Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Gonorrhoea

Abstract

The bacterium Neisseria gonorrhoeae causes the sexually transmitted infection (STI) gonorrhoea, which has an estimated global annual incidence of 86.9 million adults. Gonorrhoea can present as urethritis in men, cervicitis or urethritis in women, and in extragenital sites (pharynx, rectum, conjunctiva and, rarely, systemically) in both sexes. Confirmation of diagnosis requires microscopy of Gram-stained samples, bacterial culture or nucleic acid amplification tests. As no gonococcal vaccine is available, prevention relies on promoting safe sexual behaviours and reducing STI-associated stigma, which hinders timely diagnosis and treatment thereby increasing transmission. Single-dose systemic therapy (usually injectable ceftriaxone plus oral azithromycin) is the recommended first-line treatment. However, a major public health concern globally is that N. gonorrhoeae is evolving high levels of antimicrobial resistance (AMR), which threatens the effectiveness of the available gonorrhoea treatments. Improved global surveillance of the emergence, evolution, fitness, and geographical and temporal spread of AMR in N. gonorrhoeae, and improved understanding of the pharmacokinetics and pharmacodynamics for current and future antimicrobials in the treatment of urogenital and extragenital gonorrhoea, are essential to inform treatment guidelines. Key priorities for gonorrhoea control include strengthening prevention, early diagnosis, and treatment of patients and their partners; decreasing stigma; expanding surveillance of AMR and treatment failures; and promoting responsible antimicrobial use and stewardship. To achieve these goals, the development of rapid and affordable point-of-care diagnostic tests that can simultaneously detect AMR, novel therapeutic antimicrobials and gonococcal vaccine(s) in particular is crucial.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recommended empirical therapy for gonorrhoea and emergence of AMR in Neisseria gonorrhoeae.
Fig. 2: Estimated new global cases of gonorrhoea in 2016.
Fig. 3: N. gonorrhoeae cell envelope structure.
Fig. 4: N. gonorrhoeae infection.

Similar content being viewed by others

References

  1. Edwards, J. L., Shao, J. Q., Ault, K. A. & Apicella, M. A. Neisseria gonorrhoeae elicits membrane ruffling and cytoskeletal rearrangements upon infection of primary human endocervical and ectocervical cells. Infect. Immun. 68, 5354–5363 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Evans, B. A. Ultrastructural study of cervical gonorrhea. J. Infect. Dis. 136, 248–255 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Barlow, D. & Phillips, I. Gonorrhoea in women. Diagnostic, clinical, and laboratory aspects. Lancet 1, 761–764 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Schmale, J. D., Martin, J. E. Jr & Domescik, G. Observations on the culture diagnosis of gonorrhea in women. JAMA 210, 312–314 (1969).

    Article  CAS  PubMed  Google Scholar 

  5. Quillin, S. J. & Seifert, H. S. Neisseria gonorrhoeae host adaptation and pathogenesis. Nat. Rev. Microbiol. 16, 226–240 (2018). This review discusses sex-related symptomatic gonorrhoea and provides a detailed overview of the bacterial factors, on molecular levels, that are important for the different stages of pathogenesis, including transmission, colonization and immune evasion.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elias, J. F. & Vogel, U. in Manual of Clinical Microbiology 12th edn Vol. 1(eds Carroll, C. C. et al.) 640–655 (American Society for Microbiology, 2019).

  7. Adeolu, M. & Gupta, R. S. Phylogenomics and molecular signatures for the order Neisseriales: proposal for division of the order Neisseriales into the emended family Neisseriaceae and Chromobacteriaceae fam. nov. Antonie van Leeuwenhoek 104, 1–24 (2013).

    Article  PubMed  Google Scholar 

  8. Tønjum, T. & van Putten, J. in Infectious Diseases 4th edn (eds Cohen, J., Powderly, W. G. & Steven M. Opal) 1553-1564 (Elsevier, 2016).

  9. Liu, G., Tang, C. M. & Exley, R. M. Non-pathogenic Neisseria: members of an abundant, multi-habitat, diverse genus. Microbiology 161, 1297–1312 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Johnson, A. P. The pathogenic potential of commensal species of Neisseria. J. Clin. Pathol. 36, 213–223 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seifert, H. S. Location, location, location — commensalism, damage and evolution of the pathogenic Neisseria. J. Mol. Biol 431, 3010–3014 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Hook, E. W. 3rd & Handsfield, H. H. in Sexually Transmitted Diseases (eds Holmes, K. K. et al.) 4th edn, 627–645 (McGraw-Hill Education, 2008). This comprehensive chapter describes different clinical manifestations of gonorrhoea.

  13. Public Health Agency of Canada. Canadian Guidelines on Sexually Transmitted Infections — Management and treatment of specific infections — Gonococcal Infections (Government of Canada, Ottawa, 2013) (modified Sept 2017).

  14. World Health Organization. Global Action Plan to Control the Spread and Impact of Antimicrobial Resistance in Neisseria gonorrhoeae (World Health Organization, 2012).

  15. Wi, T. et al. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLoS Med. 14, e1002344 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Unemo, M. & Shafer, W. M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution, and future. Clin. Microbiol. Rev. 27, 587–613 (2014). This review provides an extensive overview regarding gonorrhoea treatment regimens and emerging antimicrobial resistance, including genetic and phenotypic AMR determinants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wadsworth, C. B., Arnold, B. J., Sater, M. R. A. & Grad, Y. H. Azithromycin resistance through interspecific acquisition of an epistasis-dependent efflux pump component and transcriptional regulator in Neisseria gonorrhoeae. mBio 9, e01419–18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rouquette-Loughlin, C. E. et al. Mechanistic basis for decreased antimicrobial susceptibility in a clinical isolate of Neisseria gonorrhoeae possessing a mosaic-like mtr efflux pump locus. mBio 9, e02281–18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kunz, A. N. et al. Impact of fluoroquinolone resistance mutations on gonococcal fitness and in vivo selection for compensatory mutations. J. Infect. Dis. 205, 1821–1829 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Warner, D. M., Folster, J. P., Shafer, W. M. & Jerse, A. E. Regulation of the MtrC-MtrD-MtrE efflux-pump system modulates the in vivo fitness of Neisseria gonorrhoeae. J. Infect. Dis. 196, 1804–1812 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Warner, D. M., Shafer, W. M. & Jerse, A. E. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Mol. Microbiol. 70, 462–478 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rowley, J. et al. Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull. World Health Organ. 97, 548–562P (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Adler, M., Foster, S., Richens, J. & Slavin, H. Sexual Health and Care. Sexually Transmitted Infections, Guidelines for Prevention and Treatment. Health and Population Division Occasional Paper 136 (Overseas Development Administration, London, 1996).

  24. Aral, S. O. et al. in Sexually Transmitted Diseases, 4th edn (eds Holmes, K. K. et al.) 54–92 (McGraw-Hill, 2008).

  25. Dallabetta, G. A., Laga, M. & Lamptey, P. R. Control of Sexually Transmitted Diseases: A Handbook for the Design and Management of Programs (AIDSCAP/Family Health International, 1996).

  26. Aral, S. O., Fenton, K. A. & Holmes, K. K. Sexually transmitted diseases in the USA: temporal trends. Sex. Transm. Infect. 83, 257–266 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fenton, K. A. & Lowndes, C. M. Recent trends in the epidemiology of sexually transmitted infections in the European union. Sex. Transm. Infect. 80, 255–263 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mohammed, H. et al. 100 years of STIs in the UK: a review of national surveillance data. Sex. Transm. Infect. 94, 553–558 (2018).

    Article  PubMed  Google Scholar 

  29. Centers for Disease Control and Prevention. Tracking the hidden epidemics, trends in STDs in the United States 2000. CDC www.cdc.gov/std/trends2000/trends2000.pdf (2000).

  30. Centers for Disease Control and Prevention. STDs in men who have sex with men. CDC https://www.cdc.gov/std/stats17/msm.htm. (2017).

  31. Centers for Disease Control and Prevention. New CDC analysis shows steep and sustained increases in STDs in recent years. CDC https://www.cdc.gov/media/releases/2018/p0828-increases-in-stds.html (2018).

  32. Centers for Disease Control and Prevention. Gonorrhea. CDC https://www.cdc.gov/std/stats17/gonorrhea.htm (2017).

  33. European Centre for Disease Prevention and Control Surveillance Atlas of Infectious Diseases. Surveillance atlas of infectious diseases. ECDC https://www.ecdc.europa.eu/en/surveillance-atlas-infectious-diseases (2017).

  34. Public Health England. Health Protection Report volume 12 issue 20: news (8 June). PHE https://www.gov.uk/government/publications/health-protection-report-volume-12-2018/hpr-volume-12-issue-20-news-8-june (2018).

  35. Torrone, E. A. et al. Prevalence of sexually transmitted infections and bacterial vaginosis among women in sub-Saharan Africa: an individual participant data meta-analysis of 18 HIV prevention studies. PLoS Med. 15, e1002511 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dehne, K. L. et al. A survey of STI policies and programmes in Europe: preliminary results. Sex. Transm. Infect. 78, 380–384 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kojima, N., Davey, D. J. & Klausner, J. D. Pre-exposure prophylaxis for HIV infection and new sexually transmitted infections among men who have sex with men. AIDS 30, 2251–2252 (2016).

    Article  PubMed  Google Scholar 

  38. Traeger, M. W. et al. Association of HIV preexposure prophylaxis with incidence of sexually transmitted infections among individuals at high risk of HIV infection. JAMA 321, 1380–1390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. World Health Organization. Prevention and control of seually transmittted infections (STIs) in the era of oral pre-exposure prophylaxis (PrEP) for HIV. Technical Brief. WHO https://apps.who.int/iris/bitstream/handle/10665/325908/WHO-CDS-HIV-19.9-eng.pdf?ua=1 (2019).

  40. Celum C. Oral pre-exposure prophylaxis (PrEP) for prevention [MOSA3401]. 22nd International AIDS Conference (AIDS 2018) http://programme.aids2018.org/People/PeopleDetailStandalone/7599 (2018).

  41. McCormack, S. et al. Pre-exposure prophylaxis to prevent the acquisition of HIV-1 infection (PROUD): effectiveness results from the pilot phase of a pragmatic open-label randomised trial. Lancet 387, 53–60 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morse, S. A. Neisseria gonorrhoeae: physiology and metabolism. Sex. Transm. Dis. 6, 28–37 (1979).

    Article  CAS  PubMed  Google Scholar 

  43. Rohde, K. H. & Dyer, D. W. Mechanisms of iron acquisition by the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. Front. Biosci. 8, d1186–d1218 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Cole, J. A. Legless pathogens: how bacterial physiology provides the key to understanding pathogenicity. Microbiology 158, 1402–1413 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Sanchez-Buso, L. et al. The impact of antimicrobials on gonococcal evolution. Nat. Microbiol. 4, 1941–1950 (2019). This genomics paper provides evidence that the modern gonococcal population is not as old as previously anticipated and has been formed by antimicrobial treatment, leading to the emergence of one multidrug-resistant lineage and one multisusceptible lineage with different evolutionary strategies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tobiason, D. M. & Seifert, H. S. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLoS Biol. 4, 1069–1078 (2006).

    Article  CAS  Google Scholar 

  47. Unemo, M. et al. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization. J. Antimicrob. Chemother. 71, 3096–3108 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goodman, S. D. & Scocca, J. J. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA 85, 6982–6986 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berry, J. L., Cehovin, A., McDowell, M. A., Lea, S. M. & Pelicic, V. Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species. PLoS Genet. 9, e1004014 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bennett, J. S. et al. Species status of Neisseria gonorrhoeae: evolutionary and epidemiological inferences from multilocus sequence typing. BMC Biol. 5, 35 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Maiden, M. C. et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl Acad. Sci. USA 95, 3140–3145 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Goire, N. et al. Mixed gonococcal infections in a high-risk population, Sydney, Australia 2015: implications for antimicrobial resistance surveillance? J. Antimicrob. Chemother. 72, 407–409 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Martin, I. M. & Ison, C. A. Detection of mixed infection of Neisseria gonorrhoeae. Sex. Transm. Infect. 79, 56–58 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Unemo, M. & Shafer, W. M. Antibiotic resistance in Neisseria gonorrhoeae: origin, evolution, and lessons learned for the future. Ann. NY Acad. Sci. 1230, E19–E28 (2011).

    Article  PubMed  Google Scholar 

  55. Piekarowicz, A. et al. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol. 7, 66 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Stohl, E. A., Dale, E. M., Criss, A. K. & Seifert, H. S. Neisseria gonorrhoeae metalloprotease NGO1686 is required for full piliation, and piliation is required for resistance to H2O2- and neutrophil-mediated killing. mBio 4, e00399–13 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Biswas, G. D., Sox, T., Blackman, E. & Sparling, P. F. Factors affecting genetic transformation of Neisseria gonorrhoeae. J. Bacteriol. 129, 983–992 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dehio, C., Gray-Owen, S. D. & Meyer, T. F. The role of neisserial Opa proteins in interactions with host cells. Trends Microbiol. 6, 489–495 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Sadarangani, M., Pollard, A. J. & Gray-Owen, S. D. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol. Rev. 35, 498–514 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Deo, P. et al. Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. PLoS Pathog. 14, e1006945 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Massari, P., Ram, S., Macleod, H. & Wetzler, L. M. The role of porins in neisserial pathogenesis and immunity. Trends Microbiol. 11, 87–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Madico, G. et al. Factor H binding and function in sialylated pathogenic Neisseriae is influenced by gonococcal, but not meningococcal, porin. J. Immunol. 178, 4489–4497 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Olesky, M., Zhao, S., Rosenberg, R. L. & Nicholas, R. A. Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. J. Bacteriol. 188, 2300–2308 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shafer, W. M. et al. in Efflux-Mediated Antimicrobial Resistance in Bacteria (eds Li, X. Z., Elkins,C. & Zgurskaya, H.) 439-469 (Adis, Cham, 2016).

  65. Hagman, K. E. et al. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141, 611–622 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, E. H. & Shafer, W. M. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol. Microbiol. 33, 839–845 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Hooper, R. R. et al. Cohort study of venereal disease. I: the risk of gonorrhea transmission from infected women to men. Am. J. Epidemiol. 108, 136–144 (1978).

    Article  CAS  PubMed  Google Scholar 

  68. Cohen, M. S. et al. Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Research Group. Lancet 349, 1868–1873 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Price, M. A. et al. Addition of treatment for trichomoniasis to syndromic management of urethritis in Malawi: a randomized clinical trial. Sex. Transm. Dis. 30, 516–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Melly, M. A., Gregg, C. R. & McGee, Z. A. Studies of toxicity of Neisseria gonorrhoeae for human fallopian tube mucosa. J. Infect. Dis. 143, 423–431 (1981).

    Article  CAS  PubMed  Google Scholar 

  71. Melly, M. A., McGee, Z. A. & Rosenthal, R. S. Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J. Infect. Dis. 149, 378–386 (1984).

    Article  CAS  PubMed  Google Scholar 

  72. Escobar, A., Rodas, P. I. & Acuña-Castillo, C. Macrophage–Neisseria gonorrhoeae interactions: a better understanding of pathogen mechanisms of immunomodulation. Front. Immunol. 9, 3044 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Criss, A. K. & Seifert, H. S. A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat. Rev. Microbiol. 10, 178–190 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Massari, P., Ho, Y. & Wetzler, L. M. Neisseria meningitidis porin PorB interacts with mitochondria and protects cells from apoptosis. Proc. Natl Acad. Sci. USA 97, 9070–9075 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Muller, A. et al. Targeting of the pro-apoptotic VDAC-like porin (PorB) of Neisseria gonorrhoeae to mitochondria of infected cells. EMBO J. 19, 5332–5343 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shaughnessy, J., Ram, S. & Rice, P. A. Biology of the gonococcus: disease and pathogenesis. Methods Mol. Biol. 1997, 1–27 (2019). This review describes gonorrhoea, its epidemiology, the structure and function of major surface components involved in pathogenesis, and mechanisms that gonococci use to evade immune responses.

    Article  PubMed  Google Scholar 

  77. Densen, P. Interaction of complement with Neisseria meningitidis and Neisseria gonorrhoeae. Clin. Microbiol. Rev. 2, S11–S17 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Crew, P. E. et al. Unusual Neisseria species as a cause of infection in patients taking eculizumab. J. Infect. 78, 113–118 (2019).

    Article  PubMed  Google Scholar 

  79. Liu, Y., Feinen, B. & Russell, M. W. New concepts in immunity to Neisseria gonorrhoeae: innate responses and suppression of adaptive immunity favor the pathogen, not the host. Front. Microbiol. 2, 52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Boslego, J. W. et al. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 9, 154–162 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Rotman, E. & Seifert, H. S. The genetics of Neisseria species. Annu. Rev. Genet. 48, 405–431 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Bignell, C. & Unemo, M., European STI Guidelines Editorial Board. European guideline on the diagnosis and treatment of gonorrhoea in adults. Int. J. STD & AIDS 24, 85–92 (2012).

    Article  Google Scholar 

  83. Ghanem, K. G. Clinical manifestations and diagnosis of Neisseria gonorrhoeae infection in adults and adolescents UpToDate.com https://www.uptodate.com/contents/clinical-manifestations-and-diagnosis-of-neisseria-gonorrhoeae-infection-in-adults-and-adolescents/print (2019).

  84. Ison, C. A. Laboratory methods in genitourinary medicine. Methods of diagnosing gonorrhoea. Genitourin. Med. 66, 453–459 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Unemo, M. & Ison, C. in Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus (eds Unemo, M. et al.) 21–54 (World Health Organization, 2013). This comprehensive chapter describes biological sampling, different methods for laboratory detection and antimicrobial susceptibility testing of N. gonorrhoeae.

  86. Taylor, S. N., DiCarlo, R. P. & Martin, D. H. Comparison of methylene blue/gentian violet stain to Gram's stain for the rapid diagnosis of gonococcal urethritis in men. Sex. Transm. Dis. 38, 995–996 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Papp, J. R. S. J., Gaydos, C. A. & Van Der Pol, B. Recommendations for the laboratory-based detection of Chlamydia trachomatis and Neisseria gonorrhoeae — 2014. MMWR Recomm. Rep. 63, 1–19 (2014).

    Google Scholar 

  88. Dillon, J. R. Sustainable antimicrobial surveillance programs essential for controlling Neisseria gonorrhoeae superbug. Sex. Transm. Dis. 38, 899–901 (2011).

    Article  PubMed  Google Scholar 

  89. Starnino, S. D., J. R. Laboratory manual: identification and antimicrobial susceptibility testing of Neisseria gonorrhoeae 2nd edn Co-ordinating Centre for the Gonococcal Antimicrobial Susceptibility Surveillance Program in Latin America and the Caribbean (2002).

  90. Starnino, S. & Dillon, J. R. in Laboratory diagnosis of sexually transmitted infections, including human immunodeficiency virus (eds Unemo, M. et al.)199–218 (World Health Organization, 2013).

  91. Dillon, J. R., Carballo, M. & Pauze, M. Evaluation of eight methods for identification of pathogenic Neisseria species: Neisseria-Kwik, RIM-N, Gonobio-Test, Minitek, Gonochek II, GonoGen, Phadebact Monoclonal GC OMNI Test, and Syva MicroTrak Test. J. Clin. Microbiol. 26, 493–497 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kellogg, J. A. & Orwig, L. K. Comparison of GonoGen, GonoGen II, and MicroTrak direct fluorescent-antibody test with carbohydrate fermentation for confirmation of culture isolates of Neisseria gonorrhoeae. J. Clin. Microbiol. 33, 474–476 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kulkarni, S., Bala, M. & Risbud, A. Performance of tests for identification of Neisseria gonorrhoeae. Indian J. Med. Res. 141, 833–835 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Centers for Disease Control and Prevention. Acid Detection Test http://www.cdc.gov/std/gonorrhea/lab/tests/acid.htm (CDC, 2013).

  95. Buchanan, R., Ball, D., Dolphin, H. & Dave, J. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for the identification of Neisseria gonorrhoeae. Clin. Microbiol. Infect. 22, 815.e815–815.e817 (2016).

    Article  CAS  Google Scholar 

  96. Ilina, E. N. et al. Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria. J. Mol. Diagn. 11, 75–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Morel, F. et al. Use of Andromas and Bruker MALDI-TOF MS in the identification of Neisseria. Eur. J. Clin. Microbiol. Infect. Dis 37, 2273–2277 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Schmidt, K. et al. Identification of bacterial pathogens and antimicrobial resistance directly from clinical urines by nanopore-based metagenomic sequencing. J. Antimicrob. Chemother. 72, 104–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Hughes, G. I. et al. Guidance for the detection of gonorrhoea in England. (Public Health England, London, 2014).

  100. Tabrizi, S. N. et al. Evaluation of six commercial nucleic acid amplification tests for detection of Neisseria gonorrhoeae and other Neisseria species. J. Clin. Microbiol. 49, 3610–3615 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Murtagh, M. M. The point-of-care diagnostic landscape for sexually transmitted infections (STIs). WHO https://www.who.int/reproductivehealth/topics/rtis/Diagnostic_Landscape_2018.pdf (2018). This extensive report details point-of-care diagnostic tests for STIs, with special focus on tests in the development pipeline.

  102. Whiley, D. M., Tapsall, J. W. & Sloots, T. P. Nucleic acid amplification testing for Neisseria gonorrhoeae: an ongoing challenge. J. Mol. Diagn. 8, 3–15 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Alexander, S., da Silva, Coelho, Manuel, F., Varma, R. & Ison, R. C. Evaluation of strategies for confirming Neisseria gonorrhoeae nucleic acid amplification tests. J. Med. Microbiol. 60, 909–912 (2011).

    Article  PubMed  Google Scholar 

  104. Venter, J. M. E. et al. Comparison of an in-house real-time duplex PCR assay with commercial HOLOGIC(R) APTIMA assays for the detection of Neisseria gonorrhoeae and Chlamydia trachomatis in urine and extra-genital specimens. BMC Infect. Dis. 19, 6 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. United States Food and Drug Administration. Nucleic Acid Based Tests. FDA https://www.fda.gov/medical-devices/vitro-diagnostics/nucleic-acid-based-tests (2019).

  106. Schachter, J., Moncada, J., Liska, S., Shayevich, C. & Klausner, J. D. Nucleic acid amplification tests in the diagnosis of chlamydial and gonococcal infections of the oropharynx and rectum in men who have sex with men. Sex. Transm. Dis. 35, 637–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Chernesky, M. et al. Head-to-head comparison of second-generation nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae on urine samples from female subjects and self-collected vaginal swabs. J. Clin. Microbiol. 52, 2305–2310 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jang, D. et al. Comparison of workflow, maintenance, and consumables in the genexpert infinity 80 and panther instruments while testing for chlamydia trachomatis and Neisseria gonorrhoeae. Sex. Transm. Dis. 43, 377–381 (2016).

    Article  PubMed  Google Scholar 

  109. World Health Organization. WHO Guidelines for the Treatment of Neisseria gonorrhoeae (WHO, 2016).

  110. Public Health Agency Canada. National Surveillance of Antimicrobial Susceptibilities of Neisseria gonorrhoeae - 2016. (Government of Canada 2018).

  111. Thakur, S. D. & Dillon, J. R. High levels of susceptibility to new and older antibiotics in Neisseria gonorrhoeae isolates from Saskatchewan (2003–15): time to consider point-of-care or molecular testing for precision treatment? Authors' response. J. Antimicrob. Chemother. 73, 829–830 (2018).

    Article  CAS  PubMed  Google Scholar 

  112. Allan-Blitz, L. T. et al. Implementation of a rapid genotypic assay to promote targeted ciprofloxacin therapy of Neisseria gonorrhoeae in a large health system. Clin. Infect. Dis. 64, 1268–1270 (2017).

    PubMed  Google Scholar 

  113. Ellis, O. et al. A multisite implementation of a real-time polymerase chain reaction assay to predict ciprofloxacin susceptibility in Neisseria gonorrhoeae. Diagn. Microbiol. Infect. Dis. 94, 213–217 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fifer, H., Saunders, J., Soni, S., Sadiq, S. T. & FitzGerald, M. British Association for Sexual Health and HIV national guideline for the management of infection with Neisseria gonorrhoeae (BASHH, 2019).

  115. Badman, S. G. et al. A diagnostic evaluation of a molecular assay used for testing and treating anorectal chlamydia and gonorrhoea infections at the point-of-care in Papua New Guinea. Clin. Microbiol. Infect. 25, 623–627 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Wi, T. E. et al. Diagnosing sexually transmitted infections in resource-constrained settings: challenges and ways forward. J. Int. AIDS Soc. 22 (Suppl. 6), e25343 (2019).

    PubMed  PubMed Central  Google Scholar 

  117. Pai, M., Ghiasi., M. & Pai, N. P. Point-of-care diagnostic testing in global health: what is the point? Microbe 10, 103–107 (2015).

    Google Scholar 

  118. Pai, N. P., Vadnais, C., Denkinger, C., Engel, N. & Pai, M. Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries. PLoS Med. 9, e1001306 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Peeling, R. W., Holmes, K. K., Mabey, D. & Ronald, A. Rapid tests for sexually transmitted infections (STIs): the way forward. Sex. Transm. Infect. 82 (Suppl. 5), v1–v6 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Watchirs Smith, L. A. et al. Point-of-care tests for the diagnosis of Neisseria gonorrhoeae infection: a systematic review of operational and performance characteristics. Sex. Transm. Infect. 89, 320–326 (2013).

    Article  PubMed  Google Scholar 

  121. Cristillo, A. D. et al. Point-of-care sexually transmitted infection diagnostics: proceedings of the STAR Sexually Transmitted Infection–Clinical Trial Group Programmatic Meeting. Sex. Transm. Dis. 44, 211–218 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Herbst de Cortina, S., Bristow, C. C., Joseph Davey, D. & Klausner, J. D. A systematic review of point of care testing for chlamydia trachomatis, Neisseria gonorrhoeae, and trichomonas vaginalis. Infect. Dis. Obstet. Gynecol. 2016, 4386127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Guy, R. J. et al. Performance and operational characteristics of point-of-care tests for the diagnosis of urogenital gonococcal infections. Sex. Transm. Infect. 93, S16–S21 (2017).

    Article  PubMed  Google Scholar 

  124. Vickerman, P., Watts, C., Alary, M., Mabey, D. & Peeling, R. W. Sensitivity requirements for the point of care diagnosis of chlamydia trachomatis and Neisseria gonorrhoeae in women. Sex. Transm. Infect. 79, 363–367 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Causer, L. M. et al. A field evaluation of a new molecular-based point-of-care test for chlamydia and gonorrhoea in remote aboriginal health services in Australia. Sex. Health 12, 27–33 (2015).

    Article  PubMed  Google Scholar 

  126. Garrett, N. et al. Diagnostic accuracy of the Xpert CT/NG and OSOM trichomonas rapid assays for point-of-care STI testing among young women in South Africa: a cross-sectional study. BMJ Open 9, e026888 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. LeFevre, M. L. Screening for chlamydia and gonorrhea: U.S. preventive services task force recommendation statement. Ann. Intern. Med. 161, 902–910 (2014).

    Article  PubMed  Google Scholar 

  128. Workowski, K. A. & Bolan, G. A., Centers for Disease Control and Prevention. Sexually transmitted diseases treatment guidelines, 2015. MMWR. Recomm. Rep. 64, 1–137 (2015).

    Article  PubMed  Google Scholar 

  129. Centers for Disease Control and Prevention. Preexposure prophylaxis for the prevention of HIV infection in the United States – 2017 update. (US Public Health Service, 2017).

  130. World Health Organization. Global strategy for the prevention and control of sexually transmitted infections: 2006 – 2015 Breaking the chain of transmission. WHO https://www.who.int/hiv/pub/toolkits/stis_strategy%5B1%5Den.pdf (2007).

  131. Gottlieb, S. L. & Johnston, C. Future prospects for new vaccines against sexually transmitted infections. Curr. Opin. Infect. Dis. 30, 77–86 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Jerse, A. E. & Deal, C. D. Vaccine research for gonococcal infections: where are we? Sex. Transm. Infect. 89, iv63–iv68 (2013).

    Article  PubMed  Google Scholar 

  133. Zhu, W. et al. Vaccines for gonorrhea: can we rise to the challenge? Front. Microbiol. 2, 124 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Edwards, J. L., Jennings, M. P., Apicella, M. A. & Seib, K. L. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit. Rev. Microbiol. 42, 928–941 (2016). This review describes the status of gonococcal vaccine development and, in particular, focuses on the model systems available to evaluate drug and vaccine candidates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tramont, E. C. Gonococcal vaccines. Clin. Microbiol. Rev. 2, S74–S77 (1989).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Paynter, J. et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine in preventing hospitalization from gonorrhea in New Zealand: a retrospective cohort study. Vaccines 7, E5 (2019).

    Article  PubMed  Google Scholar 

  137. Petousis-Harris, H. Impact of meningococcal group B OMV vaccines, beyond their brief. Hum. Vaccin. Immunother. 14, 1058–1063 (2018).

    Article  PubMed  Google Scholar 

  138. Petousis-Harris, H. et al. Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet 390, 1603–1610 (2017). This study provides a first proof-of-principle for vaccine protection against gonorrhoea, owing to cross-protection by the outer membrane vesicle Neisseria meningitidis serogroup B vaccine (MeNZB).

    Article  CAS  PubMed  Google Scholar 

  139. Hadad, R. et al. Novel meningococcal 4CMenB vaccine antigens — prevalence and polymorphisms of the encoding genes in Neisseria gonorrhoeae. APMIS 120, 750–760 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Beernink, P. T. et al. A meningococcal native outer membrane vesicle vaccine with attenuated endotoxin and overexpressed factor h binding protein elicits gonococcal bactericidal antibodies. J. Infect. Dis. 219, 1130–1137 (2019).

    Article  PubMed  Google Scholar 

  141. Centers for Disease Control and Prevention. Expedited partner therapy in the management of sexually transmitted diseases. (US Department of Health and Human Services, 2006).

  142. Parran, T. Shadow on the Land: Syphilis. (Reynal & Hitchcock, 1937).

  143. Golden, M. R. et al. Effect of expedited treatment of sex partners on recurrent or persistent gonorrhea or chlamydial infection. N. Engl. J. Med. 352, 676–685 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Romanowski, B., Robinson, J. & Wong, T. Canadian Guidelines on Sexually Transmitted Infections - Gonococcal Infections Chapter. Phac-aspc.gc.ca http://www.phac-aspc.gc.ca/std-mts/sti-its/cgsti-ldcits/assets/pdf/section-5-6-eng.pdf (2013).

  145. Australasian Sexual Health Alliance (ASHA). Gonorrhoea. ASHA http://www.sti.guidelines.org.au/sexually-transmissible-infections/gonorrhoea#management (2016).

  146. Japanese Society for Sexually Transmitted Infections. Gonococcal infection. Sexually transmitted infections, diagnosis and treatment guidelines 2011. Jpn J. Sex. Transm. Dis. 22 (Suppl. 1), 52–59 (2011). In Japanese.

    Google Scholar 

  147. Bignell, C. & Fitzgerald, M., Guideline Development Group, British Association for Sexual Health and HIV UK. UK national guideline for the management of gonorrhoea in adults, 2011. Int. J. STD & AIDS 22, 541–547 (2011).

    Article  CAS  Google Scholar 

  148. Boiko, I. et al. Antimicrobial susceptibility of Neisseria gonorrhoeae isolates and treatment of gonorrhoea patients in ternopil and dnipropetrovsk regions of Ukraine, 2013–2018. APMIS 127, 503–509 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Unemo, M., Shipitsyna, E. & Domeika, M. Eastern European Sexual and Reproductive Health (EE SRH) Network Antimicrobial Resistance Group. Recommended antimicrobial treatment of uncomplicated gonorrhoea in 2009 in 11 East European countries: implementation of a Neisseria gonorrhoeae antimicrobial susceptibility programme in this region is crucial. Sex. Transm. Infect. 86, 442–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Leonard, C. A., Schoborg, R. V., Low, N., Unemo, M. & Borel, N. Pathogenic interplay between chlamydia trachomatis and Neisseria gonorrhoeae that influences management and control efforts — more questions than answers? Curr. Clin. Microbiol. Rep. 6, 182–191 (2019).

    Article  Google Scholar 

  151. Handsfield, H. H., McCutchan, J. A., Corey, L. & Ronald, A. R. Evaluation of new anti-infective drugs for the treatment of uncomplicated gonorrhea in adults and adolescents. infectious diseases society of america and the food and drug administration. Clin. Infect. Dis. 15 (Suppl. 1), S123–S130 (1992).

    Article  PubMed  Google Scholar 

  152. Hook, E. W. 3rd & Kirkcaldy, R. D. A brief history of evolving diagnostics and therapy for gonorrhea: lessons learned. Clin. Infect. Dis. 67, 1294–1299 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Unemo, M. et al. World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): review of new data and evidence to inform international collaborative actions and research efforts. Sex. Health 16, 412–425 (2019). This paper reports the WHO GASP data from 2015 to 2016, confirmed gonorrhoea treatment failures with recommended therapy and international collaborative actions and research efforts essential for the effective management and control of gonorrhoea.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cole, M. J. et al. Is the tide turning again for cephalosporin resistance in Neisseria gonorrhoeae in Europe? Results from the 2013 European surveillance. BMC Infect. Dis. 15, 321 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Day, M. J. et al. Stably high azithromycin resistance and decreasing ceftriaxone susceptibility in Neisseria gonorrhoeae in 25 European countries, 2016. BMC Infect. Dis. 18, 609 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Harris, S. R. et al. Public health surveillance of multidrug-resistant clones of Neisseria gonorrhoeae in Europe: a genomic survey. Lancet Infect. Dis. 18, 758–768 (2018). This genomics paper provides the first use of joint analysis of WGS and epidemiological data in an international surveillance programme for STIs and a framework for genomic surveillance of gonococci through standardized sampling, use of WGS, and a shared information architecture for interpretation and dissemination by use of open-access software.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kirkcaldy, R. D. et al. Neisseria gonorrhoeae antimicrobial susceptibility surveillance — the gonococcal isolate surveillance project, 27 sites, United States, 2014. MMWR 65, 1–19 (2016).

    Article  PubMed  Google Scholar 

  158. Kirkcaldy, R. D., Kidd, S., Weinstock, H. S., Papp, J. R. & Bolan, G. A. Trends in antimicrobial resistance in Neisseria gonorrhoeae in the USA: the Gonococcal Isolate Surveillance Project (GISP), January 2006–June 2012. Sex. Transm. Infect. 89, iv5–iv10 (2013).

    Article  PubMed  Google Scholar 

  159. Ford, J. V. et al. The need to promote sexual health in America: a new vision for public health action. Sex. Transm. Dis. 44, 579–585 (2017).

    Article  PubMed  Google Scholar 

  160. Reed, J. L. et al. Adolescent patient preferences surrounding partner notification and treatment for sexually transmitted infections. Acad. Emerg. Med. 22, 61–66 (2015).

    Article  PubMed  Google Scholar 

  161. Goffman, E. Stigma: notes on the management of spoiled identity (Aronson, J., 1974).

  162. Fortenberry, J. D. et al. Relationships of stigma and shame to gonorrhea and HIV screening. Am. J. Public Health 92, 378–381 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lichtenstein, B. Stigma as a barrier to treatment of sexually transmitted infection in the American deep south: issues of race, gender and poverty. Soc. Sci. Med. 57, 2435–2445 (2003).

    Article  PubMed  Google Scholar 

  164. Tsadik, M., Berhane, Y., Worku, A. & Terefe, W. The magnitude of, and factors associated with, loss to follow-up among patients treated for sexually transmitted infections: a multilevel analysis. BMJ Open 7, e016864 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Tshokey, T. et al. Antibiotic resistance in Neisseria gonorrhoea and treatment outcomes of gonococcal urethritis suspected patients in two large hospitals in Bhutan, 2015. PLoS One 13, e0201721 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Schwartz, R. M. et al. Coping with a diagnosis of C. trachomatis or N. gonorrhoeae: psychosocial and behavioral correlates. J. Health Psychol. 13, 921–929 (2008).

    Article  PubMed  Google Scholar 

  167. Wong, J. P. H., Chan, K. B. K., Bio-Doku, R. & Mcwatt, S. Risk discourse and sexual stigma: barriers to STI testing, treatment and care among young heterosexual women in disadvantaged neighbourhoods in Toronto. Can. J. Hum. Sex. 21, 74–89 (2012).

    Google Scholar 

  168. Morris, J. L. et al. Sexually transmitted infection related stigma and shame among African American male youth: implications for testing practices, partner notification, and treatment. AIDS Patient Care STDS 28, 499–506 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Crenshaw, K. Mapping the margins: intersectionality, identity politics, and violence against women of color. Stanf. Law Rev. 43, 1241–1299 (1991).

    Article  Google Scholar 

  170. Unemo, M. et al. Sexually transmitted infections: challenges ahead. Lancet Infect. Dis. 17, e235–e279 (2017). This very extensive Commission discusses the current key challenges facing the field of STIs and outlines new approaches to improve the clinical management of STIs and public health.

    Article  PubMed  Google Scholar 

  171. Carlton, T. O. & Mayes, S. M. Gonorrhea: not a ‘second-class’ disease. Health Soc. Work. 7, 301–313 (1982).

    Article  CAS  PubMed  Google Scholar 

  172. Wu, D., Hawkes, S. & Buse, K. Prevention of mother-to-child transmission of syphilis and HIV in China: what drives political prioritization and what can this tell us about promoting dual elimination? Int. J. Gynaecol. Obstet. 130, S32–S36 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Cook, J. E., Purdie-Vaughns, V., Meyer, I. H. & Busch, J. T. A. Intervening within and across levels: a multilevel approach to stigma and public health. Soc. Sci. Med. 103, 101–109 (2014).

    Article  PubMed  Google Scholar 

  174. Demczuk, W. et al. Whole-genome phylogenomic heterogeneity of Neisseria gonorrhoeae isolates with decreased cephalosporin susceptibility collected in Canada between 1989 and 2013. J. Clin. Microbiol. 53, 191–200 (2015).

    Article  PubMed  CAS  Google Scholar 

  175. Demczuk, W. et al. Genomic epidemiology and molecular resistance mechanisms of azithromycin-resistant Neisseria gonorrhoeae in Canada from 1997 to 2014. J. Clin. Microbiol. 54, 1304–1313 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Grad, Y. H. et al. Genomic epidemiology of Neisseria gonorrhoeae with reduced susceptibility to cefixime in the USA: a retrospective observational study. Lancet Infect. Dis. 14, 220–226 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Grad, Y. H. et al. Genomic epidemiology of gonococcal resistance to extended-spectrum cephalosporins, macrolides, and fluoroquinolones in the United States, 2000–2013. J. Infect. Dis. 214, 1579–1587 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Jacobsson, S. et al. WGS analysis and molecular resistance mechanisms of azithromycin-resistant (MIC >2 mg/L) Neisseria gonorrhoeae isolates in Europe from 2009 to 2014. J. Antimicrob. Chemother. 71, 3109–3116 (2016).

    Article  CAS  PubMed  Google Scholar 

  179. De Silva, D. et al. Whole-genome sequencing to determine transmission of Neisseria gonorrhoeae: an observational study. Lancet Infect. Dis. 16, 1295–1303 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Ezewudo, M. N. et al. Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance. PeerJ. 3, e806 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Ryan, L. et al. Antimicrobial resistance and molecular epidemiology using whole-genome sequencing of Neisseria gonorrhoeae in Ireland, 2014–2016: focus on extended-spectrum cephalosporins and azithromycin. Eur. J. Clin. Microbiol. Infect. Dis. 37, 1661–1672 (2018).

    Article  CAS  PubMed  Google Scholar 

  182. Eyre, D. W. et al. WGS to predict antibiotic MICs for Neisseria gonorrhoeae. J. Antimicrob. Chemother. 72, 1937–1947 (2017). This genomics paper provides strong evidence that WGS can relatively successfully predict MICs of antimicrobials and AMR in N. gonorrhoeae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Golparian, D. et al. Antimicrobial resistance prediction and phylogenetic analysis of Neisseria gonorrhoeae isolates using the Oxford Nanopore MinION sequencer. Sci. Rep. 8, 17596 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Eyre, D. W., Golparian, D. & Unemo, M. Prediction of minimum inhibitory concentrations of antimicrobials for Neisseria gonorrhoeae using whole-genome sequencing. Methods Mol. Biol. 1997, 59–76 (2019).

    Article  PubMed  Google Scholar 

  185. Unemo, M. & Althaus, C. L. Fitness cost and benefit of antimicrobial resistance in Neisseria gonorrhoeae: multidisciplinary approaches are needed. PLoS Med. 14, e1002423 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Fingerhuth, S. M., Low, N., Bonhoeffer, S. & Althaus, C. L. Detection of antibiotic resistance is essential for gonorrhoea point-of-care testing: a mathematical modelling study. BMC Med. 15, 142 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Jacobsson, S. et al. WHO laboratory validation of Xpert((R)) CT/NG and Xpert((R)) TV on the GeneXpert system verifies high performances. APMIS. 126, 907–912 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Nudel, K. et al. Transcriptome analysis of Neisseria gonorrhoeae during natural infection reveals differential expression of antibiotic resistance determinants between men and women. mSphere 3, e00312–e00318 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Zielke, R. A. et al. Proteomics-driven antigen discovery for development of vaccines against gonorrhea. Mol. Cell Proteomics 15, 2338–2355 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. El-Rami, F. E., Zielke, R. A., Wi, T., Sikora, A. E. & Unemo, M. Quantitative proteomics of the 2016 WHO Neisseria gonorrhoeae reference strains surveys vaccine candidates and antimicrobial resistance determinants. Mol. Cell Proteomics 18, 127–150 (2019).

    Article  CAS  PubMed  Google Scholar 

  191. Unemo, M. & Sikora, A. E. Infection: proof of principle for effectiveness of a gonorrhoea vaccine. Nat. Rev. Urol. 14, 643–644 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Moreau, M. R., Massari, P. & Genco, C. A. The ironclad truth: how in vivo transcriptomics and in vitro mechanistic studies shape our understanding of Neisseria gonorrhoeae gene regulation during mucosal infection. Pathog. Dis. 75, https://doi.org/10.1093/femspd/ftx057 (2017).

  193. Jerse, A. E. et al. Estradiol-treated female mice as surrogate hosts for Neisseria gonorrhoeae genital tract infections. Front. Microbiol. 2, 107 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Sintsova, A. et al. Selection for CEACAM receptor-specific binding phenotype during Neisseria gonorrhoeae infection of the human genital tract. Infect. Immun. 83, 1372–1383 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Lujan, E., Pajon, R. & Granoff, D. M. Impaired immunogenicity of meningococcal neisserial surface protein A in human complement factor H transgenic mice. Infect. Immun. 84, 452–458 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Low, N. & Unemo, M. Molecular tests for the detection of antimicrobial resistant Neisseria gonorrhoeae: when, where, and how to use? Curr. Opin. Infect. Dis. 29, 45–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Dona, V., Low, N., Golparian, D. & Unemo, M. Recent advances in the development and use of molecular tests to predict antimicrobial resistance in Neisseria gonorrhoeae. Expert Rev. Mol. Diagn. 17, 845–859 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Sadiq, S. T., Mazzaferri, F. & Unemo, M. Rapid accurate point-of-care tests combining diagnostics and antimicrobial resistance prediction for Neisseria gonorrhoeae and mycoplasma genitalium. Sex. Transm. Infect. 93, S65–S68 (2017).

    Article  PubMed  Google Scholar 

  199. Goire, N. et al. Molecular approaches to enhance surveillance of gonococcal antimicrobial resistance. Nat. Rev. Microbiol. 12, 223–229 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Basarab, G. S. et al. Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial type II topoisomerases. Sci. Rep. 5, 11827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Foerster, S. et al. Genetic resistance determinants, in vitro time-kill curve analysis and pharmacodynamic functions for the novel topoisomerase II inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae. Front. Microbiol. 6, 1377 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Jacobsson, S. et al. High in vitro activity of the novel spiropyrimidinetrione AZD0914, a DNA gyrase inhibitor, against multidrug-resistant Neisseria gonorrhoeae isolates suggests a new effective option for oral treatment of gonorrhea. Antimicrob. Agents Chemother. 58, 5585–5588 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Taylor, S. N. et al. Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea. N. Engl. J. Med. 379, 1835–1845 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Foerster, S. et al. In vitro antimicrobial combination testing and evolution of resistance to the first-in-class spiropyrimidinetrione zoliflodacin combined with six therapeutically relevant antimicrobials for Neisseria gonorrhoeae. J. Antimicrob. Chemother. https://doi.org/10.1093/jac/dkz376 (2019)

  205. Jacobsson, S., Golparian, D., Scangarella-Oman, N. & Unemo, M. In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J. Antimicrob. Chemother. 73, 2072–2077 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Scangarella-Oman, N. E. et al. Microbiological analysis from a phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 62, e01221–18 (2018).

  207. Taylor, S. N. et al. Gepotidacin for the treatment of uncomplicated urogenital gonorrhea: a phase 2, randomized, dose-ranging, single-oral dose evaluation. Clin. Infect. Dis. 67, 504–512 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Jacobsson, S., Paukner, S., Golparian, D., Jensen, J. S. & Unemo, M. In vitro activity of the novel pleuromutilin lefamulin (bc-3781) and effect of efflux pump inactivation on multidrug-resistant and extensively drug-resistant Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 61, e01497–17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Paukner, S., Gruss, A. & Jensen, J. S. In vitro activity of lefamulin against sexually transmitted bacterial pathogens. Antimicrob. Agents Chemother. 62, e02380–17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Jacobsson, S., Mason, C., Khan, N., Meo, P. & Unemo, M. In vitro activity of the novel oral antimicrobial SMT-571, with a new mechanism of action, against MDR and XDR Neisseria gonorrhoeae: future treatment option for gonorrhoea? J. Antimicrob. Chemother. 74, 1591–1594 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Kong, F. Y. S., Horner, P., Unemo, M. & Hocking, J. S. Pharmacokinetic considerations regarding the treatment of bacterial sexually transmitted infections with azithromycin: a review. J. Antimicrob. Chemother. 74, 1157–1166 (2019). This paper provides a detailed overview of the pharmacokinetics of antimicrobials used to treat STIs and how factors related to the drug, human and organism can affect treatment outcomes.

    Article  PubMed  Google Scholar 

  212. Lenz, J. D. & Dillard, J. P. Pathogenesis of Neisseria gonorrhoeae and the host defense in ascending infections of human fallopian tube. Front. Immunol. 9, 2710 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Lucas, C. T., Chandler, F. Jr., Martin, J. E. Jr & Schmale, J. D. Transfer of gonococcal urethritis from man to chimpanzee. An animal model for gonorrhea. JAMA 216, 1612–1614 (1971).

    Article  CAS  PubMed  Google Scholar 

  214. Cohen, M. S. & Cannon, J. G. Human experimentation with Neisseria gonorrhoeae: progress and goals. J. Infect. Dis. 179 (Suppl. 2), S375–S379 (1999).

    Article  PubMed  Google Scholar 

  215. Chow, E. P. et al. Antiseptic mouthwash against pharyngeal Neisseria gonorrhoeae: a randomised controlled trial and an in vitro study. Sex. Transm. Infect. 93, 88–93 (2017).

    Article  PubMed  Google Scholar 

  216. Liu, Y. et al. Experimental vaccine induces Th1-driven immune responses and resistance to Neisseria gonorrhoeae infection in a murine model. Mucosal Immunol. 10, 1594–1608 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Kenyon, C., Buyze, J., Spiteri, G., Cole, M. J. & Unemo, M. Population-level antimicrobial consumption is associated with decreased antimicrobial susceptibility in Neisseria gonorrhoeae in 24 European countries: an ecological analysis. J. Infect. Dis. https://doi.org/10.1093/infdis/jiz153 (2019).

  218. Tomberg, J. et al. Alanine 501 mutations in penicillin-binding protein 2 from Neisseria gonorrhoeae: structure, mechanism, and effects on cephalosporin resistance and biological fitness. Biochemistry 56, 1140–1150 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Tomberg, J., Unemo, M., Davies, C. & Nicholas, R. A. Molecular and structural analysis of mosaic variants of penicillin-binding protein 2 conferring decreased susceptibility to expanded-spectrum cephalosporins in Neisseria gonorrhoeae: role of epistatic mutations. Biochemistry 49, 8062–8070 (2010).

    Article  CAS  PubMed  Google Scholar 

  220. Tomberg, J., Unemo, M., Ohnishi, M., Davies, C. & Nicholas, R. A. Identification of amino acids conferring high-level resistance to expanded-spectrum cephalosporins in the penA gene from Neisseria gonorrhoeae strain H041. Antimicrob. Agents Chemother. 57, 3029–3036 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Lee, H. et al. Emergence of decreased susceptibility and resistance to extended-spectrum cephalosporins in Neisseria gonorrhoeae in Korea. J. Antimicrob. Chemother. 70, 2536–2542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Olsen, B. et al. Antimicrobial susceptibility and genetic characteristics of Neisseria gonorrhoeae isolates from Vietnam, 2011. BMC Infect. Dis. 13, 40 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Whiley, D. M. et al. Reduced susceptibility to ceftriaxone in Neisseria gonorrhoeae is associated with mutations G542S, P551S and P551L in the gonococcal penicillin-binding protein 2. J. Antimicrob. Chemother. 65, 1615–1618 (2010).

    Article  CAS  PubMed  Google Scholar 

  224. Ohnishi, M. et al. Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob. Agents Chemother. 55, 3538–3545 (2011). This paper describes the identification and verification of the first global extensively drug-resistant and high-level ceftriaxone-resistant gonococcal strain that caused a ceftriaxone treatment failure in Japan.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Camara, J. et al. Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J. Antimicrob. Chemother. 67, 1858–1860 (2012).

    Article  CAS  PubMed  Google Scholar 

  226. Unemo, M. et al. High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob. Agents Chemother. 56, 1273–1280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Gianecini, R., Oviedo, C., Stafforini, G. & Galarza, P. Neisseria gonorrhoeae resistant to ceftriaxone and cefixime, Argentina. Emerg. Infect. Dis. 22, 1139–1141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Deguchi, T. et al. New clinical strain of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone, Japan. Emerg. Infect. Dis. 22, 142–144 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Nakayama, S. et al. New ceftriaxone- and multidrug-resistant Neisseria gonorrhoeae strain with a novel mosaic pena gene isolated in Japan. Antimicrob. Agents Chemother. 60, 4339–4341 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lahra, M. M. et al. Cooperative recognition of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain. Emerg. Infect. Dis. 24, https://doi.org/10.3201/eid2404.171873 (2018).

  231. Lefebvre, B. et al. Ceftriaxone-resistant Neisseria gonorrhoeae, Canada, 2017. Emerg. Infect. Dis. 24, https://doi.org/10.3201/eid2402.171756 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  232. Terkelsen, D. et al. Multidrug-resistant Neisseria gonorrhoeae infection with ceftriaxone resistance and intermediate resistance to azithromycin, Denmark, 2017. Euro Surveill 22, https://doi.org/10.2807/1560-7917.ES.2017.22.42.17-00659 (2017).

  233. Poncin, T. et al. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017. Euro Surveill 23, https://doi.org/10.2807/1560-7917.ES.2018.23.21.1800264 (2018).

  234. Golparian, D. et al. Multidrug-resistant Neisseria gonorrhoeae isolate, belonging to the internationally spreading Japanese FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, Ireland, August 2018. Euro Surveill 23, https://doi.org/10.2807/1560-7917.ES.2018.23.47.1800617 (2018).

  235. Eyre, D. W. et al. Detection in the United Kingdom of the Neisseria gonorrhoeae FC428 clone, with ceftriaxone resistance and intermediate resistance to azithromycin, October to December 2018. Euro Surveill 24, https://doi.org/10.2807/1560-7917.ES.2019.24.10.1900147 (2019).

  236. Eyre, D. W. et al. Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill 23, https://doi.org/10.2807/1560-7917.ES.2018.23.27.1800323 (2018). This paper describes the identification of the first global gonococcal strain with combined ceftriaxone and high-level azithromycin resistance that caused a ceftriaxone treatment failure in the UK.

  237. Whiley, D. M., Jennison, A., Pearson, J. & Lahra, M. M. Genetic characterisation of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect. Dis. 18, 717–718 (2018).

    Article  PubMed  Google Scholar 

  238. Jennison, A. V. et al. Genetic relatedness of ceftriaxone-resistant and high-level azithromycin-resistant Neisseria gonorrhoeae cases, United Kingdom and Australia, February to April 2018. Euro Surveill 24, https://doi.org/10.2807/1560-7917.ES.2019.24.8.1900118 (2019).

  239. Ko, K. K. K. et al. First case of ceftriaxone-resistant multidrug-resistant Neisseria gonorrhoeae in Singapore. Antimicrob. Agents Chemother 63, e06224-18 (2019).

    Article  Google Scholar 

  240. Lee, K. et al. Clonal expansion and spread of the ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, identified in Japan in 2015, and closely related isolates. J. Antimicrob. Chemother 74, 1812–1819 (2019).

    Article  PubMed  Google Scholar 

  241. Fifer, H. et al. Failure of dual antimicrobial therapy in treatment of gonorrhea. N. Engl. J. Med. 374, 2504–2506 (2016). This study reports on the first global failure of dual antimicrobial therapy (ceftriaxone plus azithromycin) in the treatment of gonorrhoea.

    Article  PubMed  Google Scholar 

  242. Chen, S. C., Han, Y., Yuan, L. F., Zhu, X. Y. & Yin, Y. P. Identification of internationally disseminated ceftriaxone-resistant Neisseria gonorrhoeae strain FC428, China. Emerg. Infect. Dis. 25, 1427–1429 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Poncin, T. et al. Two cases of multidrug-resistant Neisseria gonorrhoeae related to travel in south-eastern Asia, France, June 2019. Euro Surveill 24, https://doi.org/10.2807/1560-7917.ES.2019.24.36.1900528 (2019).

  244. Morse, S. A. The biology of the gonococcus. CRC Crit. Rev. Microbiol. 7, 93–189 (1978).

    Article  CAS  PubMed  Google Scholar 

  245. Tonjum, T. & Koomey, M. The pilus colonization factor of pathogenic neisserial species: organelle biogenesis and structure/function relationships — a review. Gene 192, 155–163 (1997).

    Article  CAS  PubMed  Google Scholar 

  246. Maier, B., Potter, L., So, M., Seifert, H. S. & Sheetz, M. P. Single pilus motor forces exceed 100 pN. Proc. Natl Acad. Sci. USA 99, 16012–16017 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Stern, A., Brown, M., Nickel, P. & Meyer, T. F. Opacity genes in Neisseria gonorrhoeae: control of phase and antigenic variation. Cell 47, 61–71 (1986).

    Article  CAS  PubMed  Google Scholar 

  248. James, J. F. & Swanson, J. Studies on gonococcus infection. XIII. Occurrence color/opacity colonial variants in clinical cultures. Infect. Immun. 19, 332–340 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Jerse, A. E. et al. Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J. Exp. Med. 179, 911–920 (1994).

    Article  CAS  PubMed  Google Scholar 

  250. Rice, P. A., Vayo, H. E., Tam, M. R. & Blake, M. S. Immunoglobulin G antibodies directed against protein III block killing of serum-resistant Neisseria gonorrhoeae by immune serum. J. Exp. Med. 164, 1735–1748 (1986).

    Article  CAS  PubMed  Google Scholar 

  251. Mandrell, R. E. et al. In vitro and in vivo modification of Neisseria gonorrhoeae lipooligosaccharide epitope structure by sialylation. J. Exp. Med. 171, 1649–1664 (1990).

    Article  CAS  PubMed  Google Scholar 

  252. Gaydos, C. A. et al. Performance of the Abbott RealTime CT/NG for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J. Clin. Microbiol. 48, 3236–3243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Levett, P. N. et al. Evaluation of three automated nucleic acid amplification systems for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in first-void urine specimens. J. Clin. Microbiol. 46, 2109–2111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Gaydos, C. A. et al. Performance of the cepheid CT/NG xpert rapid PCR test for detection of Chlamydia trachomatis and Neisseria gonorrhoeae. J. Clin. Microbiol. 51, 1666–1672 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Tabrizi, S. N. et al. Analytical evaluation of GeneXpert CT/NG, the first genetic point-of-care assay for simultaneous detection of Neisseria gonorrhoeae and Chlamydia trachomatis. J. Clin. Microbiol. 51, 1945–1947 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Bromhead, C., Miller, A., Jones, M. & Whiley, D. Comparison of the cobas 4800 CT/NG test with culture for detecting Neisseria gonorrhoeae in genital and nongenital specimens in a low-prevalence population in New Zealand. J. Clin. Microbiol. 51, 1505–1509 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Rockett, R. et al. Evaluation of the cobas 4800 CT/NG test for detecting Chlamydia trachomatis and Neisseria gonorrhoeae. Sex. Transm. Infect. 86, 470–473 (2010).

    Article  PubMed  Google Scholar 

  258. Van Der Pol, B., Williams, J. A., Fuller, D., Taylor, S. N. & Hook, E. W. 3rd Combined testing for chlamydia, gonorrhea, and trichomonas by use of the BD Max CT/GC/TV assay with genitourinary specimen types. J. Clin. Microbiol. 55, 155–164 (2017).

    Article  Google Scholar 

  259. Masek, B. J. et al. Performance of three nucleic acid amplification tests for detection of chlamydia trachomatis and Neisseria gonorrhoeae by use of self-collected vaginal swabs obtained via an internet-based screening program. J. Clin. Microbiol. 47, 1663–1667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Moncada, J., Schachter, J., Liska, S., Shayevich, C. & Klausner, J. D. Evaluation of self-collected glans and rectal swabs from men who have sex with men for detection of Chlamydia trachomatis and Neisseria gonorrhoeae by use of nucleic acid amplification tests. J. Clin. Microbiol. 47, 1657–1662 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Golparian, D., Tabrizi, S. N. & Unemo, M. Analytical specificity and sensitivity of the APTIMA Combo 2 and APTIMA GC assays for detection of commensal Neisseria species and Neisseria gonorrhoeae on the gen-probe panther instrument. Sex. Transm. Dis. 40, 175–178 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Jacobsson (Örebro University Hospital and Örebro University) and S. Perera and N. Parmar (University of Saskatchewan) for technical assistance with preparing this manuscript.

Reviewer information

Nature Reviews Disease Primers thanks G. Hughes, S. Sood and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.U.); Epidemiology (F.N.); Mechanisms/pathophysiology (H S.S.); Diagnosis, screening and prevention (J.-A.R.D.); Management (E.W.H.III); Quality of life (S.H.); Outlook (M.U.); Overview of Primer (M.U.).

Corresponding author

Correspondence to Magnus Unemo.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

World Bank Income Classification: https://databank.worldbank.org/reports.aspx?source=2&series=NY.GNP.PCAP.CD&country=

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unemo, M., Seifert, H.S., Hook, E.W. et al. Gonorrhoea. Nat Rev Dis Primers 5, 79 (2019). https://doi.org/10.1038/s41572-019-0128-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-019-0128-6

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology