Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Duchenne muscular dystrophy

Abstract

Duchenne muscular dystrophy is a severe, progressive, muscle-wasting disease that leads to difficulties with movement and, eventually, to the need for assisted ventilation and premature death. The disease is caused by mutations in DMD (encoding dystrophin) that abolish the production of dystrophin in muscle. Muscles without dystrophin are more sensitive to damage, resulting in progressive loss of muscle tissue and function, in addition to cardiomyopathy. Recent studies have greatly deepened our understanding of the primary and secondary pathogenetic mechanisms. Guidelines for the multidisciplinary care for Duchenne muscular dystrophy that address obtaining a genetic diagnosis and managing the various aspects of the disease have been established. In addition, a number of therapies that aim to restore the missing dystrophin protein or address secondary pathology have received regulatory approval and many others are in clinical development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic depiction of DMD and dystrophin protein.
Fig. 2: Healthy muscle and DMD muscle histology.
Fig. 3: Dystrophin and binding partners.
Fig. 4: Diagnostic decision tree to confirm the genetic diagnosis of dystrophinopathies.
Fig. 5: Dystrophin-restoring approaches.

Similar content being viewed by others

References

  1. Mercuri, E., Bonnemann, C. G. & Muntoni, F. Muscular dystrophies. Lancet 394, 2025–2038 (2019). Comprehensive overview of the clinical and genetic aspects of muscular dystrophies.

    Article  PubMed  Google Scholar 

  2. Aartsma-Rus, A., Van Deutekom, J. C. T., Fokkema, I. F., Van Ommen, G. J. B. & Den Dunnen, J. T. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34, 135–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Monaco, A. P., Bertelson, C. J., Liechti-Gallati, S., Moser, H. & Kunkel, L. M. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2, 90–95 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. García-Rodríguez, R. et al. Premature termination codons in the DMD gene cause reduced local mRNA synthesis. Proc. Natl Acad. Sci. USA 117, 16456–16464 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mendell, J. R. et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann. Neurol. 71, 304–313 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Ryder, S. et al. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J. Rare Dis. 12, 79 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mah, J. K. et al. A systematic review and meta-analysis on the epidemiology of Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. 24, 482–491 (2014). Systematic study into the global epidemiology of DMD and BMD.

    Article  PubMed  Google Scholar 

  8. Bladen, C. L. et al. The TREAT-NMD Duchenne muscular dystrophy registries: conception, design, and utilization by industry and academia. Hum. Mutat. 34, 1449–1457 (2013).

    Article  PubMed  Google Scholar 

  9. Kieny, P. et al. Evolution of life expectancy of patients with Duchenne muscular dystrophy at AFM Yolaine de Kepper centre between 1981 and 2011. Ann. Phys. Rehabil. Med. 56, 443–454 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Ferrier, P., Bamatter, F. & Klein, D. Muscular dystrophy (Duchenne) in a girl with Turner’s syndrome. J. Med. Genet. 2, 38–46 (1965).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chelly, J. et al. De novo DNA microdeletion in a girl with Turner syndrome and Duchenne muscular dystrophy. Hum. Genet. 74, 193–196 (1986).

    Article  CAS  PubMed  Google Scholar 

  12. Satre, V., Monnier, N., Devillard, F., Amblard, F. & Lunardi, J. Prenatal diagnosis of DMD in a female foetus affected by Turner syndrome. Prenat. Diagn. 24, 913–917 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Takeshita, E. et al. Duchenne muscular dystrophy in a female with compound heterozygous contiguous exon deletions. Neuromuscul. Disord. 27, 569–573 (2017).

    Article  PubMed  Google Scholar 

  14. Ishizaki, M., Kobayashi, M., Adachi, K., Matsumura, T. & Kimura, E. Female dystrophinopathy: review of current literature. Neuromuscul. Disord. 28, 572–581 (2018).

    Article  PubMed  Google Scholar 

  15. Holloway, S. M. et al. Life expectancy and death from cardiomyopathy amongst carriers of Duchenne and Becker muscular dystrophy in Scotland. Heart 94, 633–636 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Bladen, C. L. et al. The TREAT-NMD DMD global database: analysis of more than 7000 Duchenne muscular dystrophy mutations. Hum. Mutat. 36, 395–402 (2015). Systematic analysis of different mutation types and locations of mutations in patients around the world.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Magri, F. et al. Genotype and phenotype characterization in a large dystrophinopathic cohort with extended follow-up. J. Neurol. 258, 1610–1623 (2011).

    Article  PubMed  Google Scholar 

  18. Garcia, S. et al. Identification of de novo mutations of Duchenne/Becker muscular dystrophies in southern Spain. Int. J. Med. Sci. 11, 988–993 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kesari, A. et al. Integrated DNA, cDNA, and protein studies in Becker muscular dystrophy show high exception to the reading frame rule. Hum. Mutat. 29, 728–737 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Nakamura, A. et al. Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. J. Hum. Genet. 62, 459–463 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura, A. et al. Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy. J. Hum. Genet. 61, 663–667 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Nevin, N. C., Hughes, A. E., Calwell, M. & Lim, J. H. Duchenne muscular dystrophy in a female with a translocation involving Xp21. J. Med. Genet. 23, 171–173 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, W. J. et al. Molecular analysis of the dystrophin gene in 407 Chinese patients with Duchenne/Becker muscular dystrophy by the combination of multiplex ligation-dependent probe amplification and Sanger sequencing. Clin. Chim. Acta 423, 35–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Yu, H., Chen, Y. C., Liu, G. L. & Wu, Z. Y. A de novo mutation in dystrophin causing muscular dystrophy in a female patient. Chin. Med. J. 130, 2273–2278 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. Caskey, C. T., Nussbaum, R. L., Cohan, L. C. & Pollack, L. Sporadic occurrence of Duchenne muscular dystrophy: evidence for new mutation. Clin. Genet. 18, 329–341 (1980).

    Article  CAS  PubMed  Google Scholar 

  26. Haldane, J. B. The rate of spontaneous mutation of a human gene. 1935. J. Genet. 83, 235–244 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Helderman-van den Enden, A. T. et al. Recurrence risk due to germ line mosaicism: Duchenne and Becker muscular dystrophy. Clin. Genet. 75, 465–472 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Dreyfus, J. C., Schapira, G. & Schapira, F. Serum enzymes in the physiopathology of muscle. Ann. N. Y. Acad. Sci. 75, 235–249 (1958).

    Article  CAS  PubMed  Google Scholar 

  29. Moser, H. Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention. Hum. Genet. 66, 17–40 (1984).

    Article  CAS  PubMed  Google Scholar 

  30. Koenig, M. et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517 (1987).

    Article  CAS  PubMed  Google Scholar 

  31. Hoffman, E. P., Brown, R. H. Jr. & Kunkel, L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928 (1987). This paper reports the discovery of the dystrophin protein and its absence in DMD.

    Article  CAS  PubMed  Google Scholar 

  32. Chelly, J. et al. Dystrophin gene transcribed from different promoters in neuronal and glial cells. Nature 344, 64–65 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Górecki, D. C. et al. Expression of four alternative dystrophin transcripts in brain regions regulated by different promoters. Hum. Mol. Genet. 1, 505–510 (1992).

    Article  PubMed  Google Scholar 

  34. Doorenweerd, N. et al. Timing and localization of human dystrophin isoform expression provide insights into the cognitive phenotype of Duchenne muscular dystrophy. Sci. Rep. 7, 12575 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. D’Souza, V. N. et al. A novel dystrophin isoform is required for normal retinal electrophysiology. Hum. Mol. Genet. 4, 837–842 (1995).

    Article  PubMed  Google Scholar 

  36. Lidov, H. G., Selig, S. & Kunkel, L. M. Dp140: a novel 140 kDa CNS transcript from the dystrophin locus. Hum. Mol. Genet. 4, 329–335 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Byers, T. J., Lidov, H. G. & Kunkel, L. M. An alternative dystrophin transcript specific to peripheral nerve. Nat. Genet. 4, 77–81 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Hugnot, J. P. et al. Distal transcript of the dystrophin gene initiated from an alternative first exon and encoding a 75-kDa protein widely distributed in nonmuscle tissues. Proc. Natl Acad. Sci. USA 89, 7506–7510 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tinsley, J. M., Blake, D. J. & Davies, K. E. Apo-dystrophin-3: a 2.2kb transcript from the DMD locus encoding the dystrophin glycoprotein binding site. Hum. Mol. Genet. 2, 521–524 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Gao, Q. Q. & McNally, E. M. The dystrophin complex: structure, function, and implications for therapy. Compr. Physiol. 5, 1223–1239 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ervasti, J. M. & Sonnemann, K. J. Biology of the striated muscle dystrophin-glycoprotein complex. Int. Rev. Cytol. 265, 191–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Zhao, J. et al. Dystrophin contains multiple independent membrane-binding domains. Hum. Mol. Genet. 25, 3647–3653 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amann, K. J., Renley, B. A. & Ervasti, J. M. A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. J. Biol. Chem. 273, 28419–28423 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Prins, K. W. et al. Dystrophin is a microtubule-associated protein. J. Cell Biol. 186, 363–369 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nelson, D. M. et al. Rapid, redox-mediated mechanical susceptibility of the cortical microtubule lattice in skeletal muscle. Redox Biol. 37, 101730 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stone, M. R., O’Neill, A., Catino, D. & Bloch, R. J. Specific interaction of the actin-binding domain of dystrophin with intermediate filaments containing keratin 19. Mol. Biol. Cell 16, 4280–4293 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhosle, R. C., Michele, D. E., Campbell, K. P., Li, Z. & Robson, R. M. Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem. Biophys. Res. Commun. 346, 768–777 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Huang, X. et al. Structure of a WW domain containing fragment of dystrophin in complex with beta-dystroglycan. Nat. Struct. Biol. 7, 634–638 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Ayalon, G., Davis, J. Q., Scotland, P. B. & Bennett, V. An ankyrin-based mechanism for functional organization of dystrophin and dystroglycan. Cell 135, 1189–1200 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Rezniczek, G. A. et al. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with beta-dystroglycan. J. Cell Biol. 176, 965–977 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamashita, K. et al. The 8th and 9th tandem spectrin-like repeats of utrophin cooperatively form a functional unit to interact with polarity-regulating kinase PAR-1b. Biochem. Biophys. Res. Commun. 391, 812–817 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Lai, Y. et al. Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J. Clin. Invest. 119, 624–635 (2009). This paper showed, for the first time, the direct binding of dystrophin to nNOS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Anderson, J. T., Rogers, R. P. & Jarrett, H. W. Ca2+-calmodulin binds to the carboxyl-terminal domain of dystrophin. J. Biol. Chem. 271, 6605–6610 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Reynolds, J. G., McCalmon, S. A., Donaghey, J. A. & Naya, F. J. Deregulated protein kinase A signaling and myospryn expression in muscular dystrophy. J. Biol. Chem. 283, 8070–8074 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Constantin, B. Dystrophin complex functions as a scaffold for signalling proteins. Biochim. Biophys. Acta 1838, 635–642 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Allen, D. G., Whitehead, N. P. & Froehner, S. C. Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol. Rev. 96, 253–305 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Lai, Y., Zhao, J., Yue, Y. & Duan, D. α2 and α3 helices of dystrophin R16 and R17 frame a microdomain in the alpha1 helix of dystrophin R17 for neuronal NOS binding. Proc. Natl Acad. Sci. USA 110, 525–530 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Chang, N. C. et al. The dystrophin glycoprotein complex regulates the epigenetic activation of muscle stem cell commitment. Cell Stem Cell 22, 755–768.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lumeng, C. et al. Interactions between β2-syntrophin and a family of microtubule- associated serine/threonine kinases. Nat. Neurosci. 2, 611–617 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Sarparanta, J. Biology of myospryn: what’s known? J. Muscle Res. Cell Motil. 29, 177–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Sugita, S. et al. A stoichiometric complex of neurexins and dystroglycan in brain. J. Cell Biol. 154, 435–445 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mokri, B. & Engel, A. G. Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology 25, 1111–1120 (1975).

    Article  CAS  PubMed  Google Scholar 

  63. Aartsma-Rus, A. & van Putten, M. Assessing functional performance in the mdx mouse model. J. Vis. Exp. 85, 51303 (2014).

    Google Scholar 

  64. Stedman, H. H. et al. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352, 536–539 (1991).

    Article  CAS  PubMed  Google Scholar 

  65. Duan, D. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol. Ther. 26, 2337–2356 (2018). Comprehensive overview of microdystrophin gene therapy development, its opportunities and challenges.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bradley, W. G., Hudgson, P., Larson, P. F., Papapetropoulos, T. A. & Jenkison, M. Structural changes in the early stages of Duchenne muscular dystrophy. J. Neurol. Neurosurg. Psychiatry 35, 451–455 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pearson, C. M. Histopathological features of muscle in the preclinical stages of muscular dystrophy. Brain 85, 109–120 (1962).

    Article  CAS  PubMed  Google Scholar 

  68. Brenman, J. E., Chao, D. S., Xia, H., Aldape, K. & Bredt, D. S. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82, 743–752 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Sander, M. et al. Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy. Proc. Natl Acad. Sci. USA 97, 13818–13823 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Patel, A. et al. Dystrophin R16/17-syntrophin PDZ fusion protein restores sarcolemmal nNOSmu. Skelet. Muscle 8, 36 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kodippili, K. et al. Dual AAV gene therapy for Duchenne muscular dystrophy with a 7-kb mini-dystrophin gene in the canine model. Hum. Gene Ther. 29, 299–311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Prosser, B. L., Ward, C. W. & Lederer, W. J. X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333, 1440–1445 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Khairallah, R. J. et al. Microtubules underlie dysfunction in Duchenne muscular dystrophy. Sci. Signal. 5, ra56 (2012).

    Article  PubMed  Google Scholar 

  74. Li, D., Yue, Y., Lai, Y., Hakim, C. H. & Duan, D. Nitrosative stress elicited by nNOSmu delocalization inhibits muscle force in dystrophin-null mice. J. Pathol. 223, 88–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Kim, J. H., Kwak, H. B., Thompson, L. V. & Lawler, J. M. Contribution of oxidative stress to pathology in diaphragm and limb muscles with Duchenne muscular dystrophy. J. Muscle Res. Cell Motil. 34, 1–13 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Grounds, M. D. et al. Biomarkers for Duchenne muscular dystrophy: myonecrosis, inflammation and oxidative stress. Dis. Models Mech. 13, dmm.043638 (2020).

    Article  Google Scholar 

  77. Rando, T. A. Role of nitric oxide in the pathogenesis of muscular dystrophies: a “two hit” hypothesis of the cause of muscle necrosis. Microsc. Res. Tech. 55, 223–235 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Dudley, R. W. et al. Dynamic responses of the glutathione system to acute oxidative stress in dystrophic mouse (mdx) muscles. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R704–710 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Petrillo, S. et al. Oxidative stress in Duchenne muscular dystrophy: focus on the NRF2 redox pathway. Hum. Mol. Genet. 26, 2781–2790 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Turner, P. R., Westwood, T., Regen, C. M. & Steinhardt, R. A. Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335, 735–738 (1988).

    Article  CAS  PubMed  Google Scholar 

  81. Millay, D. P. et al. Genetic and pharmacologic inhibition of mitochondrial-dependent necrosis attenuates muscular dystrophy. Nat. Med. 14, 442–447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Phillips, M. F. & Quinlivan, R. Calcium antagonists for Duchenne muscular dystrophy. Cochrane Database Syst. Rev. 4, CD004571 (2008).

    Google Scholar 

  83. Kyrychenko, S. et al. Hierarchical accumulation of RyR post-translational modifications drives disease progression in dystrophic cardiomyopathy. Cardiovasc. Res. 97, 666–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Bellinger, A. M. et al. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat. Med. 15, 325–330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kushnir, A., Wajsberg, B. & Marks, A. R. Ryanodine receptor dysfunction in human disorders. Biochim. Biophys. Acta Mol. Cell Res. 1865, 1687–1697 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Capogrosso, R. F. et al. Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease modifier in dystrophin-deficient mdx mice: proof-of-concept study and independent validation of efficacy. FASEB J. 32, 1025–1043 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Voit, A. et al. Reducing sarcolipin expression mitigates Duchenne muscular dystrophy and associated cardiomyopathy in mice. Nat. Commun. 8, 1068 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wasala, N. B. et al. Single SERCA2a therapy ameliorated dilated cardiomyopathy for 18 months in a mouse model of Duchenne muscular dystrophy. Mol. Ther. 28, 845–854 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dumont, N. A. et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat. Med. 21, 1455–1463 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bello, L. & Pegoraro, E. The “usual suspects”: genes for inflammation, fibrosis, regeneration, and muscle strength modify Duchenne muscular dystrophy. J. Clin. Med. 8, 649 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  91. Cappellari, O., Mantuano, P. & De Luca, A. “The Social Network” and muscular dystrophies: the lesson learnt about the niche environment as a target for therapeutic strategies. Cells 9, 1659 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  92. Grounds, M. D. Two-tiered hypotheses for Duchenne muscular dystrophy. Cell. Mol. Life Sci. 65, 1621–1625 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Sandri, M., Coletto, L., Grumati, P. & Bonaldo, P. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J. Cell Sci. 126, 5325–5333 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. De Palma, C. et al. Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis. 3, e418 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Pal, R. et al. Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy. Nat. Commun. 5, 4425 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Xiong, Y., Zhou, Y. & Jarrett, H. W. Dystrophin glycoprotein complex-associated Gbetagamma subunits activate phosphatidylinositol-3-kinase/Akt signaling in skeletal muscle in a laminin-dependent manner. J. Cell. Physiol. 219, 402–414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. De Palma, C., Perrotta, C., Pellegrino, P., Clementi, E. & Cervia, D. Skeletal muscle homeostasis in Duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy. Front. Aging Neurosci. 6, 188 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Evans, N. P., Misyak, S. A., Robertson, J. L., Bassaganya-Riera, J. & Grange, R. W. Immune-mediated mechanisms potentially regulate the disease time-course of Duchenne muscular dystrophy and provide targets for therapeutic intervention. PM R 1, 755–768 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Tidball, J. G., Welc, S. S. & Wehling-Henricks, M. Immunobiology of inherited muscular dystrophies. Compr. Physiol. 8, 1313–1356 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rosenberg, A. S. et al. Immune-mediated pathology in Duchenne muscular dystrophy. Sci. Transl. Med. 7, 299rv294 (2015).

    Article  Google Scholar 

  101. Bello, L. et al. Functional changes in Becker muscular dystrophy: implications for clinical trials in dystrophinopathies. Sci. Rep. 6, 32439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wasala, L. et al. Cardiac specific expression of ∆H2-R15 mini-dystrophin normalized all ECG abnormalities and the end-diastolic volume in a 23-m-old mouse model of Duchenne dilated cardiomyopathy. Hum. Gene Ther. 29, 737–748 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Vo, A. H. & McNally, E. M. Modifier genes and their effect on Duchenne muscular dystrophy. Curr. Opin. Neurol. 28, 528–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ricotti, V. et al. Neurodevelopmental, emotional, and behavioural problems in Duchenne muscular dystrophy in relation to underlying dystrophin gene mutations. Dev. Med. Child Neurol. 58, 77–84 (2016).

    Article  PubMed  Google Scholar 

  105. Bello, L. et al. Association study of exon variants in the NF-κB and TGFβ pathways identifies CD40 as a modifier of Duchenne muscular dystrophy. Am. J. Hum. Genet. 99, 1163–1171 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Spitali, P. et al. TCTEX1D1 is a genetic modifier of disease progression in Duchenne muscular dystrophy. Eur. J. Hum. Genet. 28, 815–825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Klietsch, R., Ervasti, J. M., Arnold, W., Campbell, K. P. & Jorgensen, A. O. Dystrophin-glycoprotein complex and laminin colocalize to the sarcolemma and transverse tubules of cardiac muscle. Circ. Res. 72, 349–360 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Meng, H., Leddy, J. J., Frank, J., Holland, P. & Tuana, B. S. The association of cardiac dystrophin with myofibrils/Z-disc regions in cardiac muscle suggests a novel role in the contractile apparatus. J. Biol. Chem. 271, 12364–12371 (1996).

    Article  CAS  PubMed  Google Scholar 

  109. Johnson, E. K. et al. Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins. PLoS ONE 7, e43515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Thangarajh, M. et al. Relationships between DMD mutations and neurodevelopment in dystrophinopathy. Neurology 93, e1597–e1604 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Doorenweerd, N. et al. Reduced cerebral gray matter and altered white matter in boys with Duchenne muscular dystrophy. Ann. Neurol. 76, 403–411 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Pilgram, G. S., Potikanond, S., Baines, R. A., Fradkin, L. G. & Noordermeer, J. N. The roles of the dystrophin-associated glycoprotein complex at the synapse. Mol. Neurobiol. 41, 1–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. Huard, J., Côté, P. Y., Parent, A., Bouchard, J. P. & Tremblay, J. P. Dystrophin-like immunoreactivity in monkey and human brain areas involved in learning and motor functions. Neurosci. Lett. 141, 181–186 (1992).

    Article  CAS  PubMed  Google Scholar 

  114. Chieffo, D. et al. Early neurodevelopmental findings predict school age cognitive abilities in Duchenne muscular dystrophy: a longitudinal study. PLoS ONE 10, e0133214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cohen, E. J., Quarta, E., Fulgenzi, G. & Minciacchi, D. Acetylcholine, GABA and neuronal networks: a working hypothesis for compensations in the dystrophic brain. Brain Res. Bull. 110, 1–13 (2015).

    Article  PubMed  Google Scholar 

  116. Doorenweerd, N. Combining genetics, neuropsychology and neuroimaging to improve understanding of brain involvement in Duchenne muscular dystrophy — a narrative review. Neuromuscul. Disord. 30, 437–442 (2020). Comprehensive and clear review on brain involvement of dystrophin.

    Article  PubMed  Google Scholar 

  117. Birnkrant, D. J. et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 17, 251–267 (2018). Part 1 of a three-part standard-of-care document for DMD.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Aartsma-Rus, A. et al. Evidence-based consensus and systematic review on reducing the time to diagnosis of Duchenne muscular dystrophy. J. Pediatr. 204, 305–313.e314 (2019).

    Article  PubMed  Google Scholar 

  119. Aartsma-Rus, A., Ginjaar, I. B. & Bushby, K. The importance of genetic diagnosis for Duchenne muscular dystrophy. J. Med. Genet. 53, 145–151 (2016). Educational paper on how different mutations cause DMD and how they can be detected with diagnostic techniques.

    Article  CAS  PubMed  Google Scholar 

  120. Verhaart, I. E. C. & Aartsma-Rus, A. Therapeutic developments for Duchenne muscular dystrophy. Nat. Rev. Neurol. 15, 373–386 (2019).

    Article  PubMed  Google Scholar 

  121. Janssen, B., Hartmann, C., Scholz, V., Jauch, A. & Zschocke, J. MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene: potential and pitfalls. Neurogenetics 6, 29–35 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Chamberlain, J. S. et al. Diagnosis of Duchenne and Becker muscular dystrophies by polymerase chain reaction. A multicenter study. JAMA 267, 2609–2615 (1992).

    Article  CAS  PubMed  Google Scholar 

  123. Aartsma-Rus, A. et al. Report of a TREAT-NMD/World Duchenne organisation meeting on dystrophin quantification methodology. J. Neuromuscul. Dis. 6, 147–159 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Scheuerbrandt, G. Screening for Duchenne muscular dystrophy in Germany, 1977–2011: a personal story. Muscle Nerve 57, 185–188 (2018).

    Article  PubMed  Google Scholar 

  125. Moat, S. J. et al. Characterization of a blood spot creatine kinase skeletal muscle isoform immunoassay for high-throughput newborn screening of Duchenne muscular dystrophy. Clin. Chem. 63, 908–914 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Gatheridge, M. A. et al. Identifying non-Duchenne muscular dystrophy-positive and false negative results in prior Duchenne muscular dystrophy newborn screening programs: a review. JAMA Neurol. 73, 111–116 (2016).

    Article  PubMed  Google Scholar 

  127. Wood, M. F. et al. Parental attitudes toward newborn screening for Duchenne/Becker muscular dystrophy and spinal muscular atrophy. Muscle Nerve 49, 822–828 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Bianchi, D. W. & Chiu, R. W. K. Sequencing of circulating cell-free DNA during pregnancy. N. Engl. J. Med. 379, 464–473 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Brison, N. et al. Maternal copy-number variations in the DMD gene as secondary findings in noninvasive prenatal screening. Genet. Med. 21, 2774–2780 (2019).

    Article  PubMed  Google Scholar 

  130. Tuffery-Giraud, S. et al. Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Hum. Mutat. 30, 934–945 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Eagle, M. et al. Managing Duchenne muscular dystrophy–the additive effect of spinal surgery and home nocturnal ventilation in improving survival. Neuromuscul. Disord. 17, 470–475 (2007).

    Article  PubMed  Google Scholar 

  132. Moxley, R. T. 3rd, Pandya, S., Ciafaloni, E., Fox, D. J. & Campbell, K. Change in natural history of Duchenne muscular dystrophy with long-term corticosteroid treatment: implications for management. J. Child Neurol. 25, 1116–1129 (2010).

    Article  PubMed  Google Scholar 

  133. Saito, T. et al. Study of Duchenne muscular dystrophy long-term survivors aged 40 years and older living in specialized institutions in Japan. Neuromuscul. Disord. 27, 107–114 (2017).

    Article  PubMed  Google Scholar 

  134. Birnkrant, D. J. et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 17, 347–361 (2018). Part 2 of a three-part standard-of-care document for DMD.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Birnkrant, D. J. et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 17, 445–455 (2018). Part 3 of a three-part standard-of-care document for DMD.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Passamano, L. et al. Improvement of survival in Duchenne muscular dystrophy: retrospective analysis of 835 patients. Acta Myol. 31, 121–125 (2012).

    PubMed  PubMed Central  Google Scholar 

  137. Finder, J. D. et al. Respiratory care of the patient with Duchenne muscular dystrophy: ATS consensus statement. Am. J. Respir. Crit. Care Med. 170, 456–465 (2004).

    Article  PubMed  Google Scholar 

  138. Buddhe, S. et al. Cardiac management of the patient with Duchenne muscular dystrophy. Pediatrics 142 (Suppl. 2), S72–S81 (2018).

    Article  PubMed  Google Scholar 

  139. McNally, E. M. et al. Contemporary cardiac issues in Duchenne muscular dystrophy. Working Group of the National Heart, Lung, and Blood Institute in collaboration with Parent Project Muscular Dystrophy. Circulation 131, 1590–1598 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Duboc, D. et al. Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J. Am. Coll. Cardiol. 45, 855–857 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Duboc, D. et al. Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years’ follow-up. Am. Heart J. 154, 596–602 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Yilmaz, O., Karaduman, A. & Topaloğlu, H. Prednisolone therapy in Duchenne muscular dystrophy prolongs ambulation and prevents scoliosis. Eur. J. Neurol. 11, 541–544 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Bertrand, L. A., Askeland, E. J., Mathews, K. D., Erickson, B. A. & Cooper, C. S. Prevalence and bother of patient-reported lower urinary tract symptoms in the muscular dystrophies. J. Pediatr. Urol. 12, 398.e391–398.e4 (2016).

    Article  Google Scholar 

  144. Haenggi, T., Schaub, M. C. & Fritschy, J. M. Molecular heterogeneity of the dystrophin-associated protein complex in the mouse kidney nephron: differential alterations in the absence of utrophin and dystrophin. Cell Tissue Res. 319, 299–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Matsumura, T., Saito, T., Fujimura, H. & Sakoda, S. Renal dysfunction is a frequent complication in patients with advanced stage of Duchenne muscular dystrophy [Japanese]. Rinsho Shinkeigaku 52, 211–217 (2012).

    Article  PubMed  Google Scholar 

  146. Banihani, R. et al. Cognitive and neurobehavioral profile in boys with Duchenne muscular dystrophy. J. Child Neurol. 30, 1472–1482 (2015).

    Article  PubMed  Google Scholar 

  147. Biggar, W. D. et al. Deflazacort in Duchenne muscular dystrophy: a comparison of two different protocols. Neuromuscul. Disord. 14, 476–482 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. McDonald, C. M. et al. Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study. Lancet 391, 451–461 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. McDonald, C. M. et al. Deflazacort vs prednisone treatment for Duchenne muscular dystrophy: a meta-analysis of disease progression rates in recent multicenter clinical trials. Muscle Nerve 61, 26–35 (2020).

    Article  CAS  PubMed  Google Scholar 

  150. Bylo, M., Farewell, R., Coppenrath, V. A. & Yogaratnam, D. A review of deflazacort for patients with Duchenne muscular dystrophy. Ann. Pharmacother. 54, 788–794 (2020).

    Article  PubMed  Google Scholar 

  151. Ricotti, V. et al. Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. J. Neurol. Neurosurg. Psychiatry 84, 698–705 (2013).

    Article  PubMed  Google Scholar 

  152. Matthews, E., Brassington, R., Kuntzer, T., Jichi, F. & Manzur, A. Y. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst. Rev. 5, CD003725 (2016).

    Google Scholar 

  153. Connolly, A. M. et al. Twice-weekly glucocorticosteroids in infants and young boys with Duchenne muscular dystrophy. Muscle Nerve 59, 650–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  154. Angelini, C. & Peterle, E. Old and new therapeutic developments in steroid treatment in Duchenne muscular dystrophy. Acta Myol. 31, 9–15 (2012).

    PubMed  PubMed Central  Google Scholar 

  155. Jaisser, F. & Farman, N. Emerging roles of the mineralocorticoid receptor in pathology: toward new paradigms in clinical pharmacology. Pharmacol. Rev. 68, 49–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Bushby, K. et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 50, 477–487 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. McDonald, C. M. et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390, 1489–1498 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Haas, M. et al. European medicines agency review of ataluren for the treatment of ambulant patients aged 5 years and older with Duchenne muscular dystrophy resulting from a nonsense mutation in the dystrophin gene. Neuromuscul. Disord. 25, 5–13 (2015).

    Article  PubMed  Google Scholar 

  159. Mercuri, E. et al. Safety and effectiveness of ataluren: comparison of results from the STRIDE registry and CINRG DMD Natural History Study. J. Comp. Eff. Res. 9, 341–360 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Aartsma-Rus, A. & Goemans, N. A sequel to the eteplirsen saga: eteplirsen is approved in the United States but was not approved in Europe. Nucleic Acid Ther. 29, 13–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Niks, E. H. & Aartsma-Rus, A. Exon skipping: a first in class strategy for Duchenne muscular dystrophy. Expert. Opin. Biol. Ther. 17, 225–236 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Alfano, L. N. et al. Long-term treatment with eteplirsen in nonambulatory patients with Duchenne muscular dystrophy. Medicine 98, e15858 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Mendell, J. R. et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 79, 257–271 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Frank, D. E. et al. Increased dystrophin production with golodirsen in patients with Duchenne muscular dystrophy. Neurology 94, e2270–e2282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Roshmi, R. R. & Yokota, T. Viltolarsen for the treatment of Duchenne muscular dystrophy. Drugs Today 55, 627–639 (2019).

    Article  CAS  Google Scholar 

  166. Uttley, L., Carlton, J., Woods, H. B. & Brazier, J. A review of quality of life themes in Duchenne muscular dystrophy for patients and carers. Health Qual. Life Outcomes 16, 237 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Pangalila, R. F. et al. Prevalence of fatigue, pain, and affective disorders in adults with duchenne muscular dystrophy and their associations with quality of life. Arch. Phys. Med. Rehabil. 96, 1242–1247 (2015).

    Article  PubMed  Google Scholar 

  168. Schara, U., Geers, B., Schmid, J. & Elsenbruch, S. Health-related quality of life in patients with Duchenne muscular dystrophy. Neuromuscul. Disord. 21, 652 (2011).

    Article  Google Scholar 

  169. Elsenbruch, S., Schmid, J., Lutz, S., Geers, B. & Schara, U. Self-reported quality of life and depressive symptoms in children, adolescents, and adults with Duchenne muscular dystrophy: a cross-sectional survey study. Neuropediatrics 44, 257–264 (2013).

    Article  PubMed  Google Scholar 

  170. Abresch, R. T., Seyden, N. K. & Wineinger, M. A. Quality of life. Issues for persons with neuromuscular diseases. Phys. Med. Rehabil. Clin. N. Am. 9, 233–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  171. Bach, J. R., Campagnolo, D. I. & Hoeman, S. Life satisfaction of individuals with Duchenne muscular dystrophy using long-term mechanical ventilatory support. Am. J. Phys. Med. Rehabil. 70, 129–135 (1991).

    Article  CAS  PubMed  Google Scholar 

  172. Crescimanno, G., Greco, F., D’Alia, R., Messina, L. & Marrone, O. Quality of life in long term ventilated adult patients with Duchenne muscular dystrophy. Neuromuscul. Disord. 29, 569–575 (2019).

    Article  PubMed  Google Scholar 

  173. Pangalila, R. Quality of life in Duchenne muscular dystrophy: the disability paradox. Dev. Med. Child Neurol. 58, 435–436 (2016).

    Article  PubMed  Google Scholar 

  174. Albrecht, G. L. & Devlieger, P. J. The disability paradox: high quality of life against all odds. Soc. Sci. Med. 48, 977–988 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Rose, M. R. et al. Role of disease severity, illness perceptions, and mood on quality of life in muscle disease. Muscle Nerve 46, 351–359 (2012).

    Article  PubMed  Google Scholar 

  176. Zamani, G. et al. The quality of life in boys with Duchenne muscular dystrophy. Neuromuscul. Disord. 26, 423–427 (2016).

    Article  PubMed  Google Scholar 

  177. Lim, Y., Velozo, C. & Bendixen, R. M. The level of agreement between child self-reports and parent proxy-reports of health-related quality of life in boys with Duchenne muscular dystrophy. Qual. Life Res. 23, 1945–1952 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Leclerc, T. et al. Prioritisation of ICU treatments for critically ill patients in a COVID-19 pandemic with scarce resources. Anaesth. Crit. Care Pain Med. 39, 333–339 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  179. de Moura, M. C. et al. Is functional dependence of Duchenne muscular dystrophy patients determinant of the quality of life and burden of their caregivers? Arq. Neuropsiquiatr. 73, 52–57 (2015).

    Article  PubMed  Google Scholar 

  180. Yilmaz, O., Yildirim, S. A., Oksuz, C., Atay, S. & Turan, E. Mothers’ depression and health-related quality of life in neuromuscular diseases: role of functional independence level of the children. Pediatr. Int. 52, 648–652 (2010).

    Article  PubMed  Google Scholar 

  181. Barlow, J. H. & Ellard, D. R. The psychosocial well-being of children with chronic disease, their parents and siblings: an overview of the research evidence base. Child Care Health Dev. 32, 19–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Kay, E. & Kingston, H. Feelings associated with being a carrier and characteristics of reproductive decision making in women known to be carriers of X-linked conditions. J. Health Psychol. 7, 169–181 (2002).

    Article  PubMed  Google Scholar 

  183. Skuk, D. et al. Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J. Neuropathol. Exp. Neurol. 65, 371–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  184. Skuk, D. et al. First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul. Disord. 17, 38–46 (2007).

    Article  PubMed  Google Scholar 

  185. Taylor, M. et al. Cardiac and skeletal muscle effects in the randomized HOPE-Duchenne trial. Neurology 92, e866–e878 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Duan, D. Micro-dystrophin gene therapy goes systemic in Duchenne muscular dystrophy patients. Hum. Gene Ther. 29, 733–736 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mendell, J. R. et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with duchenne muscular dystrophy: a nonrandomized controlled trial. JAMA Neurol. 77, 1122–1131 (2020).

    Article  PubMed  Google Scholar 

  188. Wang, D., Zhang, F. & Gao, G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 181, 136–150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Chemello, F., Bassel-Duby, R. & Olson, E. N. Correction of muscular dystrophies by CRISPR gene editing. J. Clin. Invest. 130, 2766–2776 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nelson, C. E., Robinson-Hamm, J. N. & Gersbach, C. A. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat. Rev. Neurol. 13, 647–661 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Nance, M. E. et al. AAV9 edits muscle stem cells in normal and dystrophic adult mice. Mol. Ther. 27, 1568–1585 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kwon, J. B. et al. In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of Duchenne muscular dystrophy. Mol. Ther. Methods Clin. Dev. 19, 320–329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ousterout, D. G. et al. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 6, 6244 (2015).

    Article  CAS  PubMed  Google Scholar 

  194. Duchêne, B. L. et al. CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo. Mol. Ther. 26, 2604–2616 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Wasala, N. B., Hakim, C. H., Yang, N. N. & Duan, D. Questions answered and unanswered by the first CRISPR editing study in the canine model of Duchenne muscular dystrophy. Hum. Gene Ther. 30, 535–543 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mendell, J. R. et al. A phase I/IIa follistatin gene therapy trial for Becker muscular dystrophy. Mol. Ther. 23, 192–201 (2015).

    Article  CAS  PubMed  Google Scholar 

  197. Goemans, N. et al. A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul. Disord. 28, 4–15 (2018).

    Article  PubMed  Google Scholar 

  198. Iyombe-Engembe, J. P. et al. Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method. Mol. Ther. Nucleic Acids 5, e283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Nicolas, A. et al. Assessment of the structural and functional impact of in-frame mutations of the DMD gene, using the tools included in the eDystrophin online database. Orphanet J. Rare Dis. 7, 45 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Delalande, O. et al. Dystrophin’s central domain forms a complex filament that becomes disorganized by in-frame deletions. J. Biol. Chem. 293, 6637–6646 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Goyenvalle, A. et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306, 1796–1799 (2004).

    Article  CAS  PubMed  Google Scholar 

  202. Wein, N. et al. Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat. Med. 20, 992–1000 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Malik, V. et al. Gentamicin-induced readthrough of stop codons in Duchenne muscular dystrophy. Ann. Neurol. 67, 771–780 (2010).

    CAS  PubMed  Google Scholar 

  204. Hirst, R. C., McCullagh, K. J. & Davies, K. E. Utrophin upregulation in Duchenne muscular dystrophy. Acta Myol. 24, 209–216 (2005).

    CAS  PubMed  Google Scholar 

  205. Miura, P. & Jasmin, B. J. Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we? Trends Mol. Med. 12, 122–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  206. Muntoni, F. et al. A phase 1b trial to assess the pharmacokinetics of ezutromid in pediatric Duchenne muscular dystrophy patients on a balanced diet. Clin. Pharmacol. Drug Dev. 8, 922–933 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Wilkinson, I. V. L. et al. Chemical proteomics and phenotypic profiling identifies the aryl hydrocarbon receptor as a molecular target of the utrophin modulator ezutromid. Angew. Chem. 59, 2420–2428 (2020).

    Article  CAS  Google Scholar 

  208. Heier, C. R. et al. VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol. Med. 5, 1569–1585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Reeves, E. K. M., Hoffman, E. P., Nagaraju, K., Damsker, J. M. & McCall, J. M. VBP15: preclinical characterization of a novel anti-inflammatory delta 9,11 steroid. Bioorg. Med. Chem. 21, 2241–2249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Hoffman, E. P. et al. Vamorolone trial in Duchenne muscular dystrophy shows dose-related improvement of muscle function. Neurology 93, e1312–e1323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Finanger, E. et al. Phase 1 study of edasalonexent (CAT-1004), an oral NF-kappaB inhibitor, in pediatric patients with Duchenne muscular dystrophy. J. Neuromuscul. Dis. 6, 43–54 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Shelton, G. D. & Engvall, E. Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene. Neuromuscul. Disord. 17, 721–722 (2007).

    Article  PubMed  Google Scholar 

  213. Aiello, D., Patel, K. & Lasagna, E. The myostatin gene: an overview of mechanisms of action and its relevance to livestock animals. Anim. Genet. 49, 505–519 (2018).

    Article  CAS  PubMed  Google Scholar 

  214. Campbell, C. et al. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: results of a randomized, placebo-controlled clinical trial. Muscle Nerve 55, 458–464 (2017).

    Article  CAS  PubMed  Google Scholar 

  215. Wagner, K. R. et al. Randomized phase 2 trial and open-label extension of domagrozumab in Duchenne muscular dystrophy. Neuromuscul. Disord. 30, 492–502 (2020).

    Article  PubMed  Google Scholar 

  216. Buyse, G. M. et al. Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial. Lancet 385, 1748–1757 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Bettica, P. et al. Histological effects of givinostat in boys with Duchenne muscular dystrophy. Neuromuscul. Disord. 26, 643–649 (2016).

    Article  PubMed  Google Scholar 

  218. Petrof, B. J. Molecular pathophysiology of myofiber injury in deficiencies of the dystrophin-glycoprotein complex. Am. J. Phys. Med. Rehabil. 81 (Suppl. 11), S162–S174 (2002).

    Article  PubMed  Google Scholar 

  219. Clerk, A., Strong, P. N. & Sewry, C. A. Characterisation of dystrophin during development of human skeletal muscle. Development 114, 395–402 (1992).

    Article  CAS  PubMed  Google Scholar 

  220. Mokhtarian, A., Lefaucheur, J. P., Even, P. C. & Sebille, A. Hindlimb immobilization applied to 21-day-old mdx mice prevents the occurrence of muscle degeneration. J. Appl. Physiol. 86, 924–931 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The laboratory of A.A.-R. is part of the Duchenne Center Netherlands. Duchenne muscular dystrophy (DMD) research in the laboratory of A.A.-R. is currently supported by Duchenne Parent Project, Duchenne UK, Prinses Beatrix Spierfonds, Spieren voor Spieren and the EU Horizon 2020 project BIND. DMD research in the laboratory of D.D. is currently supported by the National Institutes of Health (NS90634, AR70517, AR69085), Jackson Freel DMD Research Fund, Jesse’s Journey: The Foundation for Gene and Cell Therapy, Parent Project Muscular Dystrophy (USA), Hope for Javier, Michael’s Cause, Ryan’s Quest, Pietro’s Fight, Duchenne UK, Ryan’s Rally, Team Joseph, Charley’s Fund, Cure Duchenne, and Jett Foundation. DMD research in the laboratory of N.G. is currently supported by Duchenne Parent Project, Rondou Fonds and Kan-Go! Fonds. We thank NIH NeuroBioBank for providing patient muscle tissue for histological studies. We thank N. Wasala (University of Missouri) and K. Zhang (University of Missouri) for their help in the preparation of Fig. 2.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.A.-R.); Epidemiology (S.T. and A.A.-R.); Mechanisms/pathophysiology (D.D. and A.A.-R.); Diagnosis, screening and prevention (A.A.-R. and N.G.); Management (N.G., E.M. and S.T.); Quality of life (N.G. and E.M.); Outlook (A.A.-R. and D.D.); Overview of Primer (A.A.-R.).

Corresponding author

Correspondence to Annemieke Aartsma-Rus.

Ethics declarations

Competing interests

D.D. is a member of the scientific advisory board for Solid Biosciences and an equity holder of Solid Biosciences. D.D. is an inventor on patents licensed to various companies. D.D. has served as an ad hoc consultant for 4DMT, Decibel Therapeutics, Evox, Primary Insight, Vida Ventures, Global Guidepoint and GLG consultancy in the past 3 years. The lab of D.D. has received research support from Solid Biosciences and Edgewise Therapeutics in the past 3 years. N.G. has received compensation as member of scientific boards or as speaker at symposia from Sarepta, Pfizer, Italpharmaco and PTC Therapeutics. S.T. has patents on sequences for exon skip by antisense nucleic acids as a member of NCNP together with Nippon Shinyaku. As principal inventor of these patents, S.T. is entitled to a share of royalties. S.T. discloses being an ad hoc consultant for Ono Pharmaceutical, Daiichisankyo, Asahikasei Pharma, Teijin Pharma, AGADA Biosciences, and Wave and being a member of the scientific advisory boards of Nippon Shinyaku, Taiho Pharma and Sarepta therapeutics. S.T. received speaker honoraria from Japan Health Science Foundation and Astellas Pharma and has also received research supports from Taiho Pharma, Daiichisankyo, Nippon Shinyaku, Takeda Pharmaceutical and the Noguchi Institute in the past 3 years. E.M. is a Principal Investigator in clinical trials and advisory board member for Sarepta, Santhera, PTC, Roche, Italfarmaco, NS Pharma and Pfizer. A.A.-R. discloses being employed by Leiden University Medical Center (LUMC), which has patents on exon-skipping technology, some of which has been licensed to BioMarin and subsequently sublicensed to Sarepta. As co-inventor of some of these patents, A.A.-R. is entitled to a share of royalties. A.A.-R. further discloses being an ad hoc consultant for PTC Therapeutics, Sarepta Therapeutics, CRISPR Therapeutics, Summit PLC, Alpha Anomeric, BioMarin Pharmaceuticals Inc., Eisai, Astra Zeneca, Santhera, Audentes, Global Guidepoint and GLG consultancy, Grunenthal, Wave, and BioClinica, having been a member of the Duchenne Network Steering Committee (BioMarin), and being a member of the scientific advisory boards of ProQR, Hybridize Therapeutics, Silence Therapeutics, Sarepta Therapeutics and Philae Pharmaceuticals. Remuneration for these activities is paid to LUMC. LUMC also received speaker honoraria from PTC Therapeutics and BioMarin Pharmaceuticals and funding for contract research from Italpharmaco and Alpha Anomeric. Project funding is received from Sarepta Therapeutics.

Additional information

Peer review information

Nature Reviews Disease Primers thanks J. Novak, who co-reviewed with T. Partridge, P. Clemens, H. Gordish-Dressman, M. Ryan, J. Tremblay, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, D., Goemans, N., Takeda, S. et al. Duchenne muscular dystrophy. Nat Rev Dis Primers 7, 13 (2021). https://doi.org/10.1038/s41572-021-00248-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00248-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing