Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Delirium

A Publisher Correction to this article was published on 01 December 2020

This article has been updated

Abstract

Delirium, a syndrome characterized by an acute change in attention, awareness and cognition, is caused by a medical condition that cannot be better explained by a pre-existing neurocognitive disorder. Multiple predisposing factors (for example, pre-existing cognitive impairment) and precipitating factors (for example, urinary tract infection) for delirium have been described, with most patients having both types. Because multiple factors are implicated in the aetiology of delirium, there are likely several neurobiological processes that contribute to delirium pathogenesis, including neuroinflammation, brain vascular dysfunction, altered brain metabolism, neurotransmitter imbalance and impaired neuronal network connectivity. The Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) is the most commonly used diagnostic system upon which a reference standard diagnosis is made, although many other delirium screening tools have been developed given the impracticality of using the DSM-5 in many settings. Pharmacological treatments for delirium (such as antipsychotic drugs) are not effective, reflecting substantial gaps in our understanding of its pathophysiology. Currently, the best management strategies are multidomain interventions that focus on treating precipitating conditions, medication review, managing distress, mitigating complications and maintaining engagement to environmental issues. The effective implementation of delirium detection, treatment and prevention strategies remains a major challenge for health-care organizations globally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Risk factors for delirium.
Fig. 2: Bioenergetic insufficiency may underpin delirium in multiple scenarios.
Fig. 3: Inflammatory mechanisms in delirium.
Fig. 4: Major mechanisms in delirium pathophysiology.
Fig. 5: Common tools to screen for delirium in different settings.
Fig. 6: Associations between performance of the ABCDEF bundle and outcomes.
Fig. 7: Antipsychotic drugs are ineffective in delirium treatment.
Fig. 8: Proportion of delirious patients according to sedation regimen (SPICE III trial).
Fig. 9: Relationship between delirium and post-ICU quality of life.

Similar content being viewed by others

Change history

  • 01 December 2020

    An Erratum to this paper has been published: https://doi.org/10.1038/s41572-020-00236-z.

References

  1. Adamis, D., Treloar, A., Martin, F. C. & Macdonald, A. J. A brief review of the history of delirium as a mental disorder. Hist. Psychiatry 18, 459–469 (2007).

    PubMed  Google Scholar 

  2. Williams, S. T., Dhesi, J. K. & Partridge, J. S. L. Distress in delirium: causes, assessment and management. Eur. Geriatr. Med. 11, 63–70 (2020).

    PubMed  Google Scholar 

  3. Pandharipande, P. P. et al. Long-term cognitive impairment after critical illness. N. Engl. J. Med. 369, 1306–1316 (2013). This prospective longitudinal cohort study demonstrated that critically ill patients are at risk of LTCI after critical illness, that this new LTCI can persist at 3 and 12 months follow-up, and that it is associated with duration of delirium.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 5th edn (DSM-5) (American Psychiatric Association Publishing, 2013).

  5. Cole, M. G. et al. Partial and no recovery from delirium in older hospitalized adults: frequency and baseline risk factors. J. Am. Geriatr. Soc. 63, 2340–2348 (2015).

    PubMed  Google Scholar 

  6. Ouimet, S. et al. Subsyndromal delirium in the ICU: evidence for a disease spectrum. Intensive Care Med. 33, 1007–1013 (2007).

    PubMed  Google Scholar 

  7. Cole, M., McCusker, J., Dendukuri, N. & Han, L. The prognostic significance of subsyndromal delirium in elderly medical inpatients. J. Am. Geriatr. Soc. 51, 754–760 (2003).

    PubMed  Google Scholar 

  8. Slooter, A. J. C. et al. Updated nomenclature of delirium and acute encephalopathy: statement of ten societies. Intensive Care Med. 46, 1020–1022 (2020). A joint position paper of ten international societies on the near complete segregation of the literature on delirium from that on encephalopathy, with recommendations to separate the underlying brain pathological state, namely encephalopathy, from the manifest clinical features, namely delirium.

    PubMed  PubMed Central  Google Scholar 

  9. Casey, P. et al. Hospital discharge data under-reports delirium occurrence: results from a point prevalence survey of delirium in a major Australian health service. Intern. Med. J. 49, 338–344 (2019).

    PubMed  Google Scholar 

  10. Oldham, M. A. & Holloway, R. G. Delirium disorder: Integrating delirium and acute encephalopathy. Neurology 95, 173–178 (2020).

    PubMed  Google Scholar 

  11. Ely, E. W. et al. The impact of delirium in the intensive care unit on hospital length of stay. Intensive Care Med. 27, 1892–1900 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Teodorczuk, A. & MacLullich, A. New waves of delirium understanding. Int. J. Geriatr. Psychiatry 33, 1417–1419 (2018).

    PubMed  Google Scholar 

  13. Lipowski, Z. J. Transient cognitive disorders (delirium, acute confusional states) in the elderly. Am. J. Psychiatry 140, 1426–1436 (1983).

    CAS  PubMed  Google Scholar 

  14. Khachaturian, A. S. et al. International drive to illuminate delirium: a developing public health blueprint for action. Alzheimers Dement. 16, 711–725 (2020).

    PubMed  Google Scholar 

  15. Davis, D. H. et al. The epidemiology of delirium: challenges and opportunities for population studies. Am. J. Geriatr. Psychiatry 21, 1173–1189 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Gibb, K. et al. The consistent burden in published estimates of delirium occurrence in medical inpatients over four decades: a systematic review and meta-analysis study. Age Ageing 49, 352–360 (2020).

    PubMed  PubMed Central  Google Scholar 

  17. Marcantonio, E. R. Delirium in hospitalized older adults. N. Engl. J. Med. 377, 1456–1466 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Smith, T. O. et al. Factors predicting incidence of post-operative delirium in older people following hip fracture surgery: a systematic review and meta-analysis. Int. J. Geriatr. Psychiatry 32, 386–396 (2017).

    CAS  PubMed  Google Scholar 

  19. Watt, J. et al. Identifying older adults at risk of delirium following elective surgery: a systematic review and meta-analysis. J. Gen. Intern. Med. 33, 500–509 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Greaves, D. et al. Cognitive outcomes following coronary artery bypass grafting: a systematic review and meta-analysis of 91,829 patients. Int. J. Cardiol. 289, 43–49 (2019).

    PubMed  PubMed Central  Google Scholar 

  21. Abawi, M. et al. Postoperative delirium in individuals undergoing transcatheter aortic valve replacement: a systematic review and meta-analysis. J. Am. Geriatr. Soc. 66, 2417–2424 (2018).

    PubMed  Google Scholar 

  22. Shaw, R. C., Walker, G., Elliott, E. & Quinn, T. J. Occurrence rate of delirium in acute stroke settings: systematic review and meta-analysis. Stroke 50, 3028–3036 (2019).

    PubMed  Google Scholar 

  23. Watt, C. L. et al. The incidence and prevalence of delirium across palliative care settings: a systematic review. Palliat. Med. 33, 865–877 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Hosie, A., Davidson, P. M., Agar, M., Sanderson, C. R. & Phillips, J. Delirium prevalence, incidence, and implications for screening in specialist palliative care inpatient settings: a systematic review. Palliat. Med. 27, 486–498 (2013).

    PubMed  Google Scholar 

  25. Morichi, V. et al. A point prevalence study of delirium in Italian nursing homes. Dement. Geriatr. Cogn. Disord. 46, 27–41 (2018).

    PubMed  Google Scholar 

  26. Andrew, M. K., Freter, S. H. & Rockwood, K. Prevalence and outcomes of delirium in community and non-acute care settings in people without dementia: a report from the Canadian study of health and aging. BMC Med. 4, 15 (2006).

    PubMed  PubMed Central  Google Scholar 

  27. Inouye, S. K., Westendorp, R. G. & Saczynski, J. S. Delirium in elderly people. Lancet 383, 911–922 (2014).

    PubMed  Google Scholar 

  28. Krewulak, K. D., Stelfox, H. T., Leigh, J. P., Ely, E. W. & Fiest, K. M. Incidence and prevalence of delirium subtypes in an adult ICU: a systematic review and meta-analysis. Crit. Care Med. 46, 2029–2035 (2018).

    PubMed  Google Scholar 

  29. Almeida, I. C. et al. The impact of acute brain dysfunction in the outcomes of mechanically ventilated cancer patients. PLoS ONE 9, e85332 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Janssen, N. J. et al. On the utility of diagnostic instruments for pediatric delirium in critical illness: an evaluation of the pediatric anesthesia emergence delirium scale, the delirium rating scale 88, and the delirium rating scale-revised R-98. Intensive Care Med. 37, 1331–1337 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. Larsen, G. Y., Donaldson, A. E., Parker, H. B. & Grant, M. J. Preventable harm occurring to critically ill children. Pediatr. Crit. Care Med. 8, 331–336 (2007).

    PubMed  Google Scholar 

  32. Schieveld, J. N. et al. Pediatric delirium in critical illness: phenomenology, clinical correlates and treatment response in 40 cases in the pediatric intensive care unit. Intensive Care Med. 33, 1033–1040 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Silver, G. et al. Detecting pediatric delirium: development of a rapid observational assessment tool. Intensive Care Med. 38, 1025–1031 (2012).

    PubMed  Google Scholar 

  34. Smith, H. A. et al. Diagnosing delirium in critically ill children: validity and reliability of the pediatric confusion assessment method for the intensive care unit. Crit. Care Med. 39, 150–157 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Traube, C. et al. Cornell assessment of pediatric delirium: a valid, rapid, observational tool for screening delirium in the PICU*. Crit. Care Med. 42, 656–663 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Smith, H. A. et al. The preschool confusion assessment method for the ICU: valid and reliable delirium monitoring for critically Ill infants and children. Crit. Care Med. 44, 592–600 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Gross, A. L. et al. Delirium and long-term cognitive trajectory among persons with dementia. Arch. Intern. Med. 172, 1324–1331 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Silver, G. et al. Pediatric delirium and associated risk factors: a single-center prospective observational study. Pediatr. Crit. Care Med. 16, 303–309 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Smith, P. J., Attix, D. K., Weldon, B. C., Greene, N. H. & Monk, T. G. Executive function and depression as independent risk factors for postoperative delirium. Anesthesiology 110, 781–787 (2009).

    PubMed  Google Scholar 

  40. Wilson, K., Broadhurst, C., Diver, M., Jackson, M. & Mottram, P. Plasma insulin growth factor-1 and incident delirium in older people. Int. J. Geriatr. Psychiatry 20, 154–159 (2005).

    CAS  PubMed  Google Scholar 

  41. Velayati, A., Vahdat Shariatpanahi, M., Shahbazi, E. & Vahdat Shariatpanahi, Z. Association between preoperative nutritional status and postoperative delirium in individuals with coronary artery bypass graft surgery: a prospective cohort study. Nutrition 66, 227–232 (2019).

    PubMed  Google Scholar 

  42. Sanford, A. M. & Flaherty, J. H. Do nutrients play a role in delirium? Curr. Opin. Clin. Nutr. Metab. Care 17, 45–50 (2014).

    CAS  PubMed  Google Scholar 

  43. Persico, I. et al. Frailty and delirium in older adults: a systematic review and meta-analysis of the literature. J. Am. Geriatr. Soc. 66, 2022–2030 (2018).

    PubMed  Google Scholar 

  44. Jung, P. et al. The impact of frailty on postoperative delirium in cardiac surgery patients. J. Thorac. Cardiovasc. Surg. 149, 869–875.e1-2 (2015).

    PubMed  Google Scholar 

  45. Davis, D. H. et al. Worsening cognitive impairment and neurodegenerative pathology progressively increase risk for delirium. Am. J. Geriatr. Psychiatry 23, 403–415 (2015). This paper represents the clearest demonstration that progressive cognitive decline is a progressively increasing risk factor for delirium and also demonstrates, in mice, that this decline is correlated with increasing synaptic loss and can precede frank neurodegeneration. The study also validates the first animal model of delirium superimposed on dementia.

    PubMed  PubMed Central  Google Scholar 

  46. Nitchingham, A., Kumar, V., Shenkin, S., Ferguson, K. J. & Caplan, G. A. A systematic review of neuroimaging in delirium: predictors, correlates and consequences. Int. J. Geriatr. Psychiatry 33, 1458–1478 (2018).

    PubMed  Google Scholar 

  47. Ferguson, K. J. & MacLullich, A. M. J. in Brain disorders in Critical Illness (eds Stevens, R. D., Sharshar, T., & Ely, E. W.) (Cambridge University Press, 2013).

  48. McCoy, T. H. Jr. Hart, K., Pellegrini, A. & Perlis, R. H. Genome-wide association identifies a novel locus for delirium risk. Neurobiol. Aging 68, 160.e9–160.e14 (2018).

    CAS  Google Scholar 

  49. Adamis, D., Meagher, D., Williams, J., Mulligan, O. & McCarthy, G. A systematic review and meta-analysis of the association between the apolipoprotein E genotype and delirium. Psychiatr. Genet. 26, 53–59 (2016).

    CAS  PubMed  Google Scholar 

  50. Laurila, J. V., Laakkonen, M. L., Laurila, J. V., Timo, S. E. & Reijo, T. S. Predisposing and precipitating factors for delirium in a frail geriatric population. J. Psychosom. Res. 65, 249–254 (2008).

    PubMed  Google Scholar 

  51. Cirbus, J. et al. Delirium etiology subtypes and their effect on six-month function and cognition in older emergency department patients. Int. Psychogeriatr. 31, 267–276 (2019).

    PubMed  Google Scholar 

  52. Clegg, A. & Young, J. B. Which medications to avoid in people at risk of delirium: a systematic review. Age Ageing 40, 23–29 (2011).

    PubMed  Google Scholar 

  53. Sampson, E. L., West, E. & Fischer, T. Pain and delirium: mechanisms, assessment, management. Eur. Geriatr. Med. 11, 45–52 (2020).

    PubMed  Google Scholar 

  54. Van Rompaey, B. et al. Risk factors for delirium in intensive care patients: a prospective cohort study. Crit. Care 13, R77 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Shehabi, Y. et al. Delirium duration and mortality in lightly sedated, mechanically ventilated intensive care patients. Crit. Care Med. 38, 2311–2318 (2010).

    PubMed  Google Scholar 

  56. Ely, E. W. et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 286, 2703–2710 (2001).

    CAS  PubMed  Google Scholar 

  57. Pandharipande, P. et al. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. J. Trauma 65, 34–41 (2008).

    PubMed  PubMed Central  Google Scholar 

  58. Sharma, A., Malhotra, S., Grover, S. & Jindal, S. K. Incidence, prevalence, risk factor and outcome of delirium in intensive care unit: a study from India. Gen. Hosp. Psychiatry 34, 639–646 (2012).

    PubMed  Google Scholar 

  59. Tsuruta, R. et al. Prevalence and associated factors for delirium in critically ill patients at a Japanese intensive care unit. Gen. Hosp. Psychiatry 32, 607–611 (2010).

    PubMed  Google Scholar 

  60. Lindroth, H. et al. Systematic review of prediction models for delirium in the older adult inpatient. BMJ Open 8, e019223 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Rudolph, J. L. et al. Derivation and validation of a preoperative prediction rule for delirium after cardiac surgery. Circulation 119, 229 (2009).

    PubMed  Google Scholar 

  62. O’Keeffe, S. & Lavan, J. Predicting delirium in elderly patients: development and validation of a risk-stratification model. Age Ageing 25, 317–321 (1996).

    PubMed  Google Scholar 

  63. Fisher, B. W. & Flowerdew, G. A simple model for predicting postoperative delirium in older patients undergoing elective orthopedic surgery. J. Am. Geriatr. Soc. 43, 175–178 (1995).

    CAS  PubMed  Google Scholar 

  64. Kalisvaart, K. J. et al. Risk factors and prediction of postoperative delirium in elderly hip-surgery patients: Implementation and validation of a medical risk factor model. J. Am. Geriatr. Soc. 54, 817–822 (2006).

    PubMed  Google Scholar 

  65. Böhner, H. et al. Predicting delirium after vascular surgery: a model based on pre-and intraoperative data. Ann. Surg. 238, 149 (2003).

    PubMed  PubMed Central  Google Scholar 

  66. Kennedy, M. et al. Delirium risk prediction, healthcare use and mortality of elderly adults in the emergency department. J. Am. Geriatr. Soc. 62, 462–469 (2014).

    PubMed  PubMed Central  Google Scholar 

  67. Wassenaar, A. et al. Multinational development and validation of an early prediction model for delirium in ICU patients. Intensive Care Med. 41, 1048–1056 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Van den Boogaard, M. et al. Development and validation of PRE-DELIRIC (PREdiction of DELIRium in ICu patients) delirium prediction model for intensive care patients: observational multicentre study. BMJ 344, e420 (2012).

    PubMed  PubMed Central  Google Scholar 

  69. Linkaite, G., Riauka, M., Buneviciute, I. & Vosylius, S. Evaluation of PRE-DELIRIC (PREdiction of DELIRium in ICu patients) delirium prediction model for the patients in the intensive care unit. Acta Med. Litu. 25, 14–22 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Paton, L., Elliott, S. & Chohan, S. Utility of the PRE-DELIRIC delirium prediction model in a Scottish ICU cohort. J. Intensive Care Soc. 17, 202–206 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Sosa, F. A. et al. Assessment of delirium using the PRE-DELIRIC model in an intensive care unit in Argentina. Rev. Bras. Ter. Intensiva 30, 50–56 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Rudberg, M. A., Pompei, P., Foreman, M. D., Ross, R. E. & Cassel, C. K. The natural history of delirium in older hospitalized patients: a syndrome of heterogeneity. Age Ageing 26, 169–174 (1997).

    CAS  PubMed  Google Scholar 

  73. Cole, M. G., Ciampi, A., Belzile, E. & Zhong, L. Persistent delirium in older hospital patients: a systematic review of frequency and prognosis. Age Ageing 38, 19–26 (2009).

    PubMed  Google Scholar 

  74. Meagher, D., Adamis, D., Trzepacz, P. & Leonard, M. Features of subsyndromal and persistent delirium. Br. J. Psychiatry 200, 37–44 (2012).

    PubMed  Google Scholar 

  75. Witlox, J. et al. Delirium in elderly patients and the risk of postdischarge mortality, institutionalization, and dementia: a meta-analysis. JAMA 304, 443–451 (2010). This meta-analysis provides evidence that, in elderly patients, delirium is associated with poor outcomes (mortality, institutionalization and dementia), independent of important confounders.

    CAS  PubMed  Google Scholar 

  76. Jackson, T. A., Wilson, D., Richardson, S. & Lord, J. M. Predicting outcome in older hospital patients with delirium: a systematic literature review. Int. J. Geriatr. Psychiatry 31, 392–399 (2016).

    PubMed  Google Scholar 

  77. Davis, D. H. et al. Delirium is a strong risk factor for dementia in the oldest-old: a population-based cohort study. Brain 135, 2809–2816 (2012).

    PubMed  PubMed Central  Google Scholar 

  78. Goldberg, T. E. et al. Association of delirium with long-term cognitive decline: a meta-analysis. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2020.2273 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Engel, G. L. & Romano, J. Delirium II Reversibility of the electroencephalogram with experimental procedures. Arch. Neuro Psychiatr. 51, 378–392 (1944).

    Google Scholar 

  80. Itil, T. & Fink, M. Anticholinergic drug-induced delirium: experimental modification, quantitative EEG and behavioral correlations. J. Nerv. Ment. Dis. 143, 492–507 (1966).

    CAS  PubMed  Google Scholar 

  81. Girard, T. D. et al. Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: a prospective cohort study. Lancet Respir. Med. 6, 213–222 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Inouye, S. K. & Charpentier, P. A. Precipitating factors for delirium in hospitalized elderly persons. Predictive model and interrelationship with baseline vulnerability. JAMA 275, 852–857 (1996).

    CAS  PubMed  Google Scholar 

  83. Tijms, B. M. et al. Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol. Aging 34, 2023–2036 (2013).

    PubMed  Google Scholar 

  84. Cunningham, C., Wilcockson, D. C., Campion, S., Lunnon, K. & Perry, V. H. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J. Neurosci. 25, 9275–9284 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hennessy, E., Griffin, E. W. & Cunningham, C. Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1beta and TNF-alpha. J. Neurosci. 35, 8411–8422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hasel, P. et al. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat. Commun. 8, 15132 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Sweeney, M. D., Kisler, K., Montagne, A., Toga, A. W. & Zlokovic, B. V. The role of brain vasculature in neurodegenerative disorders. Nat. Neurosci. 21, 1318–1331 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang, A. C. et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583, 425–430 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Alagiakrishnan, K. & Wiens, C. A. An approach to drug induced delirium in the elderly. Postgrad. Med. J. 80, 388–393 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Engel, G. L. & Romano, J. Delirium, a syndrome of cerebral insufficiency. J. Chronic Dis. 9, 260–277 (1959). This perspective piece gathers many key observations on clinical and volunteer neurophysiology studies detailing the relationship between EEG and delirium symptoms as well as making a compelling case for the role of disturbed brain energy metabolism as a driver of delirium.

    CAS  PubMed  Google Scholar 

  91. Taccone, F. S. et al. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit. Care 14, R140 (2010).

    PubMed  PubMed Central  Google Scholar 

  92. Yokota, H., Ogawa, S., Kurokawa, A. & Yamamoto, Y. Regional cerebral blood flow in delirium patients. Psychiatry Clin. Neurosci. 57, 337–339 (2003).

    PubMed  Google Scholar 

  93. Pfister, D. et al. Cerebral perfusion in sepsis-associated delirium. Crit. Care 12, R63 (2008).

    PubMed  PubMed Central  Google Scholar 

  94. Caplan, G. A. et al. Cerebrospinal fluid in long-lasting delirium compared with Alzheimer’s dementia. J. Gerontol. A Biol. Sci. Med. Sci. 65, 1130–1136 (2010).

    PubMed  Google Scholar 

  95. Kealy, J. et al. Acute inflammation alters brain energy metabolism in mice and humans: role in suppressed spontaneous activity, impaired cognition, and delirium. J. Neurosci. 40, 5681–5696 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Bendahan, N., Neal, O., Ross-White, A., Muscedere, J. & Boyd, J. G. Relationship between near-infrared spectroscopy-derived cerebral oxygenation and delirium in critically ill patients: a systematic review. J. Intensive Care Med. 34, 514–520 (2019).

    PubMed  Google Scholar 

  97. Rosengarten, B. et al. Microcirculatory dysfunction in the brain precedes changes in evoked potentials in endotoxin-induced sepsis syndrome in rats. Cerebrovasc. Dis. 23, 140–147 (2007).

    CAS  PubMed  Google Scholar 

  98. Polito, A. et al. Pattern of brain injury in the acute setting of human septic shock. Crit. Care 17, R204 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Reddy, P. H. & Beal, M. F. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med. 14, 45–53 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Shehab, N. et al. US emergency department visits for outpatient adverse drug events, 2013-2014. JAMA 316, 2115–2125 (2016).

    PubMed  PubMed Central  Google Scholar 

  101. Sejling, A. S. et al. Hypoglycemia-associated changes in the electroencephalogram in patients with type 1 diabetes and normal hypoglycemia awareness or unawareness. Diabetes 64, 1760–1769 (2015).

    CAS  PubMed  Google Scholar 

  102. Gugger, J. J., Geocadin, R. G. & Kaplan, P. W. A multimodal approach using somatosensory evoked potentials for prognostication in hypoglycemic encephalopathy. Clin. Neurophysiol. Pract. 4, 194–197 (2019).

    PubMed  PubMed Central  Google Scholar 

  103. Sonneville, R. et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med. 43, 1075–1084 (2017).

    PubMed  Google Scholar 

  104. Thorell, A., Efendic, S., Gutniak, M., Haggmark, T. & Ljungqvist, O. Insulin resistance after abdominal surgery. Br. J. Surg. 81, 59–63 (1994).

    CAS  PubMed  Google Scholar 

  105. Virkamaki, A., Puhakainen, I., Koivisto, V. A., Vuorinen-Markkola, H. & Yki-Jarvinen, H. Mechanisms of hepatic and peripheral insulin resistance during acute infections in humans. J. Clin. Endocrinol. Metab. 74, 673–679 (1992).

    CAS  PubMed  Google Scholar 

  106. Meltzer, C. C. et al. Regional hypometabolism in Alzheimer’s disease as measured by positron emission tomography after correction for effects of partial volume averaging. Neurology 47, 454–461 (1996).

    CAS  PubMed  Google Scholar 

  107. Holscher, C. Insulin signalling impairment in the brain as a risk factor in Alzheimer’s disease. Front. Aging Neurosci. 11, 88 (2019).

    PubMed  PubMed Central  Google Scholar 

  108. Semmler, A. et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J. Neuroinflammation 5, 38 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Haggstrom, L. R., Nelson, J. A., Wegner, E. A. & Caplan, G. A. 2-(18)F-fluoro-2-deoxyglucose positron emission tomography in delirium. J. Cereb. Blood Flow Metab. 37, 3556–3567 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zimmer, E. R. et al. [18F]FDG PET signal is driven by astroglial glutamate transport. Nat. Neurosci. 20, 393–395 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Maclullich, A. M., Ferguson, K. J., Miller, T., de Rooij, S. E. & Cunningham, C. Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J. Psychosom. Res. 65, 229–238 (2008).

    PubMed  PubMed Central  Google Scholar 

  112. Yu, M. et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26, 174–179 (2006).

    CAS  PubMed  Google Scholar 

  113. Deiner, S. et al. Human plasma biomarker responses to inhalational general anaesthesia without surgery. Br. J. Anaesth. https://doi.org/10.1016/j.bja.2020.04.085 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cunningham, C. Microglia and neurodegeneration: the role of systemic inflammation. Glia 61, 71–90 (2013).

    PubMed  Google Scholar 

  116. Subramaniyan, S. & Terrando, N. Neuroinflammation and perioperative neurocognitive disorders. Anesth. Analg. 128, 781–788 (2019).

    PubMed  PubMed Central  Google Scholar 

  117. Banks, W. A., Farr, S. A. & Morley, J. E. Entry of blood-borne cytokines into the central nervous system: effects on cognitive processes. Neuroimmunomodulation 10, 319–327 (2002).

    CAS  PubMed  Google Scholar 

  118. Cerejeira, J., Firmino, H., Vaz-Serra, A. & Mukaetova-Ladinska, E. B. The neuroinflammatory hypothesis of delirium. Acta Neuropathol. 119, 737–754 (2010).

    PubMed  Google Scholar 

  119. van Gool, W. A., van de Beek, D. & Eikelenboom, P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 375, 773–775 (2010).

    PubMed  Google Scholar 

  120. van den Boogaard, M. et al. Biomarkers associated with delirium in critically ill patients and their relation with long-term subjective cognitive dysfunction; indications for different pathways governing delirium in inflamed and noninflamed patients. Crit. Care 15, R297 (2011).

    PubMed  PubMed Central  Google Scholar 

  121. Vasunilashorn, S. M. et al. High C-reactive protein predicts delirium incidence, duration, and feature severity after major noncardiac surgery. J. Am. Geriatr. Soc. 65, e109–e116 (2017).

    PubMed  PubMed Central  Google Scholar 

  122. Vasunilashorn, S. M. et al. Cytokines and postoperative delirium in older patients undergoing major elective surgery. J. Gerontol. A Biol. Sci. Med. Sci. 70, 1289–1295 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Henjum, K. et al. CSF sTREM2 in delirium-relation to Alzheimer’s disease CSF biomarkers Aβ42, t-tau and p-tau. J. Neuroinflammation 15, 304 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. van Munster, B. C. et al. Neuroinflammation in delirium: a postmortem case-control study. Rejuvenation Res. 14, 615–622 (2011).

    PubMed  PubMed Central  Google Scholar 

  125. Feng, X. et al. Microglia mediate postoperative hippocampal inflammation and cognitive decline in mice. JCI Insight 2, e91229 (2017).

    PubMed  PubMed Central  Google Scholar 

  126. Cibelli, M. et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann. Neurol. 68, 360–368 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Frank, M. G. et al. IL-1RA blocks E. coli-induced suppression of Arc and long-term memory in aged F344xBN F1 rats. Brain Behav. Immun. 24, 254–262 (2010).

    CAS  PubMed  Google Scholar 

  128. Pugh, C. R. et al. Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav. Brain Res. 106, 109–118 (1999).

    CAS  PubMed  Google Scholar 

  129. Skelly, D. T. et al. Acute transient cognitive dysfunction and acute brain injury induced by systemic inflammation occur by dissociable IL-1-dependent mechanisms. Mol. Psychiatry 24, 1533–1548 (2019). This paper provides a partial mechanistic basis for acute lipopolysaccharide-induced delirium-like deficits selectively in mice with prior neurodegeneration. The data suggest that acute cognitive deficits and acute brain injury may be dissociable, driven by systemic and centrally produced IL-1β, respectively.

    CAS  PubMed  Google Scholar 

  130. Cape, E. et al. Cerebrospinal fluid markers of neuroinflammation in delirium: a role for interleukin-1beta in delirium after hip fracture. J. Psychosom. Res. 77, 219–225 (2014).

    PubMed  PubMed Central  Google Scholar 

  131. Serantes, R. et al. Interleukin-1beta enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J. Biol. Chem. 281, 14632–14643 (2006).

    CAS  PubMed  Google Scholar 

  132. Liu, X. et al. Cell-type-specific interleukin 1 receptor 1 signaling in the brain regulates distinct neuroimmune activities. Immunity 50, 764–766 (2019).

    CAS  PubMed  Google Scholar 

  133. Lopez-Rodriguez, A. B. et al. Microglial and astrocyte priming in the APP/PS1 model of Alzheimer’s disease: increased vulnerability to acute inflammation and cognitive deficits. Preprint at bioRxiv https://doi.org/10.1101/344218 (2018).

    Article  Google Scholar 

  134. Andonegui, G. et al. Targeting inflammatory monocytes in sepsis-associated encephalopathy and long-term cognitive impairment. JCI Insight https://doi.org/10.1172/jci.insight.99364 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Vacas, S., Degos, V., Tracey, K. J. & Maze, M. High-mobility group Box 1 protein initiates postoperative cognitive decline by engaging bone marrow-derived macrophages. Anesthesiology 120, 1160–1167 (2014).

    CAS  PubMed  Google Scholar 

  136. Waltl, I. et al. Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis. Neurobiol. Dis. 110, 192–205 (2018).

    CAS  PubMed  Google Scholar 

  137. MacLullich, A. M. et al. Cerebrospinal fluid interleukin-8 levels are higher in people with hip fracture with perioperative delirium than in controls. J. Am. Geriatr. Soc. 59, 1151–1153 (2011).

    PubMed  PubMed Central  Google Scholar 

  138. van Munster, B. C. et al. Time-course of cytokines during delirium in elderly patients with hip fractures. J. Am. Geriatr. Soc. 56, 1704–1709 (2008).

    PubMed  Google Scholar 

  139. Hall, R. J. et al. CSF biomarkers in delirium: a systematic review. Int. J. Geriatr. Psychiatry 33, 1479–1500 (2018).

    PubMed  Google Scholar 

  140. Skrede, K., Wyller, T. B., Watne, L. O., Seljeflot, I. & Juliebo, V. Is there a role for monocyte chemoattractant protein-1 in delirium? Novel observations in elderly hip fracture patients. BMC Res. Notes 8, 186 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. Campbell, S. J. et al. Sickness behaviour is induced by a peripheral CXC-chemokine also expressed in multiple sclerosis and EAE. Brain Behav. Immun. 24, 738–746 (2010).

    CAS  PubMed  Google Scholar 

  142. Le Thuc, O. et al. Central CCL2 signaling onto MCH neurons mediates metabolic and behavioral adaptation to inflammation. EMBO Rep. 17, 1738–1752 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Marciniak, E. et al. The chemokine MIP-1alpha/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci. Rep. 5, 15862 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Varatharaj, A. & Galea, I. The blood-brain barrier in systemic inflammation. Brain Behav. Immun. 60, 1–12 (2017).

    CAS  PubMed  Google Scholar 

  145. Hov, K. R. et al. Blood-cerebrospinal fluid barrier integrity in delirium determined by Q-Albumin. Dement. Geriatr. Cognit. Disord. 41, 192–198 (2016).

    CAS  Google Scholar 

  146. The Lancet Haematology. COVID-19 coagulopathy: an evolving story. Lancet Haematol. 7, e425 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Forsberg, A. et al. The immune response of the human brain to abdominal surgery. Ann. Neurol. 81, 572–582 (2017).

    CAS  PubMed  Google Scholar 

  148. Ebert, U. & Kirch, W. Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur. J. Clin. Invest. 28, 944–949 (1998).

    CAS  PubMed  Google Scholar 

  149. Trzepacz, P. T. Anticholinergic model for delirium. Semin. Clin. Neuropsychiatry 1, 294–303 (1996).

    CAS  PubMed  Google Scholar 

  150. Tune, L. E. Serum anticholinergic activity levels and delirium in the elderly. Semin. Clin. Neuropsychiatry 5, 149–153 (2000).

    CAS  PubMed  Google Scholar 

  151. Carnahan, R. M., Lund, B. C., Perry, P. J., Pollock, B. G. & Culp, K. R. The anticholinergic drug scale as a measure of drug-related anticholinergic burden: associations with serum anticholinergic activity. J. Clin. Pharmacol. 46, 1481–1486 (2006).

    CAS  PubMed  Google Scholar 

  152. Liptzin, B., Laki, A., Garb, J. L., Fingeroth, R. & Krushell, R. Donepezil in the prevention and treatment of post-surgical delirium. Am. J. Geriatr. Psychiatry 13, 1100–1106 (2005).

    PubMed  Google Scholar 

  153. Marcantonio, E. R., Palihnich, K., Appleton, P. & Davis, R. B. Pilot randomized trial of donepezil hydrochloride for delirium after hip fracture. J. Am. Geriatr. Soc. 59 (Suppl. 2), S282–S288 (2011).

    PubMed  PubMed Central  Google Scholar 

  154. van Eijk, M. M. et al. Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial. Lancet 376, 1829–1837 (2010).

    PubMed  Google Scholar 

  155. Field, R. H., Gossen, A. & Cunningham, C. Prior pathology in the basal forebrain cholinergic system predisposes to inflammation induced working memory deficits: reconciling inflammatory and cholinergic hypotheses of delirium. J. Neurosci. 32, 6288–6294 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. McKeith, I. et al. Efficacy of rivastigmine in dementia with Lewy bodies: a randomised, double-blind, placebo-controlled international study. Lancet 356, 2031–2036 (2000).

    CAS  PubMed  Google Scholar 

  157. Roy, R., Niccolini, F., Pagano, G. & Politis, M. Cholinergic imaging in dementia spectrum disorders. Eur. J. Nucl. Med. Mol. Imaging 43, 1376–1386 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Agar, M. R. et al. Efficacy of oral risperidone, haloperidol, or placebo for symptoms of delirium among patients in palliative care: a randomized clinical trial. JAMA Intern. Med. 177, 34–42 (2017).

    PubMed  Google Scholar 

  159. Girard, T. D. et al. Haloperidol and ziprasidone for treatment of delirium in critical illness. N. Engl. J. Med. 379, 2506–2516 (2018). This randomized, double-blind, placebo-controlled trial (MIND-USA) evaluated haloperidol, ziprasidone or placebo for treating delirium in critically ill patients with respiratory failure or shock, finding no effect of these antipsychotic drugs on days alive without delirium or coma, or duration of delirium or coma.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Page, V. J. et al. Effect of intravenous haloperidol on the duration of delirium and coma in critically ill patients (Hope-ICU): a randomised, double-blind, placebo-controlled trial. Lancet Respir. Med. 1, 515–523 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. van den Boogaard, M. et al. Effect of haloperidol on survival among critically ill adults with a high risk of delirium: the REDUCE randomized clinical trial. JAMA 319, 680–690 (2018). In the multisite, randomized, double-blinded, placebo-controlled REDUCE trial comparing prophylactic haloperidol with placebo for delirium prevention in critically ill adults, haloperidol did not improve survival at 28 days; thus, prophylactic haloperidol is not recommended for reducing mortality in critically ill adults.

    PubMed  PubMed Central  Google Scholar 

  162. Gainetdinov, R. R., Jones, S. R. & Caron, M. G. Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol. Psychiatry 46, 303–311 (1999).

    CAS  PubMed  Google Scholar 

  163. Scammell, T. E., Jackson, A. C., Franks, N. P., Wisden, W. & Dauvilliers, Y. Histamine: neural circuits and new medications. Sleep https://doi.org/10.1093/sleep/zsy183 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Chazot, P. L., Johnston, L., McAuley, E. & Bonner, S. Histamine and delirium: current opinion. Front. Pharmacol. 10, 299 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Aston-Jones, G. & Cohen, J. D. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403–450 (2005).

    CAS  PubMed  Google Scholar 

  166. Arnsten, A. F. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10, 410–422 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Matthews, K. L. et al. Noradrenergic changes, aggressive behavior, and cognition in patients with dementia. Biol. Psychiatry 51, 407–416 (2002).

    CAS  PubMed  Google Scholar 

  168. Hahn, P. Y. et al. Sustained elevation in circulating catecholamine levels during polymicrobial sepsis. Shock 4, 269–273 (1995).

    CAS  PubMed  Google Scholar 

  169. Buhler, H. U., da Prada, M., Haefely, W. & Picotti, G. B. Plasma adrenaline, noradrenaline and dopamine in man and different animal species. J. Physiol. 276, 311–320 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Deiner, S., Lin, H. M., Bodansky, D., Silverstein, J. & Sano, M. Do stress markers and anesthetic technique predict delirium in the elderly? Dement. Geriatr. Cogn. Disord. 38, 366–374 (2014).

    CAS  PubMed  Google Scholar 

  171. Cursano, S. et al. A CRHR1 antagonist prevents synaptic loss and memory deficits in a trauma-induced delirium-like syndrome. Mol. Psychiatry https://doi.org/10.1038/s41380-020-0659-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Hawley, R. J. et al. Neurochemical correlates of sympathetic activation during severe alcohol withdrawal. Alcohol. Clin. Exp. Res. 18, 1312–1316 (1994).

    CAS  PubMed  Google Scholar 

  173. Smith, A. J., Brent, P. J., Henry, D. A. & Foy, A. Plasma noradrenaline, platelet alpha 2-adrenoceptors, and functional scores during ethanol withdrawal. Alcohol. Clin. Exp. Res. 14, 497–502 (1990).

    CAS  PubMed  Google Scholar 

  174. Muzyk, A. J., Fowler, J. A., Norwood, D. K. & Chilipko, A. Role of alpha2-agonists in the treatment of acute alcohol withdrawal. Ann. Pharmacother. 45, 649–657 (2011).

    CAS  PubMed  Google Scholar 

  175. Maldonado, J. R. Novel algorithms for the prophylaxis and management of alcohol withdrawal syndromes-beyond benzodiazepines. Crit. Care Clin. 33, 559–599 (2017).

    PubMed  Google Scholar 

  176. Skrobik, Y., Duprey, M. S., Hill, N. S. & Devlin, J. W. Low-dose nocturnal dexmedetomidine prevents ICU delirium. A randomized, placebo-controlled trial. Am. J. Respir. Crit. Care Med. 197, 1147–1156 (2018).

    CAS  PubMed  Google Scholar 

  177. Su, X. et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial. Lancet 388, 1893–1902 (2016).

    CAS  PubMed  Google Scholar 

  178. Liu, X. et al. Dexmedetomidine vs propofol sedation reduces delirium in patients after cardiac surgery: a meta-analysis with trial sequential analysis of randomized controlled trials. J. Crit. Care 38, 190–196 (2017).

    CAS  PubMed  Google Scholar 

  179. Ventura, R., Alcaro, A. & Puglisi-Allegra, S. Prefrontal cortical norepinephrine release is critical for morphine-induced reward, reinstatement and dopamine release in the nucleus accumbens. Cereb. Cortex 15, 1877–1886 (2005).

    PubMed  Google Scholar 

  180. Sanders, R. D. Hypothesis for the pathophysiology of delirium: role of baseline brain network connectivity and changes in inhibitory tone. Med. Hypotheses 77, 140–143 (2011).

    PubMed  Google Scholar 

  181. Pandharipande, P. et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology 104, 21–26 (2006).

    CAS  PubMed  Google Scholar 

  182. Zaal, I. J. et al. Benzodiazepine-associated delirium in critically ill adults. Intensive Care Med. 41, 2130–2137 (2015).

    CAS  PubMed  Google Scholar 

  183. Vlisides, P. & Avidan, M. Recent Advances in Preventing and Managing Postoperative Delirium. F1000Res https://doi.org/10.12688/f1000research.16780.1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Yoshitaka, S., Egi, M., Kanazawa, T., Toda, Y. & Morita, K. The association of plasma gamma-aminobutyric acid concentration with postoperative delirium in critically ill patients. Crit. Care Resusc. 16, 269–273 (2014).

    PubMed  Google Scholar 

  185. Morandi, A. et al. The relationship between delirium duration, white matter integrity, and cognitive impairment in intensive care unit survivors as determined by diffusion tensor imaging: the VISIONS prospective cohort magnetic resonance imaging study. Crit. Care Med. 40, 2182–2189 (2012).

    PubMed  PubMed Central  Google Scholar 

  186. Cavallari, M. et al. Neural substrates of vulnerability to postsurgical delirium as revealed by presurgical diffusion MRI. Brain 139, 1282–1294 (2016).

    PubMed  PubMed Central  Google Scholar 

  187. Murray, C. et al. Systemic inflammation induces acute working memory deficits in the primed brain: relevance for delirium. Neurobiol. Aging 33, 603–616.e3 (2012).

    PubMed  PubMed Central  Google Scholar 

  188. Peters van Ton, A. M., Verbeek, M. M., Alkema, W., Pickkers, P. & Abdo, W. F. Downregulation of synapse-associated protein expression and loss of homeostatic microglial control in cerebrospinal fluid of infectious patients with delirium and patients with Alzheimer’s disease. Brain Behav. Immun. https://doi.org/10.1016/j.bbi.2020.06.027 (2020).

    Article  PubMed  Google Scholar 

  189. van Montfort, S. J. T. et al. Brain network disintegration as a final common pathway for delirium: a systematic review and qualitative meta-analysis. Neuroimage Clin. 23, 101809 (2019).

    PubMed  PubMed Central  Google Scholar 

  190. Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014).

    CAS  PubMed  Google Scholar 

  191. Choi, S. H. et al. Neural network functional connectivity during and after an episode of delirium. Am. J. Psychiatry 169, 498–507 (2012).

    PubMed  Google Scholar 

  192. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    CAS  PubMed  Google Scholar 

  193. Fleischmann, R. et al. Delirium is associated with frequency band specific dysconnectivity in intrinsic connectivity networks: preliminary evidence from a large retrospective pilot case-control study. Pilot. Feasibility Stud. 5, 2 (2019).

    PubMed  PubMed Central  Google Scholar 

  194. Numan, T. et al. Functional connectivity and network analysis during hypoactive delirium and recovery from anesthesia. Clin. Neurophysiol. 128, 914–924 (2017).

    PubMed  Google Scholar 

  195. van Montfort, S. J. T. et al. Resting-state fMRI reveals network disintegration during delirium. Neuroimage Clin. 20, 35–41 (2018).

    PubMed  PubMed Central  Google Scholar 

  196. Zhang, L. J., Wu, S., Ren, J. & Lu, G. M. Resting-state functional magnetic resonance imaging in hepatic encephalopathy: current status and perspectives. Metab. Brain Dis. 29, 569–582 (2014).

    CAS  PubMed  Google Scholar 

  197. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Association, 1994).

  198. European Delirium Association & American Delirium Society. The DSM-5 criteria, level of arousal and delirium diagnosis: inclusiveness is safer. BMC Med. 12, 141 (2014).

    PubMed Central  Google Scholar 

  199. Cole, M. G., Dendukuri, N., McCusker, J. & Han, L. An empirical study of different diagnostic criteria for delirium among elderly medical inpatients. J. Neuropsychiatry Clin. Neurosci. 15, 200–207 (2003).

    PubMed  Google Scholar 

  200. Laurila, J. V., Pitkala, K. H., Strandberg, T. E. & Tilvis, R. S. The impact of different diagnostic criteria on prevalence rates for delirium. Dement. Geriatr. Cogn. Disord. 16, 156–162 (2003).

    PubMed  Google Scholar 

  201. Trzepacz, P. T. A review of delirium assessment instruments. Gen. Hosp. Psychiatry 16, 397–405 (1994).

    CAS  PubMed  Google Scholar 

  202. Tieges, Z., Evans, J. J., Neufeld, K. J. & MacLullich, A. M. J. The neuropsychology of delirium: advancing the science of delirium assessment. Int. J. Geriatr. Psychiatry 33, 1501–1511 (2018).

    PubMed  Google Scholar 

  203. Network for Investigation of Delirium: Unifying Scientists (NIDUS). Delirium Measurement Info Cards https://deliriumnetwork.org/measurement/delirium-info-cards/ (2020).

  204. van Velthuijsen, E. L. et al. Psychometric properties and feasibility of instruments for the detection of delirium in older hospitalized patients: a systematic review. Int. J. Geriatr. Psychiatry 31, 974–989 (2016).

    PubMed  Google Scholar 

  205. De, J. & Wand, A. P. Delirium screening: a systematic review of delirium screening tools in hospitalized patients. Gerontologist 55, 1079–1099 (2015).

    PubMed  Google Scholar 

  206. Neufeld, K. J. et al. Delirium diagnosis methodology used in research: a survey-based study. Am. J. Geriatr. Psychiatry 22, 1513–1521 (2014).

    PubMed  PubMed Central  Google Scholar 

  207. Inouye, S. K. et al. Clarifying confusion: the confusion assessment method. A new method for detection of delirium. Ann. Intern. Med. 113, 941–948 (1990). This study reports the creation and validation of the CAM; a multitude of CAM-based assessment tools for use in specific patient populations have since been validated and used worldwide.

    CAS  PubMed  Google Scholar 

  208. Shenkin, S. D. et al. Delirium detection in older acute medical inpatients: a multicentre prospective comparative diagnostic test accuracy study of the 4AT and the confusion assessment method. BMC Med. 17, 138 (2019). This STARD-compliant randomized controlled diagnostic trial compared the performance of two of the most widely-used delirium detection tools employed in general settings, the 4AT and the CAM.

    PubMed  PubMed Central  Google Scholar 

  209. Heinrich, T. W., Kato, H., Emanuel, C. & Denson, S. Improving the validity of nurse-based delirium screening: a head-to-head comparison of nursing delirium-screening scale and short confusion assessment method. Psychosomatics 60, 172–178 (2019).

    PubMed  Google Scholar 

  210. Hshieh, T. T., Inouye, S. K. & Oh, E. S. Delirium in the elderly. Clin. Geriatr. Med. 36, 183–199 (2020).

    PubMed  Google Scholar 

  211. Inouye, S. K., Foreman, M. D., Mion, L. C., Katz, K. H. & Cooney, L. M. Jr. Nurses’ recognition of delirium and its symptoms: comparison of nurse and researcher ratings. Arch. Intern. Med. 161, 2467–2473 (2001).

    CAS  PubMed  Google Scholar 

  212. Rohatgi, N. et al. Initiative for prevention and early identification of delirium in medical-surgical units: lessons learned in the past five years. Am. J. Med. 132, 1421–1430.e8 (2019).

    PubMed  Google Scholar 

  213. Reynish, E. L. et al. Epidemiology and outcomes of people with dementia, delirium, and unspecified cognitive impairment in the general hospital: prospective cohort study of 10,014 admissions. BMC Med. 15, 140 (2017).

    PubMed  PubMed Central  Google Scholar 

  214. Marcantonio, E. R. et al. 3D-CAM: derivation and validation of a 3-minute diagnostic interview for CAM-defined delirium: a cross-sectional diagnostic test study. Ann. Intern. Med. 161, 554–561 (2014).

    PubMed  PubMed Central  Google Scholar 

  215. Han, J. H. et al. A quick and easy delirium assessment for nonphysician research personnel. Am. J. Emerg. Med. 34, 1031–1036 (2016).

    PubMed  PubMed Central  Google Scholar 

  216. Bellelli, G. et al. Validation of the 4AT, a new instrument for rapid delirium screening: a study in 234 hospitalised older people. Age Ageing 43, 496–502 (2014).

    PubMed  PubMed Central  Google Scholar 

  217. Tieges, Z. M., et al. Diagnostic accuracy of the 4AT for delirium detection: systematic review and meta-analysis. Preprint at medRxiv https://doi.org/10.1101/2020.06.11.20128280 (2020).

    Article  Google Scholar 

  218. Royal College of Physicians. National hip fracture database annual report September 2018. NHFD https://www.nhfd.co.uk/files/2018ReportFiles/NHFD-2018-Annual-Report-v101.pdf (2018).

  219. Maldonado, J. R. et al. A study of the psychometric properties of the “Stanford Proxy Test for Delirium” (S-PTD): a new screening tool for the detection of delirium. Psychosomatics 61, 116–126 (2020).

    PubMed  Google Scholar 

  220. Ely, E. W. et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond agitation-sedation scale (RASS). JAMA 289, 2983–2991 (2003).

    PubMed  Google Scholar 

  221. Chester, J. G., Beth Harrington, M., Rudolph, J. L. & VA Delirium Working Group. Serial administration of a modified Richmond agitation and sedation scale for delirium screening. J. Hosp. Med. 7, 450–453 (2012).

    PubMed  Google Scholar 

  222. Royal College of Physicians. National Early Warning Score (NEWS) 2. Standardising the assessment of acute-illness severity in the NHS: additional implementation guidance. RCP https://www.rcplondon.ac.uk/file/20716/download (2020).

  223. Voyer, P. et al. Recognizing acute delirium as part of your routine [RADAR]: a validation study. BMC Nurs. 14, 19 (2015).

    PubMed  PubMed Central  Google Scholar 

  224. Detroyer, E. et al. Detection of delirium in palliative care unit patients: a prospective descriptive study of the delirium observation screening scale administered by bedside nurses. Palliat. Med. 28, 79–86 (2014).

    PubMed  Google Scholar 

  225. Gaudreau, J. D., Gagnon, P., Harel, F., Tremblay, A. & Roy, M.-A. Fast, systematic,and continuous delirium assessment in hospitalized patients: the nursing delirium screening scale. J. Pain Symptom Manage. 29, 368–375 (2005).

    PubMed  Google Scholar 

  226. Gélinas, C. et al. Delirium assessment tools for use in critically ill adults: a psychometric analysis and systematic review. Crit. Care Nurse 38, 38–49 (2018).

    PubMed  Google Scholar 

  227. Ely, E. W. et al. Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (CAM-ICU). Crit. Care Med. 29, 1370–1379 (2001).

    CAS  PubMed  Google Scholar 

  228. Gusmao-Flores, D., Salluh, J. I., Chalhub, R. A. & Quarantini, L. C. The confusion assessment method for the intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC) for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies. Crit. Care 16, R115 (2012).

    PubMed  PubMed Central  Google Scholar 

  229. Bergeron, N., Dubois, M.-J., Dumont, M., Dial, S. & Skrobik, Y. Intensive care delirium screening checklist: evaluation of a new screening tool. Intensive Care Med. 27, 859–864 (2001).

    CAS  PubMed  Google Scholar 

  230. Fick, D. M. & Marcantonio, E. R. In response to “Preliminary development of an ultrabrief two-item bedside test for delirium”. J. Hosp. Med. 11, 155 (2016).

    PubMed  Google Scholar 

  231. Lin, H. S. et al. Screening in delirium: a pilot study of two screening tools, the simple query for easy evaluation of consciousness and simple question in delirium. Australas. J. Ageing 34, 259–264 (2015).

    PubMed  Google Scholar 

  232. Trzepacz, P. T. et al. Validation of the delirium rating scale-revised-98: comparison with the delirium rating scale and the cognitive test for delirium. J. Neuropsychiatry Clin. Neurosci. 13, 229–242 (2001).

    CAS  PubMed  Google Scholar 

  233. Adamis, D. et al. Reliability of delirium rating scale (DRS) and delirium rating scale-revised-98 (DRS-R98) using variance-based multivariate modelling. J. Psychiatr. Res. 47, 966–971 (2013).

    PubMed  Google Scholar 

  234. Hart, R. P. et al. Validation of a cognitive test for delirium in medical ICU patients. Psychosomatics 37, 533–546 (1996).

    CAS  PubMed  Google Scholar 

  235. Tieges, Z. et al. A smartphone-based test for the assessment of attention deficits in delirium: A case-control diagnostic test accuracy study in older hospitalised patients. PLoS ONE 15, e0227471 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Tang, E. et al. Development and feasibility of a smartphone-based test for the objective detection and monitoring of attention impairments in delirium in the ICU. J. Crit. Care 48, 104–111 (2018).

    PubMed  Google Scholar 

  237. Jones, R. N. et al. Assessment of instruments for measurement of delirium severity: a systematic review. JAMA Intern. Med. 179, 231–239 (2019).

    PubMed  PubMed Central  Google Scholar 

  238. Breitbart, W. et al. The memorial delirium assessment scale. J. Pain Symptom Manage. 13, 128–137 (1997).

    CAS  PubMed  Google Scholar 

  239. Inouye, S. K. et al. The CAM-S: development and validation of a new scoring system for delirium severity in 2 cohorts. Ann. Intern. Med. 160, 526–533 (2014).

    PubMed  PubMed Central  Google Scholar 

  240. Ely, E. W. et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291, 1753–1762 (2004).

    CAS  PubMed  Google Scholar 

  241. Scottish Intercollegiate Guidelines Network (SIGN). SIGN 157. Risk reduction and management of delirium: a national clinical guideline. SIGN https://www.sign.ac.uk/media/1423/sign157.pdf (2019).

  242. Hijazi, Z., Lange, P., Watson, R. & Maier, A. B. The use of cerebral imaging for investigating delirium aetiology. Eur. J. Intern. Med. 52, 35–39 (2018).

    PubMed  Google Scholar 

  243. Haggstrom, L., Welschinger, R. & Caplan, G. A. Functional neuroimaging offers insights into delirium pathophysiology: a systematic review. Australas. J. Ageing 36, 186–192 (2017).

    PubMed  Google Scholar 

  244. Caplan, G. A., Haggstrom, L. R., Nelson, J. A. & Wegner, E. A. Novel unique pattern of cerebral glucose hypometabolism seen on 2-18F-Fluoro-2-deoxyglucose positron emission tomography in delirium. Alzheimers Dement. 13, P1533 (2017).

    Google Scholar 

  245. Thomas, C. et al. Serum anticholinergic activity and cerebral cholinergic dysfunction: an EEG study in frail elderly with and without delirium. BMC Neurosci. 9, 86 (2008).

    PubMed  PubMed Central  Google Scholar 

  246. Van Der Kooi, A. W. et al. Delirium detection using EEG. Chest 147, 94–101 (2015).

    PubMed  Google Scholar 

  247. Fleischmann, R. et al. Diagnostic performance and utility of quantitative EEG analyses in delirium: confirmatory results from a large retrospective case-control study. Clin. EEG Neurosci. 50, 111–120 (2019).

    PubMed  Google Scholar 

  248. Geriatric Medicine Research Collaborative. Delirium is prevalent in older hospital inpatients and associated with adverse outcomes: results of a prospective multi-centre study on World Delirium Awareness Day. BMC Med. 17, 229 (2019).

    Google Scholar 

  249. Copeland, C. & Barron, D. T. “Delirium: an essential component in undergraduate training?”. Nurse Educ. Today 85, 104211 (2020).

    PubMed  Google Scholar 

  250. Teodorczuk, A., Mukaetova-Ladinska, E., Corbett, S. & Welfare, M. Reconceptualizing models of delirium education: findings of a grounded theory study. Int. Psychogeriatr. 25, 645–655 (2013). Delirium detection, treatment and preventive strategies remain poorly implemented at scale in clinical practice. This study provides novel and crucial insights into the status of delirium in health-care settings, including the necessity for attitudinal change and ownership of responsibility for delirium care in addition to standard educational strategies.

    PubMed  Google Scholar 

  251. Richardson, S. J., Fisher, J. M. & Teodorczuk, A. The future hospital: a blueprint for effective delirium care. Future Hosp. J. 3, 178–181 (2016).

    PubMed  PubMed Central  Google Scholar 

  252. Vardy, E. et al. Use of a digital delirium pathway and quality improvement to improve delirium detection in the emergency department and outcomes in an acute hospital. Age Ageing 49, 672–678 (2020).

    PubMed  Google Scholar 

  253. Dormandy, L., Mufti, S., Higgins, E., Bailey, C. & Dixon, M. Shifting the focus: a QI project to improve the management of delirium in patients with hip fracture. Future Healthc. J. 6, 215–219 (2019).

    PubMed  PubMed Central  Google Scholar 

  254. Inouye, S. K. et al. A multicomponent intervention to prevent delirium in hospitalized older patients. N. Engl. J. Med. 340, 669–676 (1999).

    CAS  PubMed  Google Scholar 

  255. Hshieh, T. T., Yang, T., Gartaganis, S. L., Yue, J. & Inouye, S. K. Hospital elder life program: systematic review and meta-analysis of effectiveness. Am. J. Geriatr. Psychiatry 26, 1015–1033 (2018).

    PubMed  PubMed Central  Google Scholar 

  256. National Institute for Health and Care Excellence (NICE). Delirium: prevention, diagnosis and management. NICE https://www.nice.org.uk/guidance/cg103 (2019).

  257. Marcantonio, E. R., Flacker, J. M., Wright, R. J. & Resnick, N. M. Reducing delirium after hip fracture: a randomized trial. J. Am. Geriatr. Soc. 49, 516–522 (2001).

    CAS  PubMed  Google Scholar 

  258. Ludolph, P. et al. Non-pharmacologic multicomponent interventions preventing delirium in hospitalized people. J. Am. Geriatr. Soc. https://doi.org/10.1111/jgs.16565 (2020).

    Article  PubMed  Google Scholar 

  259. Smith, J. et al. Investigation of ward fidelity to a multicomponent delirium prevention intervention during a multicentre, pragmatic, cluster randomised, controlled feasibility trial. Age Ageing 49, 648–655 (2020).

    PubMed  PubMed Central  Google Scholar 

  260. Woodhouse, R. et al. Interventions for preventing delirium in older people in institutional long-term care. Cochrane Database Syst. Rev. 4, CD009537 (2019).

    PubMed  Google Scholar 

  261. Ely, E. W., Siegel, M. D. & Inouye, S. K. Delirium in the intensive care unit: an under-recognized syndrome of organ dysfunction. Semin. Respir. Crit. Care Med. 22, 115–126 (2001).

    CAS  PubMed  Google Scholar 

  262. Devlin, J. et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit. Care Med. 46, e825–e873 (2018).

    PubMed  Google Scholar 

  263. Schweickert, W. D. et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373, 1874–1882 (2009).

    PubMed  Google Scholar 

  264. Schaller, S. J. et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet 388, 1377–1388 (2016).

    PubMed  Google Scholar 

  265. Marra, A., Ely, E. W., Pandharipande, P. P. & Patel, M. B. The ABCDEF bundle in critical care. Crit. Care Clin. 33, 225–243 (2017).

    PubMed  PubMed Central  Google Scholar 

  266. Pun, B. T. et al. Caring for critically ill patients with the ABCDEF bundle: results of the ICU liberation collaborative in over 15,000 adults. Crit. Care Med. 47, 3–14 (2019).

    PubMed  PubMed Central  Google Scholar 

  267. Trogrlic´, Z. et al. A systematic review of implementation strategies for assessment, prevention, and management of ICU delirium and their effect on clinical outcomes. Crit. Care 19, 157 (2015).

    PubMed  PubMed Central  Google Scholar 

  268. Oh, E. S. et al. Antipsychotics for preventing delirium in hospitalized adults: a systematic review. Ann. Intern. Med. 171, 474–484 (2019).

    PubMed  Google Scholar 

  269. Asleson, D. R. & Chiu, A. W. Melatonin for delirium prevention in acute medically ill, and perioperative geriatric patients. Aging Med. 3, 132–137 (2020).

    Google Scholar 

  270. Siddiqi, N. et al. Interventions for preventing delirium in hospitalised non-ICU patients. Cochrane Database Syst. Rev. 3, CD005563 (2016). This Cochrane review examined the evidence base on delirium prevention and concluded that moderate-to-strong evidence exists that such interventions are effective and should be implemented.

    PubMed  Google Scholar 

  271. Pitkala, K. H., Laurila, J. V., Strandberg, T. E. & Tilvis, R. S. Multicomponent geriatric intervention for elderly inpatients with delirium: a randomized, controlled trial. J. Gerontol. A Biol. Sci. Med. Sci 61, 176–181 (2006).

    PubMed  Google Scholar 

  272. Bauernfreund, Y., Butler, M., Ragavan, S. & Sampson, E. L. TIME to think about delirium: improving detection and management on the acute medical unit. BMJ Open Qual. 7, e000200 (2018).

    PubMed  PubMed Central  Google Scholar 

  273. Lee, S. Y. et al. Developing delirium best practice: a systematic review of education interventions for healthcare professionals working in inpatient settings. Eur. Geriatr. Med. 11, 1–32 (2020).

    CAS  PubMed  Google Scholar 

  274. Burry, L. et al. Antipsychotics for treatment of delirium in hospitalised non-ICU patients. Cochrane Database Syst. Rev. 6, CD005594 (2018).

    PubMed  Google Scholar 

  275. Neufeld, K. J., Yue, J., Robinson, T. N., Inouye, S. K. & Needham, D. M. Antipsychotic medication for prevention and treatment of delirium in hospitalized adults: a systematic review and meta-analysis. J. Am. Geriatrics Soc. 64, 705–714 (2016).

    Google Scholar 

  276. Finucane, A. M. et al. Drug therapy for delirium in terminally ill adults. Cochrane Database Syst. Rev. 1, CD004770 (2020).

    PubMed  Google Scholar 

  277. Tampi, R. R., Tampi, D. J. & Ghori, A. K. Acetylcholinesterase inhibitors for delirium in older adults. Am. J. Alzheimers Dis. Other Demen. 31, 305–310 (2016).

    PubMed  Google Scholar 

  278. Yu, A. et al. Cholinesterase inhibitors for the treatment of delirium in non-ICU settings. Cochrane Database Syst. Rev. 6, CD012494 (2018).

    PubMed  Google Scholar 

  279. Hov, K. R. et al. The Oslo study of clonidine in elderly patients with delirium; LUCID: a randomised placebo-controlled trial. Int. J. Geriatr. Psychiatry 34, 974–981 (2019).

    PubMed  Google Scholar 

  280. Carrasco, G. et al. Dexmedetomidine for the treatment of hyperactive delirium refractory to haloperidol in nonintubated ICU patients: a nonrandomized controlled trial. Crit. Care Med. 44, 1295–1306 (2016).

    CAS  PubMed  Google Scholar 

  281. Patel, R. P. et al. Delirium and sedation in the intensive care unit: survey of behaviors and attitudes of 1384 healthcare professionals. Crit. Care Med. 37, 825–832 (2009).

    PubMed  PubMed Central  Google Scholar 

  282. Girard, T. D. et al. Feasibility, efficacy, and safety of antipsychotics for intensive care unit delirium: the MIND randomized, placebo-controlled trial. Crit. Care Med. 38, 428–437 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  283. Nikooie, R. et al. Antipsychotics for treating delirium in hospitalized adults: a systematic review. Ann. Intern. Med. 171, 485–495 (2019). This systematic review concluded that there is insufficient evidence supporting the routine use of antipsychotic agents for the treatment of delirium.

    PubMed  Google Scholar 

  284. Devlin, J. W. et al. Efficacy and safety of quetiapine in critically ill patients with delirium: a prospective, multicenter, randomized, double-blind, placebo-controlled pilot study. Crit. Care Med. 38, 419–427 (2010).

    CAS  PubMed  Google Scholar 

  285. Pandharipande, P. P. et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients. JAMA 298, 2644–2653 (2007).

    CAS  PubMed  Google Scholar 

  286. Riker, R. R. et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial. JAMA 301, 489–499 (2009).

    CAS  PubMed  Google Scholar 

  287. Shehabi, Y. et al. Early sedation with dexmedetomidine in critically ill ventilated patients. N. Engl. J. Med. 380, 2506–2517 (2019). The SPICE-III trial comparing dexmedetomidine sedation with usual-care regimens (propofol, midazolam or other sedatives) in 4,000 critically ill patients ventilated >24 hours; death rate at 90 days was similar for both treatments with more days alive, free of delirium and coma, and ventilator free, with more adverse events reported in dexmedetomidine-treated patients.

    CAS  PubMed  Google Scholar 

  288. Reade, M. C. et al. Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trial. JAMA 315, 1460–1468 (2016).

    CAS  PubMed  Google Scholar 

  289. Balas, M. C. et al. Effectiveness and safety of the awakening and breathing coordination, delirium monitoring/management, and early exercise/mobility bundle. Crit. Care Med. 42, 1024–1036 (2014).

    PubMed  PubMed Central  Google Scholar 

  290. Barnes-Daly, M. A., Phillips, G. & Ely, E. W. Improving hospital survival and reducing brain dysfunction at seven california community hospitals: implementing PAD guidelines via the ABCDEF bundle in 6,064 patients. Crit. Care Med. 45, 171–178 (2017).

    PubMed  Google Scholar 

  291. O’Neal, H. R. Jr. Lin, J. C., Devlin, J. W. & Ely, E. W. Coronavirus disease 2019: harnessing healthy fear via knowledge, attitudes, and behavior. Crit. Care Explor. 2, e0149 (2020).

    PubMed  PubMed Central  Google Scholar 

  292. Devlin, J. W. et al. Strategies to optimize ICU liberation (A to F) bundle performance in critically ill adults with coronavirus disease 2019. Crit. Care Explor. 2, e0139 (2020).

    PubMed  PubMed Central  Google Scholar 

  293. Helms, J. et al. Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 382, 2268–2270 (2020).

    PubMed  Google Scholar 

  294. Kotfis, K. et al. COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Crit. Care 24, 176 (2020).

    PubMed  PubMed Central  Google Scholar 

  295. O’Hanlon, S. & Inouye, S. K. Delirium: a missing piece in the COVID-19 pandemic puzzle. Age Ageing 49, 497–498 (2020).

    PubMed  Google Scholar 

  296. LaHue, S. C. et al. Collaborative delirium prevention in the age of COVID-19. J. Am. Geriatr. Soc. 68, 947–949 (2020).

    PubMed  PubMed Central  Google Scholar 

  297. Sillner, A. Y., Holle, C. L. & Rudolph, J. L. The overlap between falls and delirium in hospitalized older adults: a systematic review. Clin. Geriatr. Med. 35, 221–236 (2019).

    PubMed  Google Scholar 

  298. Dharmarajan, K., Swami, S., Gou, R. Y., Jones, R. N. & Inouye, S. K. Pathway from delirium to death: potential in-hospital mediators of excess mortality. J. Am. Geriatr. Soc. 65, 1026–1033 (2017).

    PubMed  Google Scholar 

  299. Israni, J., Lesser, A., Kent, T. & Ko, K. Delirium as a predictor of mortality in US Medicare beneficiaries discharged from the emergency department: a national claims-level analysis up to 12 months. BMJ Open 8, e021258 (2018).

    PubMed  PubMed Central  Google Scholar 

  300. Pisani, M. A. et al. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am. J. Respir. Crit. Care Med. 180, 1092–1097 (2009).

    PubMed  PubMed Central  Google Scholar 

  301. Altman, M. T. et al. Association of intensive care unit delirium with sleep disturbance and functional disability after critical illness: an observational cohort study. Ann. Intensive Care 8, 63 (2018).

    PubMed  PubMed Central  Google Scholar 

  302. Todd, A. et al. Reduced level of arousal and increased mortality in adult acute medical admissions: a systematic review and meta-analysis. BMC Geriatr. 17, 283 (2017).

    PubMed  PubMed Central  Google Scholar 

  303. Hayhurst, C. J. et al. Association of hypoactive and hyperactive delirium with cognitive function after critical illness. Crit. Care Med. 48, e480–e488 (2020).

    PubMed  PubMed Central  Google Scholar 

  304. Herridge, M. S. et al. Functional disability 5 years after acute respiratory distress syndrome. N. Engl. J. Med. 364, 1293–1304 (2011).

    CAS  PubMed  Google Scholar 

  305. Pitkala, K. H. et al. Multicomponent geriatric intervention for elderly inpatients with delirium: effects on costs and health-related quality of life. J. Gerontol. A Biol. Sci. Med. Sci. 63, 56–61 (2008).

    PubMed  Google Scholar 

  306. Hshieh, T. T. et al. Trajectory of functional recovery after postoperative delirium in elective surgery. Ann. Surg. 265, 647–653 (2017).

    PubMed  Google Scholar 

  307. Van Rompaey, B. et al. Long term outcome after delirium in the intensive care unit. J. Clin. Nurs. 18, 3349–3357 (2009).

    PubMed  Google Scholar 

  308. Abelha, F. J. et al. Outcome and quality of life in patients with postoperative delirium during an ICU stay following major surgery. Crit. Care 17, R257 (2013).

    PubMed  PubMed Central  Google Scholar 

  309. Fann, J. R., Alfano, C. M., Roth-Roemer, S., Katon, W. J. & Syrjala, K. L. Impact of delirium on cognition, distress, and health-related quality of life after hematopoietic stem-cell transplantation. J. Clin. Oncol. 25, 1223–1231 (2007).

    PubMed  Google Scholar 

  310. Naidech, A. M. et al. Intracerebral hemorrhage and delirium symptoms. Length of stay, function, and quality of life in a 114-patient cohort. Am. J. Respir. Crit. Care Med. 188, 1331–1337 (2013).

    PubMed  PubMed Central  Google Scholar 

  311. van den Boogaard, M. et al. Delirium in critically ill patients: impact on long-term health-related quality of life and cognitive functioning. Crit. Care Med. 40, 112–118 (2012).

    PubMed  Google Scholar 

  312. Wolters, A. E. et al. Long-term outcome of delirium during intensive care unit stay in survivors of critical illness: a prospective cohort study. Crit. Care 18, R125 (2014).

    PubMed  PubMed Central  Google Scholar 

  313. Gill, T. M. & Feinstein, A. R. A critical appraisal of the quality of quality-of-life measurements. JAMA 272, 619–626 (1994).

    CAS  PubMed  Google Scholar 

  314. Bergner, M. Quality of life, health status, and clinical research. Med. Care 27, S148–S156 (1989).

    CAS  PubMed  Google Scholar 

  315. Cella, D. F. Quality of life: concepts and definition. J. Pain Symptom Manage. 9, 186–192 (1994).

    CAS  PubMed  Google Scholar 

  316. Ware, J. E. Jr. & Sherbourne, C. D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 30, 473–483 (1992).

    PubMed  Google Scholar 

  317. Ware, J. E. SF-36 Physical and Mental Health Summary Scales: A User’s Manual Vol. 5 (Health Assessment Lab, New England Medical Center, 1994).

  318. Ware, J. Jr. Kosinski, M. & Keller, S. D. A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med. Care 34, 220–233 (1996).

    PubMed  Google Scholar 

  319. Ware, J. E., Kosinski, M. & Keller, S. D. SF-12: how to Score the SF-12 Physical and Mental Health Summary Scales 3rd edn Vol. 3 (Qualitymetric, 1998).

  320. Yang, F., Dawes, P., Leroi, I. & Gannon, B. Measurement tools of resource use and quality of life in clinical trials for dementia or cognitive impairment interventions: a systematically conducted narrative review. Int. J. Geriatr. Psychiatry 33, e166–e176 (2018).

    PubMed  Google Scholar 

  321. Jackson, J. C., Mitchell, N. & Hopkins, R. O. Cognitive functioning, mental health, and quality of life in ICU survivors: an overview. Psychiatr. Clin. North. Am. 38, 91–104 (2015).

    PubMed  Google Scholar 

  322. Bickel, H., Gradinger, R., Kochs, E. & Forstl, H. High risk of cognitive and functional decline after postoperative delirium. A three-year prospective study. Dement. Geriatr. Cogn. Disord. 26, 26–31 (2008).

    PubMed  Google Scholar 

  323. Fong, T. G. et al. Delirium accelerates cognitive decline in Alzheimer disease. Neurology 72, 1570–1575 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Fong, T. G. et al. Adverse outcomes after hospitalization and delirium in persons with Alzheimer disease. Ann. Intern. Med. 156, 848–856, W296 (2012).

    PubMed  PubMed Central  Google Scholar 

  325. Saczynski, J. S. et al. Cognitive trajectories after postoperative delirium. N. Engl. J. Med. 367, 30–39 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Hopkins, R. O. et al. Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 160, 50–56 (1999).

    CAS  PubMed  Google Scholar 

  327. Girard, T. D. et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit. Care Med. 38, 1513–1520 (2010).

    PubMed  PubMed Central  Google Scholar 

  328. Rothenhausler, H. B., Ehrentraut, S., Stoll, C., Schelling, G. & Kapfhammer, H. P. The relationship between cognitive performance and employment and health status in long-term survivors of the acute respiratory distress syndrome: results of an exploratory study. Gen. Hosp. Psychiatry 23, 90–96 (2001).

    CAS  PubMed  Google Scholar 

  329. Mikkelsen, M. E. et al. Cognitive, mood and quality of life impairments in a select population of ARDS survivors. Respirology 14, 76–82 (2009).

    PubMed  Google Scholar 

  330. Hopkins, R. O. et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 171, 340–347 (2005).

    PubMed  Google Scholar 

  331. Phillips-Bute, B. et al. Association of neurocognitive function and quality of life 1 year after coronary artery bypass graft (CABG) surgery. Psychosom. Med. 68, 369–375 (2006).

    PubMed  Google Scholar 

  332. Lewis, M. B. & Howdle, P. D. Cognitive dysfunction and health-related quality of life in long-term liver transplant survivors. Liver Transplant. 9, 1145–1148 (2003).

    Google Scholar 

  333. Norman, B. C. et al. Employment outcomes after critical illness: an analysis of the bringing to light the risk factors and incidence of neuropsychological dysfunction in ICU survivors cohort. Crit. Care Med. 44, 2003–2009 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  334. Myhren, H., Ekeberg, O. & Stokland, O. Health-related quality of life and return to work after critical illness in general intensive care unit patients: a 1-year follow-up study. Crit. Care Med. 38, 1554–1561 (2010).

    PubMed  Google Scholar 

  335. Girard, T. D. et al. Risk factors for posttraumatic stress disorder symptoms following critical illness requiring mechanical ventilation: a prospective cohort study. Crit. Care 11, R28 (2007).

    PubMed  PubMed Central  Google Scholar 

  336. Jackson, J. C. et al. Depression, post-traumatic stress disorder, and functional disability in survivors of critical illness in the BRAIN-ICU study: a longitudinal cohort study. Lancet Respir. Med. 2, 369–379 (2014).

    PubMed  PubMed Central  Google Scholar 

  337. Hopkins, R. O., Weaver, L. K., Chan, K. J. & Orme, J. F. Jr. Quality of life, emotional, and cognitive function following acute respiratory distress syndrome. J. Int. Neuropsychol. Soc. 10, 1005–1017 (2004).

    PubMed  Google Scholar 

  338. Weinert, C. R., Gross, C. R., Kangas, J. R., Bury, C. L. & Marinelli, W. A. Health-related quality of life after acute lung injury. Am. J. Respir. Crit. Care Med. 156, 1120–1128 (1997).

    CAS  PubMed  Google Scholar 

  339. Kapfhammer, H. P., Rothenhausler, H. B., Krauseneck, T., Stoll, C. & Schelling, G. Posttraumatic stress disorder and health-related quality of life in long-term survivors of acute respiratory distress syndrome. Am. J. Psychiatry 161, 45–52 (2004).

    PubMed  Google Scholar 

  340. Duggan, M. C. et al. The relationship between executive dysfunction, depression, and mental health-related quality of life in survivors of critical illness: results from the BRAIN-ICU investigation. J. Crit. Care 37, 72–79 (2017).

    PubMed  Google Scholar 

  341. Wilson, I. B. & Cleary, P. D. Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. JAMA 273, 59–65 (1995).

    CAS  PubMed  Google Scholar 

  342. Dinglas, V. D. et al. Perspectives of survivors, families and researchers on key outcomes for research in acute respiratory failure. Thorax 73, 7–12 (2018).

    PubMed  Google Scholar 

  343. O’Keeffe, S. & Lavan, J. The prognostic significance of delirium in older hospital patients. J. Am. Geriatr. Soc. 45, 174–178 (1997).

    PubMed  Google Scholar 

  344. Brummel, N. E. et al. Delirium in the ICU and subsequent long-term disability among survivors of mechanical ventilation. Crit. Care Med. 42, 369–377 (2014).

    PubMed  PubMed Central  Google Scholar 

  345. Oldham, M. A., Flaherty, J. H. & Maldonado, J. R. Refining delirium: a transtheoretical model of delirium disorder with preliminary neurophysiologic subtypes. Am. J. Geriatr. Psychiatry 26, 913–924 (2018).

    PubMed  Google Scholar 

  346. Meagher, D. J. et al. A longitudinal study of motor subtypes in delirium: relationship with other phenomenology, etiology, medication exposure and prognosis. J. Psychosom. Res. 71, 395–403 (2011).

    PubMed  Google Scholar 

  347. Gual, N. et al. Delirium subtypes and associated characteristics in older patients with exacerbation of chronic conditions. Am. J. Geriatr. Psychiatry 26, 1204–1212 (2018).

    PubMed  Google Scholar 

  348. Kiely, D. K., Jones, R. N., Bergmann, M. A. & Marcantonio, E. R. Association between psychomotor activity delirium subtypes and mortality among newly admitted post-acute facility patients. J. Gerontol. A Biol. Sci. Med. Sci. 62, 174–179 (2007).

    PubMed  Google Scholar 

  349. Robinson, T. N., Raeburn, C. D., Tran, Z. V., Brenner, L. A. & Moss, M. Motor subtypes of postoperative delirium in older adults. Arch. Surg. 146, 295–300 (2011).

    PubMed  PubMed Central  Google Scholar 

  350. Bellelli, G., Speciale, S., Barisione, E. & Trabucchi, M. Delirium subtypes and 1-year mortality among elderly patients discharged from a post-acute rehabilitation facility. J. Gerontol. A Biol. Sci. Med. Sci. 62, 1182–1183 (2007).

    PubMed  Google Scholar 

  351. Peritogiannis, V., Bolosi, M., Lixouriotis, C. & Rizos, D. V. Recent insights on prevalence and corelations of hypoactive delirium. Behav. Neurol. 2015, 416792 (2015).

    PubMed  PubMed Central  Google Scholar 

  352. Yang, F. M. et al. Phenomenological subtypes of delirium in older persons: patterns, prevalence, and prognosis. Psychosomatics 50, 248–254 (2009).

    PubMed  PubMed Central  Google Scholar 

  353. Mudge, A. M. et al. CHERISH (collaboration for hospitalised elders reducing the impact of stays in hospital): protocol for a multi-site improvement program to reduce geriatric syndromes in older inpatients. BMC Geriatr. 17, 11 (2017).

    PubMed  PubMed Central  Google Scholar 

  354. Saper, C. B., Scammell, T. E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263 (2005).

    CAS  PubMed  Google Scholar 

  355. Halaas, N. B. et al. Neurofilament light in serum and cerebrospinal fluid of hip fracture patients with delirium. Dement. Geriatr. Cogn. Disord. 46, 346–357 (2018).

    PubMed  Google Scholar 

  356. Idland, A. V. et al. CSF neurofilament light levels predict hippocampal atrophy in cognitively healthy older adults. Neurobiol. Aging 49, 138–144 (2017).

    CAS  PubMed  Google Scholar 

  357. Casey, C. P. et al. Postoperative delirium is associated with increased plasma neurofilament light. Brain 143, 47–54 (2019).

    PubMed Central  Google Scholar 

  358. Semmler, A. et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J. Neurol. Neurosurg. Psychiatry 84, 62–69 (2013).

    PubMed  Google Scholar 

  359. Torvell, M. et al. A single systemic inflammatory insult causes acute motor deficits and accelerates disease progression in a mouse model of human tauopathy. Alzheimers Dement. 5, 579–591 (2019).

    Google Scholar 

Download references

Acknowledgements

J.E.W. acknowledges salary support from the Vanderbilt Clinical and Translational Research Scholars program (1KL2TR002245) and from NIH grants (GM120484 and HL111111). M.F.M. acknowledges training and salary support from the Vanderbilt Clinical and Translational Training Program in Pulmonary Medicine (NIH 5T32HL087738) and research funding from the Vanderbilt University Medical Center Arthur and Lisa Wheeler Critical Care Research Fund. C.C. acknowledges research grants from the NIH (AG050626), WT SRF090907 and ARUK. Y.S. acknowledges research grants from the National Health and Medical Research Council of Australia. T.D.G. acknowledges support from NIH grants (HL135144 and HL143507). A.M.J.M. acknowledges funding from the Medical Research Council and the National Institute for Health Research. E.W.E. discloses additional funding for his time from NIH grant AG027472 and salary support from the Tennessee Valley Healthcare System Geriatric Research Education and Clinical Center (GRECC).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.E.W., A.J.C.S., A.M.J.M. and E.W.E.); Epidemiology (J.E.W., A.M.J.M. and E.W.E.); Mechanisms/pathophysiology (C.C. and A.J.C.S.); Diagnosis, screening and prevention (J.E.W., Y.S., A.M.J.M. and E.W.E.); Management (J.E.W., T.D.G., A.M.J.M. and E.W.E.); Quality of life (J.E.W., M.F.M. and E.W.E.); Outlook (J.E.W., A.M.J.M. and E.W.E.); Overview of Primer (J.E.W.). All authors listed above have contributed substantially to the conception or design of the work or to the acquisition, analysis, or interpretation of data for the work and have participated in drafting the work or revising it critically for important intellectual content. Additionally, each author has given their approval to the final version of the manuscript and has agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Jo Ellen Wilson.

Ethics declarations

Competing interests

C.C. acknowledges a current research collaboration with IONIS pharmaceuticals. Y.S. acknowledges unrestricted research grants from Pfizer, Orion Pharma, and Brainstem Biometrics and travel reimbursements and speaker honorarium for educational non-promotional symposia from Pfizer and Orion Pharma. A.J.C.S. is an adviser for Prolira, a start-up company that develops an EEG-based delirium monitor; any (future) profits from EEG-based delirium monitoring will be used for future scientific research only. A.M.J.M. is the main author of the 4AT delirium assessment tool (this tool is free to use and there is no financial interest) and holds patents for computerized delirium assessment tools (any future profits will be used for future scientific research only). E.W.E. received honoraria from Orion and Hospira for continuing medical education activity but does not hold stock or consultant relationships with these companies. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks K. Neufeld, Y. Skrobik, M. Agar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Network for Investigation of Delirium: Unifying Scientists (NIDUS): https://deliriumnetwork.org/

Preserving your brain health during illness or surgery: GCBH recommendations to prevent and treat delirium: https://www.aarp.org/health/brain-health/global-council-on-brain-health/delirium/

The Critical Illness, Brain Dysfunction and Survivorship (CIBS) Center: https://www.icudelirium.org/cibs-center/overview

The Hospital Elder Life Program (HELP): https://www.hospitalelderlifeprogram.org

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, J.E., Mart, M.F., Cunningham, C. et al. Delirium. Nat Rev Dis Primers 6, 90 (2020). https://doi.org/10.1038/s41572-020-00223-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-00223-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing