Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Podocytopathies

Abstract

Podocytopathies are kidney diseases in which direct or indirect podocyte injury drives proteinuria or nephrotic syndrome. In children and young adults, genetic variants in >50 podocyte-expressed genes, syndromal non-podocyte-specific genes and phenocopies with other underlying genetic abnormalities cause podocytopathies associated with steroid-resistant nephrotic syndrome or severe proteinuria. A variety of genetic variants likely contribute to disease development. Among genes with non-Mendelian inheritance, variants in APOL1 have the largest effect size. In addition to genetic variants, environmental triggers such as immune-related, infection-related, toxic and haemodynamic factors and obesity are also important causes of podocyte injury and frequently combine to cause various degrees of proteinuria in children and adults. Typical manifestations on kidney biopsy are minimal change lesions and focal segmental glomerulosclerosis lesions. Standard treatment for primary podocytopathies manifesting with focal segmental glomerulosclerosis lesions includes glucocorticoids and other immunosuppressive drugs; individuals not responding with a resolution of proteinuria have a poor renal prognosis. Renin–angiotensin system antagonists help to control proteinuria and slow the progression of fibrosis. Symptomatic management may include the use of diuretics, statins, infection prophylaxis and anticoagulation. This Primer discusses a shift in paradigm from patient stratification based on kidney biopsy findings towards personalized management based on clinical, morphological and genetic data as well as pathophysiological understanding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Worldwide prevalence of podocytopathies.
Fig. 2: Structure of the nephron, the glomerulus and the filtration barrier.
Fig. 3: Mechanical podocyte stress.
Fig. 4: Consequences of podocyte loss.
Fig. 5: Monogenetic diseases and SRNS.
Fig. 6: Causes and risk factors underlying podocytopathies across the lifespan.
Fig. 7: Pathology of podocytopathies.
Fig. 8: Diagnosis and management of paediatric patients with proteinuria or nephrotic syndrome.
Fig. 9: Diagnosis and management of adults with proteinuria or nephrotic syndrome.

Similar content being viewed by others

References

  1. Pallet, N. et al. Proteinuria typing: how, why and for whom? Ann. Biol. Clin. 77, 13–25 (2019).

    Google Scholar 

  2. Sethi, S., Glassock, R. J. & Fervenza, F. C. Focal segmental glomerulosclerosis: towards a better understanding for the practicing nephrologist. Nephrol. Dial. Transpl. 30, 375–384 (2015).

    CAS  Google Scholar 

  3. Muller-Deile, J., Schenk, H. & Schiffer, M. Minimal change disease and focal segmental glomerulosclerosis. Internist 60, 450–457 (2019).

    CAS  PubMed  Google Scholar 

  4. Rosenberg, A. Z. & Kopp, J. B. Focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 12, 502–517 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Barisoni, L., Schnaper, H. W. & Kopp, J. B. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin. J. Am. Soc. Nephrol. 2, 529–542 (2007). This paper is the first proposal for the reclassification of podocytopathies.

    PubMed  Google Scholar 

  6. Vivarelli, M., Massella, L., Ruggiero, B. & Emma, F. Minimal change disease. Clin. J. Am. Soc. Nephrol. 12, 332–345 (2017).

    CAS  PubMed  Google Scholar 

  7. Wiggins, R. C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    CAS  PubMed  Google Scholar 

  8. Sim, J. J. et al. Distribution of biopsy-proven presumed primary glomerulonephropathies in 2000-2011 among a racially and ethnically diverse US population. Am. J. Kidney Dis. 68, 533–544 (2016).

    PubMed  Google Scholar 

  9. Pesce, F. & Schena, F. P. Worldwide distribution of glomerular diseases: the role of renal biopsy registries. Nephrol. Dial. Transpl. 25, 334–336 (2010).

    Google Scholar 

  10. Qiu, C. et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 24, 1721–1731 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gbadegesin, R. A. et al. HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1701–1710 (2015).

    CAS  PubMed  Google Scholar 

  12. Debiec, H. et al. Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. 29, 2000–2013 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dufek, S. et al. Genetic identification of two novel loci associated with steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. 30, 1375–1384 (2019).

    PubMed  PubMed Central  Google Scholar 

  14. Jia, X. et al. Strong association of the HLA-DR/DQ locus with childhood steroid-sensitive nephrotic syndrome in the Japanese population. J. Am. Soc. Nephrol. 29, 2189–2199 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Parsa, A. et al. APOL1 risk variants, race, and progression of chronic kidney disease. N. Engl. J. Med. 369, 2183–2196 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tzur, S. et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum. Genet. 128, 345–350 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Siemens, T. A., Riella, M. C., Moraes, T. P. & Riella, C. V. APOL1 risk variants and kidney disease: what we know so far. J. Bras. Nefrol. 40, 388–402 (2018).

    PubMed  PubMed Central  Google Scholar 

  19. Abd ElHafeez, S. et al. Prevalence and burden of chronic kidney disease among the general population and high-risk groups in Africa: a systematic review. BMJ Open 8, e015069 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. Tedla, F. M. & Yap, E. Apolipoprotein L1 and kidney transplantation. Curr. Opin. Organ. Transpl. 24, 97–102 (2019).

    CAS  Google Scholar 

  21. Beckerman, P. & Susztak, K. APOL1: the balance imposed by infection, selection, and kidney disease. Trends Mol. Med. 24, 682–695 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Beckerman, P. et al. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat. Med. 23, 429–438 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fogo, A. et al. Accuracy of the diagnosis of hypertensive nephrosclerosis in African Americans: a report from the African American Study of Kidney Disease (AASK) Trial. AASK Pilot Study Investigators. Kidney Int. 51, 244–252 (1997).

    CAS  PubMed  Google Scholar 

  24. Hodgin, J. B. et al. Glomerular aging and focal global glomerulosclerosis: a podometric perspective. J. Am. Soc. Nephrol. 26, 3162–3178 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lasagni, L., Lazzeri, E., Shankland, S. J., Anders, H. J. & Romagnani, P. Podocyte mitosis - a catastrophe. Curr. Mol. Med. 13, 13–23 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Freedman, B. I. & Cohen, A. H. Hypertension-attributed nephropathy: what’s in a name? Nat. Rev. Nephrol. 12, 27–36 (2016). An extensive critical reassessment of the role of APOL1 not only in FSGS but also in hypertension-attributed nephropathy.

    CAS  PubMed  Google Scholar 

  27. Bick, A. G. et al. Association of APOL1 risk alleles with cardiovascular disease in blacks in the Million Veteran Program. Circulation 140, 1031–1040 (2019).

    CAS  PubMed  Google Scholar 

  28. Burton, J. O. et al. Association of anthropometric obesity measures with chronic kidney disease risk in a non-diabetic patient population. Nephrol. Dial. Transpl. 27, 1860–1866 (2012).

    Google Scholar 

  29. Praga, M. et al. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol. Dial. Transpl. 16, 1790–1798 (2001).

    CAS  Google Scholar 

  30. Xu, T., Sheng, Z. & Yao, L. Obesity-related glomerulopathy: pathogenesis, pathologic, clinical characteristics and treatment. Front. Med. 11, 340–348 (2017).

    PubMed  Google Scholar 

  31. Kriz, W. & Lemley, K. V. Potential relevance of shear stress for slit diaphragm and podocyte function. Kidney Int. 91, 1283–1286 (2017).

    PubMed  Google Scholar 

  32. D’Agati, V. D. et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 12, 453–471 (2016).

    CAS  PubMed  Google Scholar 

  33. Tonneijck, L. et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol. 28, 1023–1039 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vallon, V. & Thomson, S. C. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat. Rev. Nephrol. https://doi.org/10.1038/s41581-020-0256-y (2020).

    Article  PubMed  Google Scholar 

  35. Novick, A. C., Gephardt, G., Guz, B., Steinmuller, D. & Tubbs, R. R. Long-term follow-up after partial removal of a solitary kidney. N. Engl. J. Med. 325, 1058–1062 (1991).

    CAS  PubMed  Google Scholar 

  36. Argueso, L. R. et al. Prognosis of patients with unilateral renal agenesis. Pediatr. Nephrol. 6, 412–416 (1992).

    CAS  PubMed  Google Scholar 

  37. Luyckx, V. A. et al. A developmental approach to the prevention of hypertension and kidney disease: a report from the Low Birth Weight and Nephron Number Working Group. Lancet 390, 424–428 (2017). A position paper that supports the essential role of nephron mass in determining the risk for FSGS and CKD.

    PubMed  PubMed Central  Google Scholar 

  38. Aygun, B., Mortier, N. A., Smeltzer, M. P., Hankins, J. S. & Ware, R. E. Glomerular hyperfiltration and albuminuria in children with sickle cell anemia. Pediatr. Nephrol. 26, 1285–1290 (2011).

    PubMed  PubMed Central  Google Scholar 

  39. Chen, Y. T., Coleman, R. A., Scheinman, J. I., Kolbeck, P. C. & Sidbury, J. B. Renal disease in type I glycogen storage disease. N. Engl. J. Med. 318, 7–11 (1988).

    CAS  PubMed  Google Scholar 

  40. Morgan, C., Al-Aklabi, M. & Garcia Guerra, G. Chronic kidney disease in congenital heart disease patients: a narrative review of evidence. Can. J. Kidney Health Dis. 2, 27 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Schwimmer, J. A. et al. Secondary focal segmental glomerulosclerosis in non-obese patients with increased muscle mass. Clin. Nephrol. 60, 233–241 (2003).

    CAS  PubMed  Google Scholar 

  42. Mundel, P. & Shankland, S. J. Podocyte biology and response to injury. J. Am. Soc. Nephrol. 13, 3005–3015 (2002).

    PubMed  Google Scholar 

  43. Falkenberg, C. V. et al. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability. PLoS Comput. Biol. 13, e1005433 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Lin, J. S. & Susztak, K. Podocytes: the weakest link in diabetic kidney disease? Curr. Diab Rep. 16, 45 (2016).

    PubMed  PubMed Central  Google Scholar 

  45. Susztak, K., Raff, A. C., Schiffer, M. & Bottinger, E. P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55, 225–233 (2006).

    CAS  Google Scholar 

  46. Kriz, W. & Lemley, K. V. Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatr. Nephrol. 32, 405–417 (2017).

    PubMed  Google Scholar 

  47. Endlich, K., Kliewe, F. & Endlich, N. Stressed podocytes-mechanical forces, sensors, signaling and response. Pflug. Arch. 469, 937–949 (2017).

    CAS  Google Scholar 

  48. Sweetwyne, M. T. et al. Notch1 and Notch2 in podocytes play differential roles during diabetic nephropathy development. Diabetes 64, 4099–4111 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jefferson, J. A. & Shankland, S. J. The pathogenesis of focal segmental glomerulosclerosis. Adv. Chronic Kidney Dis. 21, 408–416 (2014).

    PubMed  PubMed Central  Google Scholar 

  50. De Vriese, A. S., Sethi, S., Nath, K. A., Glassock, R. J. & Fervenza, F. C. Differentiating primary, genetic, and secondary FSGS in adults: a clinicopathologic approach. J. Am. Soc. Nephrol. 29, 759–774 (2018). A critical reappraisal of diagnostic criteria for the recognition of many forms of podocytopathies.

    PubMed  PubMed Central  Google Scholar 

  51. Nishizono, R. et al. FSGS as an adaptive response to growth-induced podocyte stress. J. Am. Soc. Nephrol. 28, 2931–2945 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ronconi, E. et al. Regeneration of glomerular podocytes by human renal progenitors. J. Am. Soc. Nephrol. 20, 322–332 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Romoli, S. et al. CXCL12 blockade preferentially regenerates lost podocytes in cortical nephrons by targeting an intrinsic podocyte-progenitor feedback mechanism. Kidney Int. 94, 1111–1126 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaverina, N. V. et al. Dual lineage tracing shows that glomerular parietal epithelial cells can transdifferentiate toward the adult podocyte fate. Kidney Int. 96, 597–611 (2019).

    CAS  PubMed  Google Scholar 

  55. Eng, D. G. et al. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int. 88, 999–1012 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dai, Y. et al. Retinoic acid improves nephrotoxic serum-induced glomerulonephritis through activation of podocyte retinoic acid receptor alpha. Kidney Int. 92, 1444–1457 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, J. et al. Retinoids augment the expression of podocyte proteins by glomerular parietal epithelial cells in experimental glomerular disease. Nephron Exp. Nephrol. 121, e23–e37 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Peired, A. et al. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J. Am. Soc. Nephrol. 24, 1756–1768 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumar, V. & Singhal, P. C. APOL1 and kidney cell function. Am. J. Physiol. Renal Physiol. 317, F463–F477 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Melica, M. E. et al. Substrate stiffness modulates renal progenitor cell properties via a ROCK-mediated mechanotransduction mechanism. Cells 8, 1561 (2019).

    CAS  PubMed Central  Google Scholar 

  61. Niranjan, T. et al. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 14, 290–298 (2008).

    CAS  PubMed  Google Scholar 

  62. Lasagni, L. et al. Podocyte regeneration driven by renal progenitors determines glomerular disease remission and can be pharmacologically enhanced. Stem Cell Rep. 5, 248–263 (2015). A proof-of-concept study that shows podocyte regeneration occurs after damage and can be pharmacologically enhanced.

    CAS  Google Scholar 

  63. Smeets, B. et al. Renal progenitor cells contribute to hyperplastic lesions of podocytopathies and crescentic glomerulonephritis. J. Am. Soc. Nephrol. 20, 2593–2603 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. Warejko, J. K. et al. Whole exome sequencing of patients with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 13, 53–62 (2018).

    CAS  PubMed  Google Scholar 

  65. Landini, S. et al. Reverse phenotyping after whole-exome sequencing in steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. (2019). A study reporting the high prevalence of genetic cases caused by unrecognized syndromic disorders in up to 60% of patients with SRNS.

  66. Assady, S., Wanner, N., Skorecki, K. L. & Huber, T. B. New insights into podocyte biology in glomerular health and disease. J. Am. Soc. Nephrol. 28, 1707–1715 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Giglio, S. et al. Heterogeneous genetic alterations in sporadic nephrotic syndrome associate with resistance to immunosuppression. J. Am. Soc. Nephrol. 26, 230–236 (2015).

    CAS  PubMed  Google Scholar 

  68. Sadowski, C. E. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1279–1289 (2015). A large-scale study reporting the presence of primary genetic podocytopathies in 29.5% of cases of SRNS.

    CAS  PubMed  Google Scholar 

  69. van der Ven, A. T. et al. Whole-exome sequencing identifies causative mutations in families with congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 29, 2348–2361 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Ashraf, S. et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat. Commun. 9, 1960 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Dorval, G. et al. Clinical and genetic heterogeneity in familial steroid-sensitive nephrotic syndrome. Pediatr. Nephrol. 33, 473–483 (2018).

    PubMed  Google Scholar 

  72. Doimo, M. et al. Effect of vanillic acid on COQ6 mutants identified in patients with coenzyme Q10 deficiency. Biochim. Biophys. Acta 1842, 1–6 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Atmaca, M. et al. Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. Pediatr. Nephrol. 32, 1369–1375 (2017).

    PubMed  Google Scholar 

  74. Boyer, O. et al. INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N. Engl. J. Med. 365, 2377–2388 (2011).

    CAS  PubMed  Google Scholar 

  75. Nozu, K. et al. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin. Exp. Nephrol. 23, 158–168 (2019).

    PubMed  Google Scholar 

  76. Yoo, T. H. & Fornoni, A. Nonimmunologic targets of immunosuppressive agents in podocytes. Kidney Res. Clin. Pract. 34, 69–75 (2015).

    PubMed  PubMed Central  Google Scholar 

  77. Shalhoub, R. J. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 2, 556–560 (1974).

    CAS  PubMed  Google Scholar 

  78. Kemper, M. J., Zepf, K., Klaassen, I., Link, A. & Muller-Wiefel, D. E. Changes of lymphocyte populations in pediatric steroid-sensitive nephrotic syndrome are more pronounced in remission than in relapse. Am. J. Nephrol. 25, 132–137 (2005).

    PubMed  Google Scholar 

  79. Shao, X. S. et al. The prevalence of Th17 cells and FOXP3 regulate T cells (Treg) in children with primary nephrotic syndrome. Pediatr. Nephrol. 24, 1683–1690 (2009).

    PubMed  Google Scholar 

  80. Araya, C. E. et al. A case of unfulfilled expectations. Cytokines in idiopathic minimal lesion nephrotic syndrome. Pediatr. Nephrol. 21, 603–610 (2006).

    PubMed  Google Scholar 

  81. Lai, K. W. et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J. Am. Soc. Nephrol. 18, 1476–1485 (2007).

    CAS  PubMed  Google Scholar 

  82. Liu, L. L. et al. Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome. Clin. Immunol. 139, 314–320 (2011).

    CAS  PubMed  Google Scholar 

  83. Tsuji, S. et al. Regulatory T cells and CTLA-4 in idiopathic nephrotic syndrome. Pediatr. Int. 59, 643–646 (2017).

    CAS  PubMed  Google Scholar 

  84. Hashimura, Y. et al. Minimal change nephrotic syndrome associated with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr. Nephrol. 24, 1181–1186 (2009).

    PubMed  Google Scholar 

  85. Iijima, K. et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 384, 1273–1281 (2014).

    CAS  PubMed  Google Scholar 

  86. Ruggenenti, P. et al. Rituximab in steroid-dependent or frequently relapsing idiopathic nephrotic syndrome. J. Am. Soc. Nephrol. 25, 850–863 (2014). A study establishing the efficacy of rituximab for treatment of FRNS.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Fornoni, A. et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl Med. 3, 85ra46 (2011).

    PubMed  PubMed Central  Google Scholar 

  88. Bonanni, A., Rossi, R., Murtas, C. & Ghiggeri, G. M. Low-dose ofatumumab for rituximab-resistant nephrotic syndrome. BMJ Case Rep. 2015, bcr2015210208 (2015).

    PubMed  PubMed Central  Google Scholar 

  89. Kim, A. H. et al. B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2, e81836 (2017).

    PubMed Central  Google Scholar 

  90. Dantal, J. et al. Antihuman immunoglobulin affinity immunoadsorption strongly decreases proteinuria in patients with relapsing nephrotic syndrome. J. Am. Soc. Nephrol. 9, 1709–1715 (1998).

    CAS  PubMed  Google Scholar 

  91. Bhatia, D. et al. Rituximab modulates T- and B-lymphocyte subsets and urinary CD80 excretion in patients with steroid-dependent nephrotic syndrome. Pediatr. Res. 84, 520–526 (2018).

    CAS  PubMed  Google Scholar 

  92. Colucci, M. et al. Atypical IgM on T cells predict relapse and steroid dependence in idiopathic nephrotic syndrome. Kidney Int. 96, 971–982 (2019).

    CAS  PubMed  Google Scholar 

  93. Savin, V. J. et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. N. Engl. J. Med. 334, 878–883 (1996).

    CAS  PubMed  Google Scholar 

  94. Ali, A. A. et al. Minimal-change glomerular nephritis. Normal kidneys in an abnormal environment? Transplantation 58, 849–852 (1994).

    CAS  PubMed  Google Scholar 

  95. Delville, M. et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci. Transl Med. 6, 256ra136 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hahm, E. et al. Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat. Med. 23, 100–106 (2017).

    CAS  PubMed  Google Scholar 

  98. Maas, R. J., Deegens, J. K. & Wetzels, J. F. Permeability factors in idiopathic nephrotic syndrome: historical perspectives and lessons for the future. Nephrol. Dial. Transpl. 29, 2207–2216 (2014).

    CAS  Google Scholar 

  99. Clement, L. C. et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat. Med. 17, 117–122 (2011).

    CAS  PubMed  Google Scholar 

  100. Cara-Fuentes, G. et al. Angiopoietin-like-4 and minimal change disease. PLoS ONE 12, e0176198 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Chandra, P. & Kopp, J. B. Viruses and collapsing glomerulopathy: a brief critical review. Clin. Kidney J. 6, 1–5 (2013).

    PubMed  Google Scholar 

  102. Cohen, S. D., Kopp, J. B. & Kimmel, P. L. Kidney diseases associated with human immunodeficiency virus infection. N. Engl. J. Med. 377, 2363–2374 (2017).

    CAS  PubMed  Google Scholar 

  103. Migliorini, A. et al. The antiviral cytokines IFN-α and IFN-β modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am. J. Pathol. 183, 431–440 (2013).

    CAS  PubMed  Google Scholar 

  104. Ekrikpo, U. E. et al. Chronic kidney disease in the global adult HIV-infected population: a systematic review and meta-analysis. PLoS ONE 13, e0195443 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. An, P. et al. Impact of APOL1 genetic variants on HIV-1 infection and disease progression. Front. Immunol. 10, 53 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Angeletti, A., Cantarelli, C. & Cravedi, P. HCV-associated nephropathies in the era of direct acting antiviral agents. Front. Med. 6, 20 (2019).

    Google Scholar 

  107. Gupta, A. & Quigg, R. J. Glomerular diseases associated with hepatitis B and C. Adv. Chronic Kidney Dis. 22, 343–351 (2015).

    PubMed  Google Scholar 

  108. Sanchez, C., Fenves, A. & Schwartz, J. Focal segmental glomerulosclerosis and parvovirus B19. Proc. (Bayl. Univ. Med. Cent.) 25, 20–22 (2012).

    Google Scholar 

  109. Tanawattanacharoen, S., Falk, R. J., Jennette, J. C. & Kopp, J. B. Parvovirus B19 DNA in kidney tissue of patients with focal segmental glomerulosclerosis. Am. J. Kidney Dis. 35, 1166–1174 (2000).

    CAS  PubMed  Google Scholar 

  110. Nasr, S. H. & Kopp, J. B. COVID-19-associated collapsing glomerulopathy: an emerging entity. Kidney Int. Rep. 5, 759–761 (2020).

    PubMed Central  Google Scholar 

  111. Kwiatkowska, E., Golembiewska, E., Ciechanowski, K. & Kedzierska, K. Minimal-change disease secondary to Borrelia burgdorferi infection. Case Rep. Nephrol. 2012, 294532 (2012).

    PubMed  PubMed Central  Google Scholar 

  112. Bartlett, C. S., Jeansson, M. & Quaggin, S. E. Vascular growth factors and glomerular disease. Annu. Rev. Physiol. 78, 437–461 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Craici, I. M., Wagner, S. J., Weissgerber, T. L., Grande, J. P. & Garovic, V. D. Advances in the pathophysiology of pre-eclampsia and related podocyte injury. Kidney Int. 86, 275–285 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ollero, M. & Sahali, D. Inhibition of the VEGF signalling pathway and glomerular disorders. Nephrol. Dial. Transpl. 30, 1449–1455 (2015).

    CAS  Google Scholar 

  115. Izzedine, H. et al. Kidney diseases associated with anti-vascular endothelial growth factor (VEGF): an 8-year observational study at a single center. Medicine 93, 333–339 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Markowitz, G. S. et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J. Am. Soc. Nephrol. 12, 1164–1172 (2001).

    CAS  PubMed  Google Scholar 

  117. Aghajan, M. et al. Antisense oligonucleotide treatment ameliorates IFN-γ-induced proteinuria in APOL1-transgenic mice. JCI Insight 4, e126124 (2019).

    PubMed Central  Google Scholar 

  118. Hurcombe, J. A. et al. Podocyte GSK3 is an evolutionarily conserved critical regulator of kidney function. Nat. Commun. 10, 403 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sakarcan, A., Thomas, D. B., O’Reilly, K. P. & Richards, R. W. Lithium-induced nephrotic syndrome in a young pediatric patient. Pediatr. Nephrol. 17, 290–292 (2002).

    PubMed  Google Scholar 

  120. Xu, W., Ge, Y., Liu, Z. & Gong, R. Glycogen synthase kinase 3β dictates podocyte motility and focal adhesion turnover by modulating paxillin activity: implications for the protective effect of low-dose lithium in podocytopathy. Am. J. Pathol. 184, 2742–2756 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Letavernier, E. et al. High sirolimus levels may induce focal segmental glomerulosclerosis de novo. Clin. J. Am. Soc. Nephrol. 2, 326–333 (2007).

    CAS  PubMed  Google Scholar 

  122. Puelles, V. G. et al. mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight 4, e99271 (2019).

    PubMed Central  Google Scholar 

  123. Muller-Krebs, S. et al. Cellular effects of everolimus and sirolimus on podocytes. PLoS ONE 8, e80340 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. Mulay, S. R. et al. Podocyte loss involves MDM2-driven mitotic catastrophe. J. Pathol. 230, 322–335 (2013).

    CAS  PubMed  Google Scholar 

  125. Kaysen, G. A., Gambertoglio, J., Jimenez, I., Jones, H. & Hutchison, F. N. Effect of dietary protein intake on albumin homeostasis in nephrotic patients. Kidney Int. 29, 572–577 (1986).

    CAS  PubMed  Google Scholar 

  126. Moshage, H. J., Janssen, J. A., Franssen, J. H., Hafkenscheid, J. C. & Yap, S. H. Study of the molecular mechanism of decreased liver synthesis of albumin in inflammation. J. Clin. Invest. 79, 1635–1641 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hinrichs, G. R., Jensen, B. L. & Svenningsen, P. Mechanisms of sodium retention in nephrotic syndrome. Curr. Opin. Nephrol. Hypertens. 29, 207–212 (2020).

    CAS  PubMed  Google Scholar 

  128. Bockenhauer, D. Over- or underfill: not all nephrotic states are created equal. Pediatr. Nephrol. 28, 1153–1156 (2013).

    PubMed  Google Scholar 

  129. Vande Walle, J. G., Donckerwolcke, R. A. & Koomans, H. A. Pathophysiology of edema formation in children with nephrotic syndrome not due to minimal change disease. J. Am. Soc. Nephrol. 10, 323–331 (1999).

    CAS  PubMed  Google Scholar 

  130. Vande Walle, J. G. et al. Volume regulation in children with early relapse of minimal-change nephrosis with or without hypovolaemic symptoms. Lancet 346, 148–152 (1995).

    CAS  PubMed  Google Scholar 

  131. Yamauchi, H. & Hopper, J., Jr, Hypovolemic shock and hypotension as a complication in the nephrotic syndrome. report of ten cases. Ann. Intern. Med. 60, 242–254 (1964).

    CAS  PubMed  Google Scholar 

  132. Chen, T. Y., Huang, C. C. & Tsao, C. J. Hemostatic molecular markers in nephrotic syndrome. Am. J. Hematol. 44, 276–279 (1993).

    CAS  PubMed  Google Scholar 

  133. Loscalzo, J. Venous thrombosis in the nephrotic syndrome. N. Engl. J. Med. 368, 956–958 (2013).

    CAS  PubMed  Google Scholar 

  134. Singhal, R. & Brimble, K. S. Thromboembolic complications in the nephrotic syndrome: pathophysiology and clinical management. Thromb. Res. 118, 397–407 (2006).

    CAS  PubMed  Google Scholar 

  135. Agrawal, S., Zaritsky, J. J., Fornoni, A. & Smoyer, W. E. Dyslipidaemia in nephrotic syndrome: mechanisms and treatment. Nat. Rev. Nephrol. 14, 57–70 (2018). An extensive critical reassessment of the pathogenetic mechanisms of dyslipidaemia in nephrotic syndrome.

    CAS  PubMed  Google Scholar 

  136. Joven, J. et al. Abnormalities of lipoprotein metabolism in patients with the nephrotic syndrome. N. Engl. J. Med. 323, 579–584 (1990).

    CAS  PubMed  Google Scholar 

  137. Clement, L. C. et al. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat. Med. 20, 37–46 (2014).

    CAS  PubMed  Google Scholar 

  138. Iorember, F. & Aviles, D. Anemia in nephrotic syndrome: approach to evaluation and treatment. Pediatr. Nephrol. 32, 1323–1330 (2017).

    PubMed  Google Scholar 

  139. Selewski, D. T. et al. Vitamin D in incident nephrotic syndrome: a Midwest Pediatric Nephrology Consortium study. Pediatr. Nephrol. 31, 465–472 (2016).

    PubMed  Google Scholar 

  140. Alwadhi, R. K., Mathew, J. L. & Rath, B. Clinical profile of children with nephrotic syndrome not on glucorticoid therapy, but presenting with infection. J. Paediatr. Child. Health 40, 28–32 (2004).

    CAS  PubMed  Google Scholar 

  141. Wilfert, C. M. & Katz, S. L. Etiology of bacterial sepsis in nephrotic children 1963-1967. Pediatrics 42, 840–843 (1968).

    CAS  PubMed  Google Scholar 

  142. Ballow, M., Kennedy, T. L. III, Gaudio, K. M., Siegel, N. J. & McLean, R. H. Serum hemolytic factor D values in children with steroid-responsive idiopathic nephrotic syndrome. J. Pediatr. 100, 192–196 (1982).

    CAS  PubMed  Google Scholar 

  143. Anderson, D. C., York, T. L., Rose, G. & Smith, C. W. Assessment of serum factor B, serum opsonins, granulocyte chemotaxis, and infection in nephrotic syndrome of children. J. Infect. Dis. 140, 1–11 (1979).

    CAS  PubMed  Google Scholar 

  144. Vehaskari, V. M. & Rapola, J. Isolated proteinuria: analysis of a school-age population. J. Pediatr. 101, 661–668 (1982).

    CAS  PubMed  Google Scholar 

  145. Trautmann, A., Lipska-Zietkiewicz, B. S. & Schaefer, F. Exploring the clinical and genetic spectrum of steroid resistant nephrotic syndrome: the PodoNet Registry. Front. Pediatr. 6, 200 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Waldman, M. et al. Adult minimal-change disease: clinical characteristics, treatment, and outcomes. Clin. J. Am. Soc. Nephrol. 2, 445–453 (2007).

    CAS  PubMed  Google Scholar 

  147. Korbet, S. M. & Whittier, W. L. Management of adult minimal change disease. Clin. J. Am. Soc. Nephrol. 14, 911–913 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Hogg, R. J. et al. Evaluation and management of proteinuria and nephrotic syndrome in children: recommendations from a pediatric nephrology panel established at the National Kidney Foundation conference on proteinuria, albuminuria, risk, assessment, detection, and elimination (PARADE). Pediatrics 105, 1242–1249 (2000).

    CAS  PubMed  Google Scholar 

  149. Leung, A. K., Wong, A. H. & Barg, S. S. Proteinuria in children: evaluation and differential diagnosis. Am. Fam. Physician 95, 248–254 (2017).

    PubMed  Google Scholar 

  150. Hama, T. et al. Renal biopsy criterion in children with asymptomatic constant isolated proteinuria. Nephrol. Dial. Transpl. 27, 3186–3190 (2012).

    CAS  Google Scholar 

  151. Lee, Y. M. et al. Analysis of renal biopsies performed in children with abnormal findings in urinary mass screening. Acta Paediatr. 95, 849–853 (2006).

    PubMed  Google Scholar 

  152. Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. A report of the International Study of Kidney Disease in Children. Kidney Int. 13, 159–165 (1978).

    Google Scholar 

  153. Santin, S. et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 6, 1139–1148 (2011).

    PubMed  PubMed Central  Google Scholar 

  154. Gribouval, O. et al. Identification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney Int. 94, 1013–1022 (2018).

    CAS  PubMed  Google Scholar 

  155. Connaughton, D. M. et al. Monogenic causes of chronic kidney disease in adults. Kidney Int. 95, 914–928 (2019).

    PubMed  PubMed Central  Google Scholar 

  156. Mason, A. E. et al. Response to first course of intensified immunosuppression in genetically-stratified steroid resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. https://doi.org/10.2215/CJN.13371019 (2020).

    Article  PubMed  Google Scholar 

  157. Radhakrishnan, J. & Cattran, D. C. The KDIGO practice guideline on glomerulonephritis: reading between the (guide)lines–application to the individual patient. Kidney Int. 82, 840–856 (2012).

    PubMed  Google Scholar 

  158. Zhao, J. & Liu, Z. Treatment of nephrotic syndrome: going beyond immunosuppressive therapy. Pediatr. Nephrol. 35, 569–579 (2020).

    PubMed  Google Scholar 

  159. Mak, S. K., Short, C. D. & Mallick, N. P. Long-term outcome of adult-onset minimal-change nephropathy. Nephrol. Dial. Transpl. 11, 2192–2201 (1996).

    CAS  Google Scholar 

  160. Korbet, S. M. Treatment of primary FSGS in adults. J. Am. Soc. Nephrol. 23, 1769–1776 (2012).

    CAS  PubMed  Google Scholar 

  161. Troyanov, S. et al. Focal and segmental glomerulosclerosis: definition and relevance of a partial remission. J. Am. Soc. Nephrol. 16, 1061–1068 (2005).

    PubMed  Google Scholar 

  162. Wehrmann, M. et al. Long-term prognosis of focal sclerosing glomerulonephritis. An analysis of 250 cases with particular regard to tubulointerstitial changes. Clin. Nephrol. 33, 115–122 (1990).

    CAS  PubMed  Google Scholar 

  163. Chitalia, V. C., Wells, J. E., Robson, R. A., Searle, M. & Lynn, K. L. Predicting renal survival in primary focal glomerulosclerosis from the time of presentation. Kidney Int. 56, 2236–2242 (1999).

    CAS  PubMed  Google Scholar 

  164. Trautmann, A. et al. Long-term outcome of steroid-resistant nephrotic syndrome in children. J. Am. Soc. Nephrol. 28, 3055–3065 (2017).

    PubMed  PubMed Central  Google Scholar 

  165. Bedin, M. et al. Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. J. Clin. Invest. 130, 335–344 (2020). This paper identified a genetic form of proteinuria and podocytopathy that does not progress to ESKD.

    CAS  PubMed  Google Scholar 

  166. Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121, 2013–2024 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Praga, M. et al. Nephrotic proteinuria without hypoalbuminemia: clinical characteristics and response to angiotensin-converting enzyme inhibition. Am. J. Kidney Dis. 17, 330–338 (1991).

    CAS  PubMed  Google Scholar 

  168. Tune, B. M. & Mendoza, S. A. Treatment of the idiopathic nephrotic syndrome: regimens and outcomes in children and adults. J. Am. Soc. Nephrol. 8, 824–832 (1997).

    CAS  PubMed  Google Scholar 

  169. Murnaghan, K., Vasmant, D. & Bensman, A. Pulse methylprednisolone therapy in severe idiopathic childhood nephrotic syndrome. Acta Paediatr. Scand. 73, 733–739 (1984).

    CAS  PubMed  Google Scholar 

  170. Hodson, E. M., Hahn, D. & Craig, J. C. Corticosteroids for the initial episode of steroid-sensitive nephrotic syndrome. Pediatr. Nephrol. 30, 1043–1046 (2015).

    PubMed  Google Scholar 

  171. Larkins, N., Kim, S., Craig, J. & Hodson, E. Steroid-sensitive nephrotic syndrome: an evidence-based update of immunosuppressive treatment in children. Arch. Dis. Child. 101, 404–408 (2016).

    PubMed  Google Scholar 

  172. Palmer, S. C., Nand, K. & Strippoli, G. F. Interventions for minimal change disease in adults with nephrotic syndrome. Cochrane Database Syst. Rev. 2008, CD001537 (2008).

    PubMed Central  Google Scholar 

  173. Black, D. A., Rose, G. & Brewer, D. B. Controlled trial of prednisone in adult patients with the nephrotic syndrome. Br. Med. J. 3, 421–426 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Medjeral-Thomas, N. R. et al. Randomized, controlled trial of tacrolimus and prednisolone monotherapy for adults with de novo minimal change disease: a multicenter, randomized, controlled trial. Clin. J. Am. Soc. Nephrol. 15, 209–218 (2020).

    PubMed  Google Scholar 

  175. Remy, P. et al. An open-label randomized controlled trial of low-dose corticosteroid plus enteric-coated mycophenolate sodium versus standard corticosteroid treatment for minimal change nephrotic syndrome in adults (MSN Study). Kidney Int. 94, 1217–1226 (2018).

    CAS  PubMed  Google Scholar 

  176. Senthil Nayagam, L. et al. Mycophenolate mofetil or standard therapy for membranous nephropathy and focal segmental glomerulosclerosis: a pilot study. Nephrol. Dial. Transpl. 23, 1926–1930 (2008).

    Google Scholar 

  177. Rovin, B. H. et al. Management and treatment of glomerular diseases (part 2): conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 95, 281–295 (2019).

    PubMed  Google Scholar 

  178. Glassock, R. J. Therapy of relapsing minimal-change disease in adults: a new approach? Kidney Int. 83, 343–345 (2013).

    CAS  PubMed  Google Scholar 

  179. Rydel, J. J., Korbet, S. M., Borok, R. Z. & Schwartz, M. M. Focal segmental glomerular sclerosis in adults: presentation, course, and response to treatment. Am. J. Kidney Dis. 25, 534–542 (1995).

    CAS  PubMed  Google Scholar 

  180. Dossier, C. et al. Five-year outcome of children with idiopathic nephrotic syndrome: the NEPHROVIR population-based cohort study. Pediatr. Nephrol. 34, 671–678 (2019).

    PubMed  Google Scholar 

  181. Hodson, E. M., Willis, N. S. & Craig, J. C. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst. Rev. 4, CD001533 (2007).

    Google Scholar 

  182. Yu, C. C. et al. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 369, 2416–2423 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Korsgaard, T., Andersen, R. F., Joshi, S., Hagstrom, S. & Rittig, S. Childhood onset steroid-sensitive nephrotic syndrome continues into adulthood. Pediatr. Nephrol. 34, 641–648 (2019).

    PubMed  Google Scholar 

  184. Ruth, E. M., Kemper, M. J., Leumann, E. P., Laube, G. F. & Neuhaus, T. J. Children with steroid-sensitive nephrotic syndrome come of age: long-term outcome. J. Pediatr. 147, 202–207 (2005).

    PubMed  Google Scholar 

  185. Kyrieleis, H. A. et al. Long-term outcome of biopsy-proven, frequently relapsing minimal-change nephrotic syndrome in children. Clin. J. Am. Soc. Nephrol. 4, 1593–1600 (2009).

    PubMed  PubMed Central  Google Scholar 

  186. Lombel, R. M., Gipson, D. S. & Hodson, E. M., Kidney Disease: Improving Global Outcomes. Treatment of steroid-sensitive nephrotic syndrome: new guidelines from KDIGO. Pediatr. Nephrol. 28, 415–426 (2013).

    PubMed  Google Scholar 

  187. Samuel, S. et al. Canadian society of nephrology commentary on the 2012 KDIGO clinical practice guideline for glomerulonephritis: management of nephrotic syndrome in children. Am. J. Kidney Dis. 63, 354–362 (2014).

    PubMed  Google Scholar 

  188. Ponticelli, C. et al. Cyclosporin versus cyclophosphamide for patients with steroid-dependent and frequently relapsing idiopathic nephrotic syndrome: a multicentre randomized controlled trial. Nephrol. Dial. Transpl. 8, 1326–1332 (1993).

    CAS  Google Scholar 

  189. Sinha, A. et al. Efficacy and safety of mycophenolate mofetil versus levamisole in frequently relapsing nephrotic syndrome: an open-label randomized controlled trial. Kidney Int. 95, 210–218 (2019).

    CAS  PubMed  Google Scholar 

  190. Pravitsitthikul, N., Willis, N. S., Hodson, E. M. & Craig, J. C. Non-corticosteroid immunosuppressive medications for steroid-sensitive nephrotic syndrome in children. Cochrane Database Syst. Rev. 10, CD002290 (2013).

    Google Scholar 

  191. Fujinaga, S. et al. Cyclosporine versus mycophenolate mofetil for maintenance of remission of steroid-dependent nephrotic syndrome after a single infusion of rituximab. Eur. J. Pediatr. 172, 513–518 (2013).

    CAS  PubMed  Google Scholar 

  192. Dorresteijn, E. M. et al. Mycophenolate mofetil versus cyclosporine for remission maintenance in nephrotic syndrome. Pediatr. Nephrol. 23, 2013–2020 (2008).

    PubMed  Google Scholar 

  193. Hogan, J. et al. Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin. J. Am. Soc. Nephrol. 8, 2072–2081 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Kittanamongkolchai, W., Cheungpasitporn, W. & Zand, L. Efficacy and safety of adrenocorticotropic hormone treatment in glomerular diseases: a systematic review and meta-analysis. Clin. Kidney J. 9, 387–396 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Straatmann, C. et al. Treatment outcome of late steroid-resistant nephrotic syndrome: a study by the Midwest Pediatric Nephrology Consortium. Pediatr. Nephrol. 28, 1235–1241 (2013).

    PubMed  Google Scholar 

  196. Ponticelli, C. et al. A randomized trial of cyclosporine in steroid-resistant idiopathic nephrotic syndrome. Kidney Int. 43, 1377–1384 (1993).

    CAS  PubMed  Google Scholar 

  197. Segarra, A. et al. Efficacy and safety of ‘rescue therapy’ with mycophenolate mofetil in resistant primary glomerulonephritis – a multicenter study. Nephrol. Dial. Transpl. 22, 1351–1360 (2007).

    CAS  Google Scholar 

  198. Gipson, D. S. et al. Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int. 80, 868–878 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Gellermann, J., Ehrich, J. H. & Querfeld, U. Sequential maintenance therapy with cyclosporin A and mycophenolate mofetil for sustained remission of childhood steroid-resistant nephrotic syndrome. Nephrol. Dial. Transpl. 27, 1970–1978 (2012).

    CAS  Google Scholar 

  200. Delville, M. et al. B7-1 blockade does not improve post-transplant nephrotic syndrome caused by recurrent FSGS. J. Am. Soc. Nephrol. 27, 2520–2527 (2016).

    PubMed  Google Scholar 

  201. Benigni, A., Gagliardini, E. & Remuzzi, G. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 370, 1261–1263 (2014).

    CAS  PubMed  Google Scholar 

  202. Kronbichler, A. et al. Rituximab treatment for relapsing minimal change disease and focal segmental glomerulosclerosis: a systematic review. Am. J. Nephrol. 39, 322–330 (2014).

    CAS  PubMed  Google Scholar 

  203. Trachtman, H. et al. Efficacy of galactose and adalimumab in patients with resistant focal segmental glomerulosclerosis: report of the font clinical trial group. BMC Nephrol. 16, 111 (2015).

    PubMed  PubMed Central  Google Scholar 

  204. Trachtman, H. et al. DUET: a phase 2 study evaluating the efficacy and safety of sparsentan in patients with FSGS. J. Am. Soc. Nephrol. 29, 2745–2754 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Gross, O., Perin, L. & Deltas, C. Alport syndrome from bench to bedside: the potential of current treatment beyond RAAS blockade and the horizon of future therapies. Nephrol. Dial. Transpl. 29 (Suppl. 4), iv124–iv130 (2014).

    CAS  Google Scholar 

  206. Solanki, A. K. et al. A novel CLCN5 mutation associated with focal segmental glomerulosclerosis and podocyte injury. Kidney Int. Rep. 3, 1443–1453 (2018).

    PubMed  PubMed Central  Google Scholar 

  207. du Moulin, M. et al. The mutation p.D313Y is associated with organ manifestation in Fabry disease. Clin. Genet. 92, 528–533 (2017).

    PubMed  Google Scholar 

  208. Hu, M. et al. Prophylactic bilateral nephrectomies in two paediatric patients with missense mutations in the WT1 gene. Nephrol. Dial. Transpl. 19, 223–226 (2004).

    CAS  Google Scholar 

  209. Crew, R. J., Radhakrishnan, J. & Appel, G. Complications of the nephrotic syndrome and their treatment. Clin. Nephrol. 62, 245–259 (2004).

    CAS  PubMed  Google Scholar 

  210. Keller, E., Hoppe-Seyler, G. & Schollmeyer, P. Disposition and diuretic effect of furosemide in the nephrotic syndrome. Clin. Pharmacol. Ther. 32, 442–449 (1982).

    CAS  PubMed  Google Scholar 

  211. Hoorn, E. J. & Ellison, D. H. Diuretic resistance. Am. J. Kidney Dis. 69, 136–142 (2017).

    CAS  PubMed  Google Scholar 

  212. Fallahzadeh, M. A. et al. Acetazolamide and hydrochlorothiazide followed by furosemide versus furosemide and hydrochlorothiazide followed by furosemide for the treatment of adults with nephrotic edema: a randomized trial. Am. J. Kidney Dis. 69, 420–427 (2017).

    CAS  PubMed  Google Scholar 

  213. Artunc, F., Worn, M., Schork, A. & Bohnert, B. N. Proteasuria – the impact of active urinary proteases on sodium retention in nephrotic syndrome. Acta Physiol. 225, e13249 (2019).

    Google Scholar 

  214. Bohnert, B. N. et al. Aprotinin prevents proteolytic epithelial sodium channel (ENaC) activation and volume retention in nephrotic syndrome. Kidney Int. 93, 159–172 (2018).

    CAS  PubMed  Google Scholar 

  215. Wheeler, D. C. & Bernard, D. B. Lipid abnormalities in the nephrotic syndrome: causes, consequences, and treatment. Am. J. Kidney Dis. 23, 331–346 (1994).

    CAS  PubMed  Google Scholar 

  216. Llach, F. Hypercoagulability, renal vein thrombosis, and other thrombotic complications of nephrotic syndrome. Kidney Int. 28, 429–439 (1985).

    CAS  PubMed  Google Scholar 

  217. Kerlin, B. A. et al. Epidemiology and risk factors for thromboembolic complications of childhood nephrotic syndrome: a Midwest Pediatric Nephrology Consortium (MWPNC) study. J. Pediatr. 155, 105–110 (2009).

    PubMed  PubMed Central  Google Scholar 

  218. Suri, D. et al. Thromboembolic complications in childhood nephrotic syndrome: a clinical profile. Clin. Exp. Nephrol. 18, 803–813 (2014).

    PubMed  Google Scholar 

  219. Rai Mittal, B., Singh, S., Bhattacharya, A., Prasad, V. & Singh, B. Lung scintigraphy in the diagnosis and follow-up of pulmonary thromboembolism in children with nephrotic syndrome. Clin. Imaging 29, 313–316 (2005).

    PubMed  Google Scholar 

  220. Kelddal, S., Nykjaer, K. M., Gregersen, J. W. & Birn, H. Prophylactic anticoagulation in nephrotic syndrome prevents thromboembolic complications. BMC Nephrol. 20, 139 (2019).

    PubMed  PubMed Central  Google Scholar 

  221. Close, G. C. & Houston, I. B. Fatal haemorrhagic chickenpox in a child on long-term steroids. Lancet 2, 480 (1981).

    CAS  PubMed  Google Scholar 

  222. Kamei, K. et al. Prospective study of live attenuated vaccines for patients with nephrotic syndrome receiving immunosuppressive agents. J. Pediatr. 196, 217–222.e1 (2018).

    CAS  PubMed  Google Scholar 

  223. Bierzynska, A. & Saleem, M. A. Deriving and understanding the risk of post-transplant recurrence of nephrotic syndrome in the light of current molecular and genetic advances. Pediatr. Nephrol. 33, 2027–2035 (2018).

    PubMed  Google Scholar 

  224. Jacobs-Cacha, C. et al. A misprocessed form of apolipoprotein A-I is specifically associated with recurrent focal segmental glomerulosclerosis. Sci. Rep. 10, 1159 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Kienzl-Wagner, K. et al. Successful management of recurrent focal segmental glomerulosclerosis. Am. J. Transpl. 18, 2818–2822 (2018).

    CAS  Google Scholar 

  226. Kashgary, A. et al. The role of plasma exchange in treating post-transplant focal segmental glomerulosclerosis: a systematic review and meta-analysis of 77 case-reports and case-series. BMC Nephrol. 17, 104 (2016).

    PubMed  PubMed Central  Google Scholar 

  227. Mann, N. et al. Whole-exome sequencing enables a precision medicine approach for kidney transplant recipients. J. Am. Soc. Nephrol. 30, 201–215 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Canetta, P. A. et al. Health-related quality of life in glomerular disease. Kidney Int. 95, 1209–1224 (2019).

    PubMed  PubMed Central  Google Scholar 

  229. Kengne-Wafo, S. et al. Risk factors for cyclosporin a nephrotoxicity in children with steroid-dependant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 4, 1409–1416 (2009).

    CAS  PubMed  Google Scholar 

  230. Ishikura, K. et al. Morbidity in children with frequently relapsing nephrosis: 10-year follow-up of a randomized controlled trial. Pediatr. Nephrol. 30, 459–468 (2015).

    PubMed  Google Scholar 

  231. Huscher, D. et al. Dose-related patterns of glucocorticoid-induced side effects. Ann. Rheum. Dis. 68, 1119–1124 (2009).

    CAS  PubMed  Google Scholar 

  232. Hyams, J. S. & Carey, D. E. Corticosteroids and growth. J. Pediatr. 113, 249–254 (1988).

    CAS  PubMed  Google Scholar 

  233. Ng, J. S. et al. Ocular complications of paediatric patients with nephrotic syndrome. Clin. Exp. Ophthalmol. 29, 239–243 (2001).

    CAS  PubMed  Google Scholar 

  234. Polito, C., Oporto, M. R., Totino, S. F., La Manna, A. & Di Toro, R. Normal growth of nephrotic children during long-term alternate-day prednisone therapy. Acta Paediatr. Scand. 75, 245–250 (1986).

    CAS  PubMed  Google Scholar 

  235. Hogan, J. et al. Effect of center practices on the choice of the first dialysis modality for children and young adults. Pediatr. Nephrol. 32, 659–667 (2017).

    PubMed  Google Scholar 

  236. Morello, W. et al. Post-transplant recurrence of steroid resistant nephrotic syndrome in children: the Italian experience. J. Nephrol. https://doi.org/10.1007/s40620-019-00660-9 (2019).

    Article  PubMed  Google Scholar 

  237. Gadegbeku, C. A. et al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int. 83, 749–756 (2013).

    PubMed  PubMed Central  Google Scholar 

  238. Mariani, L. H. et al. CureGN study rationale, design, and methods: establishing a large prospective observational study of glomerular disease. Am. J. Kidney Dis. 73, 218–229 (2019).

    PubMed  Google Scholar 

  239. Wang, C. S. et al. Ofatumumab for the treatment of childhood nephrotic syndrome. Pediatr. Nephrol. 32, 835–841 (2017).

    PubMed  PubMed Central  Google Scholar 

  240. Blair, H. A. & Duggan, S. T. Belimumab: a review in systemic lupus erythematosus. Drugs 78, 355–366 (2018).

    CAS  PubMed  Google Scholar 

  241. KDIGO Clinical Practice Guideline for Glomerulonephritis. Kidney International Supplements (Elsevier, 2020).

  242. Trautmann, A. et al. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 35, 1529–1561 (2020).

    PubMed  PubMed Central  Google Scholar 

  243. Fakhouri, F. et al. Steroid-sensitive nephrotic syndrome: from childhood to adulthood. Am. J. Kidney Dis. 41, 550–557 (2003).

    PubMed  Google Scholar 

  244. Abeyagunawardena, A. S., Hindmarsh, P. & Trompeter, R. S. Adrenocortical suppression increases the risk of relapse in nephrotic syndrome. Arch. Dis. Child. 92, 585–588 (2007).

    PubMed  PubMed Central  Google Scholar 

  245. Niaudet, P. Treatment of childhood steroid-resistant idiopathic nephrosis with a combination of cyclosporine and prednisone. French Society of Pediatric Nephrology. J. Pediatr. 125, 981–986 (1994).

    CAS  PubMed  Google Scholar 

  246. Ishikura, K. et al. Two-year follow-up of a prospective clinical trial of cyclosporine for frequently relapsing nephrotic syndrome in children. Clin. J. Am. Soc. Nephrol. 7, 1576–1583 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Gellermann, J. et al. Mycophenolate mofetil versus cyclosporin A in children with frequently relapsing nephrotic syndrome. J. Am. Soc. Nephrol. 24, 1689–1697 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Braun, N. et al. Immunosuppressive treatment for focal segmental glomerulosclerosis in adults. Cochrane Database Syst. Rev. 2008, CD003233 (2008).

    PubMed Central  Google Scholar 

  249. Sinha, M. D., MacLeod, R., Rigby, E. & Clark, A. G. Treatment of severe steroid-dependent nephrotic syndrome (SDNS) in children with tacrolimus. Nephrol. Dial. Transpl. 21, 1848–1854 (2006).

    CAS  Google Scholar 

  250. Bock, M. E., Cohn, R. A. & Ali, F. N. Treatment of childhood nephrotic syndrome with long-term, low-dose tacrolimus. Clin. Nephrol. 79, 432–438 (2013).

    CAS  PubMed  Google Scholar 

  251. Sobiak, J. et al. Monitoring of mycophenolate mofetil metabolites in children with nephrotic syndrome and the proposed novel target values of pharmacokinetic parameters. Eur. J. Pharm. Sci. 77, 189–196 (2015).

    CAS  PubMed  Google Scholar 

  252. Perez-Aytes, A. et al. In utero exposure to mycophenolate mofetil: a characteristic phenotype? Am. J. Med. Genet. A 146A, 1–7 (2008).

    PubMed  Google Scholar 

  253. Kamei, K. et al. Rituximab-associated agranulocytosis in children with refractory idiopathic nephrotic syndrome: case series and review of literature. Nephrol. Dial. Transpl. 30, 91–96 (2015).

    Google Scholar 

  254. McGrogan, A., Franssen, C. F. & de Vries, C. S. The incidence of primary glomerulonephritis worldwide: a systematic review of the literature. Nephrol. Dial. Transpl. 26, 414–430 (2011).

    Google Scholar 

  255. Cunningham, A., Benediktsson, H., Muruve, D. A., Hildebrand, A. M. & Ravani, P. Trends in biopsy-based diagnosis of kidney disease: a population study. Can. J. Kidney Health Dis. https://doi.org/10.1177/2054358118799690 (2018).

  256. Woo, K. T. et al. A global evolutionary trend of the frequency of primary glomerulonephritis over the past four decades. Kidney Dis. 5, 247–258 (2019).

    Google Scholar 

  257. O’Shaughnessy, M. M. et al. Glomerular disease frequencies by race, sex and region: results from the International Kidney Biopsy Survey. Nephrol. Dial. Transpl. 33, 661–669 (2018).

    Google Scholar 

  258. Polito, M. G., de Moura, L. A. & Kirsztajn, G. M. An overview on frequency of renal biopsy diagnosis in Brazil: clinical and pathological patterns based on 9,617 native kidney biopsies. Nephrol. Dial. Transpl. 25, 490–496 (2010).

    Google Scholar 

  259. Perkowska-Ptasinska, A. et al. Clinicopathologic correlations of renal pathology in the adult population of Poland. Nephrol. Dial. Transpl. 32, ii209–ii218 (2017).

    Google Scholar 

  260. Zink, C. M. et al. Trends of renal diseases in Germany: review of a regional renal biopsy database from 1990 to 2013. Clin. Kidney J. 12, 795–800 (2019).

    PubMed  PubMed Central  Google Scholar 

  261. Ozturk, S. et al. Demographic and clinical characteristics of primary glomerular diseases in Turkey. Int. Urol. Nephrol. 46, 2347–2355 (2014).

    PubMed  Google Scholar 

  262. Rychlik, I. et al. The Czech registry of renal biopsies. Occurrence of renal diseases in the years 1994-2000. Nephrol. Dial. Transpl. 19, 3040–3049 (2004).

    Google Scholar 

  263. Lovric, S., Ashraf, S., Tan, W. & Hildebrandt, F. Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol. Dial. Transpl. 31, 1802–1813 (2016).

    CAS  Google Scholar 

  264. D’Agati, V. D., Fogo, A. B., Bruijn, J. A. & Jennette, J. C. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am. J. Kidney Dis. 43, 368–382 (2004).

    PubMed  Google Scholar 

  265. Fogo, A. B. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat. Rev. Nephrol. 11, 76–87 (2015).

    CAS  PubMed  Google Scholar 

  266. D’Agati, V. D., Kaskel, F. J. & Falk, R. J. Focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 2398–2411 (2011).

    PubMed  Google Scholar 

  267. Hommos, M. S. et al. Global glomerulosclerosis with nephrotic syndrome; the clinical importance of age adjustment. Kidney Int. 93, 1175–1182 (2018).

    PubMed  Google Scholar 

  268. Deegens, J. K. et al. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int. 74, 1568–1576 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

J.B.K. was supported by the NIDDK Intramural Research Program, NIH, Bethesda, MD (project ZO1 DK043308). K.S. is supported by NIDDK grants R01DK076077, R01 DK087635 and DP3 DK108220. H.-J.A. was supported by the Deutsche Forschungsgemeinschaft (AN372/24-1). F.H. was supported by the NIH through grant RO1-DK076683. This work was supported by the European Research Council under the Consolidator Grant RENOIR to P.R. (ERC-2014-CoG, grant number 648274). The authors thank A. M. Buccoliero, Meyer Children’s Hospital and Fiammetta Ravaglia, Florence, Italy, for help with histopathological images.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (J.B.K., H.-J.A., K.S. and P.R.); Epidemiology (P.R.); Mechanisms/pathophysiology (J.B.K., H.-J.A., K.S., F.H. and P.R.); Diagnosis, screening and prevention (J.B.K., H.-J.A., M.A.P., G.R., F.H. and P.R.); Management (J.B.K., H.-J.A., M.A.P., G.R., F.H. and P.R.); Quality of life (H.-J.A. and P.R.); Outlook (J.B.K., H.-J.A., K.S. and P.R.); Overview of the Primer (P.R.). J.B.K. and H.-J.A. contributed equally.

Corresponding author

Correspondence to Paola Romagnani.

Ethics declarations

Competing interests

F.H. is a co-founder and member of the scientific advisory board of Goldfinch-Bio. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Disease Primers thanks A. Bagga, K. Iijima, Moin Saleem and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The American Kidney Fund: https://www.kidneyfund.org/

ClinGen: https://clinicalgenome.org

The Dutch Kidney Foundation: https://nierstichting.nl

European Rare Kidney Disease Reference Network: https://www.erknet.org/

The Federation for Each Renal Genetic Disease: http://federg.org

La Nuova Speranza non-profit foundation: http://www.lanuovasperanza.org

The National Kidney Foundation: https://www.kidney.org

The National Organization for Rare Disorders: https://rarediseases.org/

NephCure: https://nephcure.org/

The Nephrotic Syndrome Association, Italy: http://www.asnit.org

Supplementary information

Glossary

Chronic kidney disease

(CKD). Abnormalities in kidney structure or function (urine composition or impaired excretory function) lasting >3 months; progression is based on the cumulative degeneration of nephrons, the independent functional units of the kidney.

Glomerular filtration barrier

The parts of the nephron in which the filtration process of the blood takes place and the primary filtrate is formed; podocytes and their interdigitating foot processes, connected by the slit diaphragm, are essential components of the size-selective and charge-selective filtration barrier in the glomerulus.

Nephrotic syndrome

A clinical syndrome defined by symmetrical oedema, hypoalbuminaemia, hyperlipidaemia and proteinuria of >3 g per day, caused by podocyte injury (from any cause) and leading to severe alterations of the glomerular filtration barrier.

End-stage kidney disease

(ESKD). When nephron loss during chronic kidney disease reaches the point that homeostasis can no longer be maintained, presenting as renal failure (uraemia).

Glomerular filtration rate

(GFR). The central parameter of excretory kidney function that can be accurately measured as the clearance of injected tracers over time or can be estimated from a number of clinical and laboratory parameters, including creatinine and cystatin C.

Podocyte shear stress

The hydrostatic pressure gradient across the glomerular filtration barrier that podocytes must withstand to avoid detachment and loss into the urine.

Hyperfiltration

An elevated total glomerular filtration rate (GFR) is called hyperfiltration and implies hyperfiltration of every nephron; however, reduced total GFR implies compensatory hyperfiltration of the remnant nephrons, as a central mechanism for the progression of chronic kidney disease by promoting podocyte shear stress, podocyte detachment and adaptive focal segmental glomerulosclerosis.

Oncotic pressure

The pressure resulting from the difference within the extracellular fluid between the protein contents of plasma and interstitial fluid.

Syndromic disorders

Genetic diseases with manifestations in different organ systems due to the expression of the mutated gene in diverse tissues.

Mitotic catastrophe

A type of cell death that occurs during mitosis, resulting from DNA damage or deranged spindle formation and linked to checkpoint failure.

Overfill scenario

Nephrotic syndrome associated with oedema secondary to a positive sodium balance, mainly due to sodium retention; patients present with intravascular hypervolaemia (hypertension) and interstitial hypervolaemia (oedema).

Acute kidney injury

(AKI). An abrupt decrease in kidney function, resulting in the retention of urea and other nitrogenous waste products in the blood and in the dysregulation of extracellular volume and electrolytes.

Underfill scenario

Nephrotic syndrome associated with oedema secondary to a rapid fall in blood oncotic pressure with volume shifts into the interstitial compartments; patients present with intravascular hypovolaemia and interstitial oedema.

Renin–angiotensin system

The hormone system that regulates blood pressure, volume and electrolyte balance, and systemic vascular resistance.

Anasarca

General swelling of the whole body that can occur when the tissues of the body retain too much fluid.

Cushingoid features

Weight gain, hypertension, cutaneous striae rubrae and easy bruising.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopp, J.B., Anders, HJ., Susztak, K. et al. Podocytopathies. Nat Rev Dis Primers 6, 68 (2020). https://doi.org/10.1038/s41572-020-0196-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-020-0196-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing