 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Calfee, C. S. et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir. Med. 6, 691–698 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Sinha, P. et al. Latent class analysis of ARDS subphenotypes: a secondary analysis of the statins for acutely injured lungs from sepsis (SAILS) study. Intensive Care Med. 44, 1859–1869 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. McAuley, D. F. et al. Simvastatin in the acute respiratory distress syndrome. N. Engl. J. Med. 371, 1695–1703 (2014).

    Article  PubMed  CAS  Google Scholar 

  117. Bos, L. D. et al. Understanding heterogeneity in biological phenotypes of ARDS by leukocyte expression profiles. Am. J. Respir. Crit. Care Med. https://doi.org/10.1164/rccm.201809-1808OC (2019).

    Article  PubMed  Google Scholar 

  118. Morrell, E. D. et al. Peripheral and alveolar cell transcriptional programs are distinct in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 197, 528–532 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kangelaris, K. N. et al. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. Am. J. Physiol. Lung Cell. Mol. Physiol. 308, L1102–L1113 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Rubenfeld, G. D., Caldwell, E., Granton, J., Hudson, L. D. & Matthay, M. A. Interobserver variability in applying a radiographic definition for ARDS. Chest 116, 1347–1353 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Wheeler, A. P. et al. Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N. Engl. J. Med. 354, 2213–2224 (2006).

    Article  PubMed  Google Scholar 

  122. Ware, L. B., Fremont, R. D., Bastarache, J. A., Calfee, C. S. & Matthay, M. A. Determining the aetiology of pulmonary oedema by the oedema fluid-to-plasma protein ratio. Eur. Respir. J. 35, 331–337 (2010).

    Article  CAS  PubMed  Google Scholar 

  123. Rice, T. W. et al. Vascular pedicle width in acute lung injury: correlation with intravascular pressures and ability to discriminate fluid status. Crit. Care 15, R86 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Riviello, E. D. et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali Modification of the Berlin Definition. Am. J. Respir. Crit. Care Med. 193, 52–59 (2016).

    Article  PubMed  Google Scholar 

  125. Palakshappa, J. A. & Meyer, N. J. Which patients with ARDS benefit from lung biopsy? Chest 148, 1073–1082 (2015).

    Article  PubMed  Google Scholar 

  126. Khemani, R. G., Smith, L. S., Zimmerman, J. J. & Erickson, S. Pediatric acute respiratory distress syndrome: definition, incidence, and epidemiology: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr. Crit. Care Med. 16, S23–S40 (2015).

    Article  PubMed  Google Scholar 

  127. De Luca, D. et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir. Med. 5, 657–666 (2017).

    Article  PubMed  Google Scholar 

  128. Kao, K. C. et al. Coinfection and mortality in pneumonia-related acute respiratory distress syndrome patients with bronchoalveolar lavage: a prospective observational study. Shock 47, 615–620 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hong, D. K. et al. Liquid biopsy for infectious diseases: sequencing of cell-free plasma to detect pathogen DNA in patients with invasive fungal disease. Diagn. Microbiol. Infect. Dis. 92, 210–213 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Fischer, N. et al. Rapid metagenomic diagnostics for suspected outbreak of severe pneumonia. Emerg. Infect. Dis. 20, 1072–1075 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hasvold, J., Sjoding, M., Pohl, K., Cooke, C. & Hyzy, R. C. The role of human metapneumovirus in the critically ill adult patient. J. Crit. Care 31, 233–237 (2016).

    Article  PubMed  Google Scholar 

  132. Robert, D. et al. A series of five adult cases of respiratory syncytial virus-related acute respiratory distress syndrome. Anaesth. Intensive Care 36, 230–234 (2008).

    CAS  PubMed  Google Scholar 

  133. Ferguson, N. D. et al. Clinical risk conditions for acute lung injury in the intensive care unit and hospital ward: a prospective observational study. Crit. Care 11, R96 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Matthay, M. A. Challenges in predicting which patients will develop ARDS. Lancet Respir. Med. 4, 847–848 (2016).

    Article  PubMed  Google Scholar 

  135. Levitt, J. E., Calfee, C. S., Goldstein, B. A., Vojnik, R. & Matthay, M. A. Early acute lung injury: criteria for identifying lung injury prior to the need for positive pressure ventilation*. Crit. Care Med. 41, 1929–1937 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Gajic, O. et al. Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am. J. Respir. Crit. Care Med. 183, 462–470 (2011).

    Article  PubMed  Google Scholar 

  137. Kor, D. J. et al. Effect of aspirin on development of ARDS in at-risk patients presenting to the emergency department: the LIPS-A randomized clinical trial. JAMA 315, 2406–2414 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Levitt, J. E., Bedi, H., Calfee, C. S., Gould, M. K. & Matthay, M. A. Identification of early acute lung injury at initial evaluation in an acute care setting prior to the onset of respiratory failure. Chest 135, 936–943 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Levitt, J. E. & Matthay, M. A. Clinical review: early treatment of acute lung injury—paradigm shift toward prevention and treatment prior to respiratory failure. Crit. Care 16, 223 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Afshar, M. et al. Injury characteristics and von Willebrand Factor for the prediction of acute respiratory distress syndrome in patients with burn injury: development and internal validation. Ann. Surg. https://doi.org/10.1097/SLA.0000000000002795 (2018).

    Article  PubMed  Google Scholar 

  141. Liu, X. et al. Plasma sRAGE enables prediction of acute lung injury after cardiac surgery in children. Crit. Care 16, R91 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Jabaudon, M. et al. Receptor for advanced glycation end-products and ARDS prediction: a multicentre observational study. Sci. Rep. 8, 2603 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Luce, J. M. et al. Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am. Rev. Respir. Dis. 138, 62–68 (1988).

    Article  CAS  PubMed  Google Scholar 

  144. Weigelt, J. A., Norcross, J. F., Borman, K. R. & Snyder, W. H. 3rd. Early steroid therapy for respiratory failure. Arch. Surg. 120, 536–540 (1985).

    Article  CAS  PubMed  Google Scholar 

  145. Festic, E. et al. Randomized clinical trial of a combination of an inhaled corticosteroid and beta agonist in patients at risk of developing the acute respiratory distress syndrome. Crit. Care Med. 45, 798–805 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Determann, R. M. et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit. Care 14, R1 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Neto, A. S. & Jaber, S. What’s new in mechanical ventilation in patients without ARDS: lessons from the ARDS literature. Intensive Care Med. 42, 787–789 (2016).

    Article  PubMed  Google Scholar 

  148. Writing Group for the, P. I. et al. Effect of a low versus intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS: a randomized clinical trial. JAMA 320, 1872–1880 (2018).

    Article  Google Scholar 

  149. Li, G. et al. Eight-year trend of acute respiratory distress syndrome: a population-based study in Olmsted County, Minnesota. Am. J. Respir. Crit. Care Med. 183, 59–66 (2011).

    Article  PubMed  Google Scholar 

  150. Ahmed, A. H. et al. The role of potentially preventable hospital exposures in the development of acute respiratory distress syndrome: a population-based study. Crit. Care Med. 42, 31–39 (2014).

    Article  PubMed  Google Scholar 

  151. Frat, J. P. et al. High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N. Engl. J. Med. 372, 2185–2196 (2015). This landmark trial demonstrates the feasibility of identifying spontaneously breathing patients in the emergency department in the early phase of acute lung injury and establishes the benefit of high-flow nasal oxygen for reducing the intubation rate (when the PaO 2 /FiO 2 was <200 mmHg) to reduce overall mortality, providing evidence that patients at high risk of developing ARDS (by Berlin criteria) could be identified early in the their clinical course and enrolled in a randomized clinical trial to test new therapies.

    Article  CAS  PubMed  Google Scholar 

  152. Azoulay, E. et al. Effect of high-flow nasal oxygen versus standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial. JAMA 320, 2099–2107 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Drusano, G. L. What are the properties that make an antibiotic acceptable for therapy of community-acquired pneumonia? J. Antimicrob. Chemother. 66 (Suppl. 3), 61–67 (2011).

    Google Scholar 

  154. Roberts, J. A. et al. Continuous versus intermittent beta-lactam infusion in severe sepsis. A meta-analysis of individual patient data from randomized trials. Am. J. Respir. Crit. Care Med. 194, 681–691 (2016).

    Article  CAS  PubMed  Google Scholar 

  155. Ross, J. T., Matthay, M. A. & Harris, H. W. Secondary peritonitis: principles of diagnosis and intervention. BMJ 361, k1407 (2018).

    Article  PubMed  Google Scholar 

  156. Gattinoni, L. et al. Lung recruitment in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 354, 1775–1786 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Gattinoni, L. & Pesenti, A. The concept of “baby lung”. Intensive Care Med. 31, 776–784 (2005).

    Article  PubMed  Google Scholar 

  158. Beitler, J. R. et al. Volume delivered during recruitment maneuver predicts lung stress in acute respiratory distress syndrome. Crit. Care Med. 44, 91–99 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Amato, M. B. et al. Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 372, 747–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  160. Talmor, D. et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N. Engl. J. Med. 359, 2095–2104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Beitler, J. R. et al. EPVent-2 Study Group. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy versus an empiric high PEEP-FiO2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA (in the press).

  162. Brower, R. G. et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 351, 327–336 (2004).

    Article  PubMed  Google Scholar 

  163. Meade, M. O. et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299, 637–645 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Mercat, A. et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299, 646–655 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Briel, M. et al. Higher versus lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303, 865–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  166. Cavalcanti, A. B. et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 318, 1335–1345 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Sahetya, S. K. & Brower, R. G. Lung recruitment and titrated PEEP in moderate to severe ARDS: is the door closing on the open lung? JAMA 318, 1327–1329 (2017).

    Article  PubMed  Google Scholar 

  168. Goligher, E. C. et al. Lung recruitment maneuvers for adult patients with acute respiratory distress syndrome. A systematic review and meta-analysis. Ann. Am. Thorac Soc. 14, S304–S311 (2017).

    Article  PubMed  Google Scholar 

  169. Gattinoni, L., Taccone, P., Carlesso, E. & Marini, J. J. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am. J. Respir. Crit. Care Med. 188, 1286–1293 (2013).

    Article  CAS  PubMed  Google Scholar 

  170. Guerin, C. et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 368, 2159–2168 (2013). This seminal clinical trial establishes that prone positioning applied early in moderate to severe ARDS (PaO 2 /FiO 2  <150 mmHg) reduced mortality compared with the standard practice of ventilating patients with ARDS in the supine position.

    Article  CAS  PubMed  Google Scholar 

  171. Beitler, J. R. et al. Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis. Intensive Care Med. 40, 332–341 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Fan, E. et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 195, 1253–1263 (2017).

    Article  PubMed  Google Scholar 

  173. Brochard, L., Slutsky, A. & Pesenti, A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am. J. Respir. Crit. Care Med. 195, 438–442 (2017).

    Article  PubMed  Google Scholar 

  174. Beitler, J. R. et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med. 42, 1427–1436 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Papazian, L. et al. Neuromuscular blockers in early acute respiratory distress syndrome. N. Engl. J. Med. 363, 1107–1116 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Huang, D. T. et al. Design and rationale of the reevaluation of systemic early neuromuscular blockade trial for acute respiratory distress syndrome. Ann. Am. Thorac Soc. 14, 124–133 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Ely, E. W. et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291, 1753–1762 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Schweickert, W. D. et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373, 1874–1882 (2009).

    Article  PubMed  Google Scholar 

  179. Antonelli, M. et al. A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N. Engl. J. Med. 339, 429–435 (1998).

    Article  CAS  PubMed  Google Scholar 

  180. Bellani, G. et al. Noninvasive ventilation of patients with acute respiratory distress syndrome. Insights from the LUNG SAFE Study. Am. J. Respir. Crit. Care Med. 195, 67–77 (2017).

    Article  PubMed  Google Scholar 

  181. Patel, B. K., Wolfe, K. S., Pohlman, A. S., Hall, J. B. & Kress, J. P. Effect of noninvasive ventilation delivered by helmet versus face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA 315, 2435–2441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Beitler, J. R., Owens, R. L. & Malhotra, A. Unmasking a role for noninvasive ventilation in early acute respiratory distress syndrome. JAMA 315, 2401–2403 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Matthay, M. A. Saving lives with high-flow nasal oxygen. N. Engl. J. Med. 372, 2225–2226 (2015).

    Article  CAS  PubMed  Google Scholar 

  184. Calfee, C. S. & Matthay, M. A. Nonventilatory treatments for acute lung injury and ARDS. Chest 131, 913–920 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Wiedemann, H. P. et al. Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med. 354, 2564–2575 (2006). This clinical trial demonstrates a significant increase in ventilator-free days in patients with ARDS randomly assigned to a fluid-conservative treatment strategy compared with a liberal fluid strategy.

    Article  CAS  PubMed  Google Scholar 

  186. Mikkelsen, M. E. et al. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. Am. J. Respir. Crit. Care Med. 185, 1307–1315 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Zinter, M. S. et al. Positive cumulative fluid balance is associated with mortality in pediatric acute respiratory distress syndrome in the setting of acute kidney injury. Pediatr. Crit. Care Med. https://doi.org/10.1097/PCC.0000000000001845 (2019).

    Article  PubMed  Google Scholar 

  188. Fielding-Singh, V., Matthay, M. A. & Calfee, C. S. Beyond low tidal volume ventilation: treatment adjuncts for severe respiratory failure in acute respiratory distress syndrome. Crit. Care Med. 46, 1820–1831 (2018).

    Article  PubMed  Google Scholar 

  189. Combes, A. et al. Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am. J. Respir. Crit. Care Med. 190, 488–496 (2014).

    Article  PubMed  Google Scholar 

  190. Davies, A. et al. Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA 302, 1888–1895 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Combes, A. et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N. Engl. J. Med. 378, 1965–1975 (2018).

    Article  PubMed  Google Scholar 

  192. Mi, M. Y., Matthay, M. A. & Morris, A. H. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N. Engl. J. Med. 379, 884–887 (2018).

    Article  PubMed  Google Scholar 

  193. Fanelli, V. et al. Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress sindrome. Crit. Care 20, 36 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Terragni, P. P. et al. Tidal volume lower than 6ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111, 826–835 (2009).

    Article  PubMed  Google Scholar 

  195. Bein, T. et al. Lower tidal volume strategy (approximately 3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med. 39, 847–856 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Meduri, G. U. et al. Prolonged glucocorticoid treatment is associated with improved ARDS outcomes: analysis of individual patients’ data from four randomized trials and trial-level meta-analysis of the updated literature. Intensive Care Med. 42, 829–840 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Steinberg, K. P. et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N. Engl. J. Med. 354, 1671–1684 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Ewald, H. et al. Adjunctive corticosteroids for Pneumocystis jiroveci pneumonia in patients with HIV infection. Cochrane Database Syst. Rev. 4, CD006150 (2015).

    Google Scholar 

  199. Griffiths, M. J. & Evans, T. W. Inhaled nitric oxide therapy in adults. N. Engl. J. Med. 353, 2683–2695 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Taylor, R. W. et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA 291, 1603–1609 (2004).

    Article  CAS  PubMed  Google Scholar 

  201. Repesse, X., Charron, C. & Vieillard-Baron, A. Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest 147, 259–265 (2015).

    Article  PubMed  Google Scholar 

  202. Young, D. et al. High-frequency oscillation for acute respiratory distress syndrome. N. Engl. J. Med. 368, 806–813 (2013).

    Article  CAS  PubMed  Google Scholar 

  203. Ferguson, N. D. et al. High-frequency oscillation in early acute respiratory distress syndrome. N. Engl. J. Med. 368, 795–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Bateman, S. T. et al. Early high-frequency oscillatory ventilation in pediatric acute respiratory failure. A propensity score analysis. Am. J. Respir. Crit. Care Med. 193, 495–503 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Putensen, C. et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am. J. Respir. Crit. Care Med. 164, 43–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  206. Putensen, C., Mutz, N. J., Putensen-Himmer, G. & Zinserling, J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 159, 1241–1248 (1999).

    Article  CAS  PubMed  Google Scholar 

  207. Lalgudi Ganesan, S., Jayashree, M., Singhi, S. C. & Bansal, A. Airway pressure release ventilation in pediatric acute respiratory distress syndrome: a randomized controlled trial. Am. J. Respir. Crit. Care Med. 198, 1199–1207 (2018).

    Article  PubMed  Google Scholar 

  208. Matthay, M. A., McAuley, D. F. & Ware, L. B. Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir. Med. 5, 524–534 (2017).

    Article  PubMed  Google Scholar 

  209. Downs, J. B. & Olsen, G. N. Pulmonary function following adult respiratory distress syndrome. Chest 65, 92–93 (1974).

    Article  CAS  PubMed  Google Scholar 

  210. Lakshminarayan, S., Stanford, R. E. & Petty, T. L. Prognosis after recovery from adult respiratory distress syndrome. Am. Rev. Respir. Dis. 113, 7–16 (1976).

    CAS  PubMed  Google Scholar 

  211. Klein, J. J., van Haeringen, J. R., Sluiter, H. J., Holloway, R. & Peset, R. Pulmonary function after recovery from the adult respiratory distress syndrome. Chest 69, 350–355 (1976).

    Article  CAS  PubMed  Google Scholar 

  212. Weinert, C. R., Gross, C. R., Kangas, J. R., Bury, C. L. & Marinelli, W. A. Health-related quality of life after acute lung injury. Am. J. Respir. Crit. Care Med. 156, 1120–1128 (1997).

    Article  CAS  PubMed  Google Scholar 

  213. Schelling, G. et al. Health-related quality of life and posttraumatic stress disorder in survivors of the acute respiratory distress syndrome. Crit. Care Med. 26, 651–659 (1998).

    Article  CAS  PubMed  Google Scholar 

  214. Davidson, T. A., Caldwell, E. S., Curtis, J. R., Hudson, L. D. & Steinberg, K. P. Reduced quality of life in survivors of acute respiratory distress syndrome compared with critically ill control patients. JAMA 281, 354–360 (1999).

    Article  CAS  PubMed  Google Scholar 

  215. McHugh, L. G. et al. Recovery of function in survivors of the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 150, 90–94 (1994).

    Article  CAS  PubMed  Google Scholar 

  216. Angus, D. C. et al. Quality-adjusted survival in the first year after the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 163, 1389–1394 (2001).

    Article  CAS  PubMed  Google Scholar 

  217. Herridge, M. S. et al. One-year outcomes in survivors of the acute respiratory distress syndrome. N. Engl. J. Med. 348, 683–693 (2003). This study reports functional impairments in survivors of ARDS at 3 months, 6 months and 12 months, including muscle wasting and weakness, thereby establishing a new field of ARDS research focusing on long-term clinical outcomes and QOL.

    Article  PubMed  Google Scholar 

  218. Herridge, M. S. et al. Functional disability 5 years after acute respiratory distress syndrome. N. Engl. J. Med. 364, 1293–1304 (2011).

    Article  CAS  PubMed  Google Scholar 

  219. Fan, E. et al. Physical complications in acute lung injury survivors: a two-year longitudinal prospective study. Crit. Care Med. 42, 849–859 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Needham, D. M. et al. Risk factors for physical impairment after acute lung injury in a national, multicenter study. Am. J. Respir. Crit. Care Med. 189, 1214–1224 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Pfoh, E. R. et al. Physical declines occurring after hospital discharge in ARDS survivors: a 5-year longitudinal study. Intensive Care Med. 42, 1557–1566 (2016).

    Article  PubMed  Google Scholar 

  222. Hopkins, R. O. et al. Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 160, 50–56 (1999).

    Article  CAS  PubMed  Google Scholar 

  223. Hopkins, R. O. et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 171, 340–347 (2005).

    Article  PubMed  Google Scholar 

  224. Dowdy, D. W. et al. Intensive care unit hypoglycemia predicts depression during early recovery from acute lung injury. Crit. Care Med. 36, 2726–2733 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Pandharipande, P. P. et al. Long-term cognitive impairment after critical illness. N. Engl. J. Med. 369, 1306–1316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Ferrante, L. E. et al. Functional trajectories among older persons before and after critical illness. JAMA Intern. Med. 175, 523–529 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Kress, J. P. & Hall, J. B. ICU-acquired weakness and recovery from critical illness. N. Engl. J. Med. 371, 287–288 (2014).

    Article  PubMed  Google Scholar 

  228. Levine, S. et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N. Engl. J. Med. 358, 1327–1335 (2008).

    Article  CAS  PubMed  Google Scholar 

  229. Puthucheary, Z. A. et al. Acute skeletal muscle wasting in critical illness. JAMA 310, 1591–1600 (2013).

    Article  CAS  PubMed  Google Scholar 

  230. Dos Santos, C. et al. Mechanisms of chronic muscle wasting and dysfunction after an intensive care unit stay. A pilot study. Am. J. Respir. Crit. Care Med. 194, 821–830 (2016).

    Article  PubMed  Google Scholar 

  231. Warren, M. A. et al. Severity scoring of lung oedema on the chest radiograph is associated with clinical outcomes in ARDS. Thorax 73, 840–846 (2018).

    Article  PubMed  Google Scholar 

  232. Sinha, P. et al. Physiologic analysis and clinical performance of the ventilatory ratio in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 199, 333–341 (2019).

    Article  PubMed  Google Scholar 

  233. Langelier, C. et al. Integrating host response and unbiased microbe detection for lower respiratory tract infection diagnosis in critically ill adults. Proc. Natl Acad. Sci. USA 115, E12353–E12362 (2018).

    Article  CAS  PubMed  Google Scholar 

  234. Boyle, A. J. et al. Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respir. Med. 6, 874–884 (2018).

    Article  PubMed  Google Scholar 

  235. Laffey, J. G. & Matthay, M. A. Fifty years of research in ARDS. Cell-based therapy for acute respiratory distress syndrome. Biology and potential therapeutic value. Am. J. Respir. Crit. Care Med. 196, 266–273 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Matthay, M. A. et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir. Med. 7, P154–P162 (2018).

    Article  Google Scholar 

  237. Azoulay, E. et al. Recovery after critical illness: putting the puzzle together-a consensus of 29. Crit. Care 21, 296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Jansing, N. L. et al. Unbiased quantitation of alveolar type II to alveolar type I cell transdifferentiation during repair after lung injury in mice. Am. J. Respir. Cell Mol. Biol. 57, 519–526 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Zacharias, W. J. et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251–255 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Liu, Y. et al. FoxM1 mediates the progenitor function of type II epithelial cells in repairing alveolar injury induced by Pseudomonas aeruginosa. J. Exp. Med. 208, 1473–1484 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Liang, J. et al. Hyaluronan and TLR4 promote surfactant-protein-C-positive alveolar progenitor cell renewal and prevent severe pulmonary fibrosis in mice. Nat. Med. 22, 1285–1293 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Rafii, S. et al. Platelet-derived SDF-1 primes the pulmonary capillary vascular niche to drive lung alveolar regeneration. Nat. Cell Biol. 17, 123–136 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors declare the following grant support: M.A.M. by the US National Health Lung and Blood Institute (NHLBI; HL140026 and HL134828); C.S.C. by NHLBI (HL140026); G.A.Z. by NHLBI (HL044525, HL077671 and HL130541); Y.M.A. by the Miracle Trial; J.R.B. by NHBLI (HL133489); R.L.Z. by NHLBI (HL131608); A.G.R. by the US National Institute of Child Health and Disease (HD095228); and M.H. by the Canadian Institute of Health. The authors thank S. Ke, University of California–San Francisco, for assistance with organizing the reference list for this article.

Reviewer information

Nature Reviews Disease Primers thanks O. Gajic, Y. Odeyemi, R. Rossaint, W. Seeger, J.-L. Vincent and the other anonymous reviewer(s), for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.A.M. and C.S.C.); Epidemiology (M.A.M., A.G.R. and C.S.C.); Mechanisms/pathophysiology (M.A.M., R.L.Z., G.A.Z. and C.S.C.); Diagnosis, screening and prevention (M.A.M., Y.M.A., A.G.R. and C.S.C.); Management (M.A.M., J.R.B., A.M. and C.S.C.); Quality of life (M.H.); Outlook (M.A.M. and C.S.C.); Overview of the Primer (M.A.M. and C.S.C.)

Corresponding author

Correspondence to Michael A. Matthay.

Ethics declarations

Competing interests

M.A.M. declares grant support from Bayer (current), GlaxoSmithKline (prior) and Amgen (prior); has served as Data Safety and Monitoring Board chair for Roche-Genentech and has served as a consultant for GlaxoSmithKline, Bayer, Boehringer, CSL Berhring, Navigen, Quark and Cerus. G.A.Z. has served as a consultant for Navigen. Y.M.A. has served as a consultant for Gilead Sciences (past), Regeneron (past) and SAB Therapeutics (current). A.M. received fees for serving on a steering committee for Faron Pharmaceuticals, consulting fees from Air Liquide Medical Systems, grant support for research and lecture fees from Fisher & Paykel and Covidien, and lecture fees from Drager, Pfizer and ResMed. A.G.R. declares grant support from Roche-Genentech (current) and has served as a consultant for La Jolla Pharma and Bristol Meyer Squibb. C.S.C. declares grant support from Bayer (current) and GlaxoSmithKline (prior) and has served as a consultant for GlaxoSmithKline, Bayer, Boehringer, Prometic, Roche-Genentech, CSL Behring and Quark. The remaining authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

PROSPECT study: http://www.prospect-network.org/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthay, M.A., Zemans, R.L., Zimmerman, G.A. et al. Acute respiratory distress syndrome. Nat Rev Dis Primers 5, 18 (2019). https://doi.org/10.1038/s41572-019-0069-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0069-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing