Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Wilms tumour

Abstract

Wilms tumour (WT) is a childhood embryonal tumour that is paradigmatic of the intersection between disrupted organogenesis and tumorigenesis. Many WT genes play a critical (non-redundant) role in early nephrogenesis. Improving patient outcomes requires advances in understanding and targeting of the multiple genes and cellular control pathways now identified as active in WT development. Decades of clinical and basic research have helped to gradually optimize clinical care. Curative therapy is achievable in 90% of affected children, even those with disseminated disease, yet survival disparities within and between countries exist and deserve commitment to change. Updated epidemiological studies have also provided novel insights into global incidence variations. Introduction of biology-driven approaches to risk stratification and new drug development has been slower in WT than in other childhood tumours. Current prognostic classification for children with WT is grounded in clinical and pathological findings and in dedicated protocols on molecular alterations. Treatment includes conventional cytotoxic chemotherapy and surgery, and radiation therapy in some cases. Advanced imaging to capture tumour composition, optimizing irradiation techniques to reduce target volumes, and evaluation of newer surgical procedures are key areas for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key clinical advances that established the modern clinical management of children with Wilms tumour.
Fig. 2: The estimated mortality for kidney cancers according to geographical area.
Fig. 3: The incidence of Wilms tumour according to geographical area and ethnicity.
Fig. 4: Age-specific incidence of Wilms tumour according to gender, laterality and geographical area.
Fig. 5: Biology of paediatric renal tumours.
Fig. 6: Different histological patterns of Wilms tumour.

Similar content being viewed by others

References

  1. Pastore, G. et al. Malignant renal tumours incidence and survival in European children (1978–1997): report from the Automated Childhood Cancer Information System project. Eur. J. Cancer 42, 2103–2114 (2006).

    PubMed  Google Scholar 

  2. Nakata, K., Colombet, M., Stiller, C. A., Pritchard-Jones, K. & Steliarova-Foucher, E. Incidence of childhood renal tumours: an international population-based study. Int. J. Cancer 147, 3313–3327 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Treger, T. D., Chowdhury, T., Pritchard-Jones, K. & Behjati, S. The genetic changes of Wilms tumour. Nat. Rev. Nephrol. 15, 240–251 (2019).

    PubMed  Google Scholar 

  4. Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science 361, 594–599 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Coorens, T. H. H. et al. Embryonal precursors of Wilms tumor. Science 366, 1247–1251 (2019). Comprehensive phylogenetic analysis that found premalignant clonal expansions (defined by somatic mutations shared between tumour and normal tissues but absent from blood cells) in morphologically normal kidney that preceded WT development. Clonal expansions evolving before the divergence of left and right kidney primordia may explain a proportion of bilateral WT cases.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dome, J. S. et al. Advances in Wilms tumor treatment and biology: progress through international collaboration. J. Clin. Oncol. 33, 2999–3007 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pritchard-Jones, K. et al. Omission of doxorubicin from the treatment of stage II-III, intermediate-risk Wilms’ tumour (SIOP WT 2001): an open-label, non-inferiority, randomised controlled trial. Lancet 386, 1156–1164 (2015). This trial is the first to demonstrate in a series of >500 patients that doxorubicin can be safely omitted in most patients with stage III WT when classified as postoperative SIOP intermediate risk.

    CAS  PubMed  Google Scholar 

  8. Graf, N., Tournade, M. F. & de Kraker, J. The role of preoperative chemotherapy in the management of Wilms’ tumor. The SIOP studies. International Society of Pediatric Oncology. Urol. Clin. North. Am. 27, 443–454 (2000).

    CAS  PubMed  Google Scholar 

  9. Vujanić, G. M. et al. The UMBRELLA SIOP–RTSG 2016 Wilms tumour pathology and molecular biology protocol. Nat. Rev. Urol. 15, 693–701 (2018). This consensus paper describes the most up-to-date staging and histological classifications of WT according to SIOP.

    PubMed  PubMed Central  Google Scholar 

  10. Van Den Heuvel-Eibrink, M. M. et al. Position paper: rationale for the treatment of Wilms tumour in the UMBRELLA SIOP-RTSG 2016 protocol. Nat. Rev. Urol. 14, 743–752 (2017).

    PubMed  Google Scholar 

  11. Dome, J. S. et al. Children’s Oncology Group’s 2013 blueprint for research: renal tumors. Pediatr. Blood Cancer 60, 994–1000 (2013).

    PubMed  Google Scholar 

  12. Neuzil, K. et al. Health disparities among Tennessee pediatric renal tumor patients. J. Pediatr. Surg. 55, 1081–1087 (2020).

    PubMed  Google Scholar 

  13. Gatta, G. et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5–a population-based study. Lancet Oncol. 15, 35–47 (2014).

    PubMed  Google Scholar 

  14. Cunningham, M. E. et al. Global disparities in Wilms tumor. J. Surg. Res. 247, 34–51 (2020).

    PubMed  Google Scholar 

  15. Termuhlen, A. M. et al. Twenty-five year follow-up of childhood Wilms tumor: a report from the Childhood Cancer Survivor Study. Pediatr. Blood Cancer 57, 1210–1216 (2011).

    PubMed  PubMed Central  Google Scholar 

  16. Suh, E. et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: a retrospective cohort analysis from the Childhood Cancer Survivor Study. Lancet Oncol. 21, 421–435 (2020).

    PubMed  PubMed Central  Google Scholar 

  17. Waters, A. M. & Pritchard-Jones, K. Paediatrics: Long-term effects of Wilms tumour therapy on renal function. Nat. Rev. Urol. 12, 423–424 (2015).

    PubMed  Google Scholar 

  18. Mifsud, W. & Pritchard-Jones, K. Paediatrics: integrating genomics to dig deeper into Wilms tumour biology. Nat. Rev. Urol. 14, 703–704 (2017).

    PubMed  Google Scholar 

  19. Steliarova-Foucher, E. et al. International incidence of childhood cancer, 2001–10: a population-based registry study. Lancet Oncol. 18, 719–731 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. Ferlay J. et al. Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer https://gco.iarc.fr/tomorrow (2021).

  21. Stiller, C. A. & Parkin, D. M. International variations in the incidence of childhood renal tumours. Br. J. Cancer 62, 1026–1030 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhakta, N. et al. Childhood cancer burden: a review of global estimates. Lancet Oncol. 20, e42–e53 (2019). A very comprehensive analysis on (challenging) estimates of the childhood global cancer burden, also proposing recommendations to strengthen data collection and improve and standardize analyses.

    PubMed  Google Scholar 

  23. Ward, Z. J., Yeh, J. M., Bhakta, N., Frazier, A. L. & Atun, R. Estimating the total incidence of global childhood cancer: a simulation-based analysis. Lancet Oncol. 20, 483–493 (2019).

    PubMed  Google Scholar 

  24. Parkin, D. M. et al. Stage at diagnosis and survival by stage for the leading childhood cancers in three populations of sub-Saharan Africa. Int. J. Cancer 148, 2685–2691 (2021).

    CAS  PubMed  Google Scholar 

  25. Merks, J. H. M., Caron, H. N. & Hennekam, R. C. M. High incidence of malformation syndromes in a series of 1,073 children with cancer. Am. J. Med. Genet. 134 A, 132–143 (2005).

    Google Scholar 

  26. Scott, R. H., Stiller, C. A., Walker, L. & Rahman, N. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J. Med. Genet. 43, 705–715 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Little J., Epidemiology of childhood cancer. IARC Scientific Publication N149 (IARC, 1999).

  28. Brioude, F. et al. Expert consensus document: clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement. Nat. Rev. Endocrinol. 4, 229–249 (2018).

    Google Scholar 

  29. Hol, J. A. et al. Wilms tumour surveillance in at-risk children: literature review and recommendations from the SIOP-Europe Host Genome Working Group and SIOP Renal Tumour Study Group. Eur. J. Cancer 153, 51–63 (2021). This study reports on updated WT surveillance guidelines for children with genetic risk of developing WT.

    CAS  PubMed  Google Scholar 

  30. Breslow, N. E. et al. Characteristics and outcomes of children with the Wilms tumor-aniridia syndrome: a report from the National Wilms Tumor Study Group. J. Clin. Oncol. 21, 4579–4585 (2003).

    PubMed  Google Scholar 

  31. Brok, J., Treger, T. D., Gooskens, S. L., van den Heuvel-Eibrink, M. M. & Pritchard-Jones, K. Biology and treatment of renal tumours in childhood. Eur. J. Cancer 68, 179–195 (2016).

    CAS  PubMed  Google Scholar 

  32. Charlton, J., Irtan, S., Bergeron, C. & Pritchard-Jones, K. Bilateral Wilms tumour: a review of clinical and molecular features. Expert. Rev. Mol. Med. 19, e8 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Nakata, K. et al. Comparative analysis of the clinical characteristics and outcomes of patients with Wilms tumor in the United Kingdom and Japan. Pediatr. Blood Cancer 68, e29143 (2021).

    PubMed  Google Scholar 

  34. Fukuzawa, R. et al. Epigenetic differences between Wilms’ tumours in white and east-Asian children. Lancet 363, 446–451 (2004).

    CAS  PubMed  Google Scholar 

  35. Breslow, N. E., Beckwith, J. B., Perlman, E. J. & Reeve, A. E. Age distributions, birth weights, nephrogenic rests, and heterogeneity in the pathogenesis of Wilms tumor. Pediatr. Blood Cancer 47, 260–267 (2006).

    PubMed  PubMed Central  Google Scholar 

  36. Behjati, S., Gilbertson, R. J. & Pfister, S. M. Maturation block in childhood cancer. Cancer Discov. 11, 542–544 (2021).

    PubMed  Google Scholar 

  37. McMahon, A. P. Development of the mammalian kidney. Curr. Top. Dev. Biol. 117, 31–64 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Huff, V. Wilms’ tumours: about tumour suppressor genes, an oncogene and a chameleon gene. Nat. Rev. Cancer 11, 111–121 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Grundy, P. E. et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J. Clin. Oncol. 23, 7312–7321 (2005). This trial for the first time integrated molecular prognostic markers into WT risk and treatment classification.

    CAS  PubMed  Google Scholar 

  40. Gratias, E. J. et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children’s Oncology Group. J. Clin. Oncol. 34, 3189–3194 (2016).

    PubMed  PubMed Central  Google Scholar 

  41. Chagtai, T. et al. Gain of 1q as a prognostic biomarker in Wilms tumors (WTs) treated with preoperative chemotherapy in the International Society of Paediatric Oncology (SIOP) WT 2001 trial: a SIOP Renal Tumours Biology Consortium study. J. Clin. Oncol. 34, 3195–3203 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gadd, S. et al. A Children’s Oncology Group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat. Genet. 49, 1487–1494 (2017). First comprehensive genome-wide sequencing, mRNA and miRNA expression, DNA copy number, and DNA methylation analysis in a series of 117 WTs, followed by targeted sequencing of 651 WTs, identifying mutations in genes not previously recognized as recurrently involved in WT.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Walz, A. L. et al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms tumors. Cancer Cell 27, 286–297 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wegert, J. et al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms tumors. Cancer Cell 27, 298–311 (2015).

    CAS  PubMed  Google Scholar 

  45. Call, K. M. et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60, 509–520 (1990).

    CAS  PubMed  Google Scholar 

  46. Gessler, M. et al. Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 343, 774–778 (1990).

    CAS  PubMed  Google Scholar 

  47. Schumacher, V. et al. Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal-predominant histology. Proc. Natl Acad. Sci. USA 94, 3972–3977 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pelletier, J. et al. Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell 67, 437–447 (1991).

    CAS  PubMed  Google Scholar 

  49. Barbaux, S. et al. Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat. Genet. 17, 467–470 (1997).

    CAS  PubMed  Google Scholar 

  50. Klamt, B. et al. Frasier syndrome is caused by defective alternative splicing of WT1 leading to an altered ratio of WT1 +/- KTS splice isoforms. Hum. Mol. Genet. 7, 709–714 (1998).

    CAS  PubMed  Google Scholar 

  51. Koesters, R. et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms’ tumors. Cancer Res. 16, 3880–3882 (1999).

    Google Scholar 

  52. Scott, R. H. et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 3, 327–335 (2012).

    PubMed  PubMed Central  Google Scholar 

  53. Kaneko, Y. et al. A high incidence of WT1 abnormality in bilateral Wilms tumours in Japan, and the penetrance rates in children with WT1 germline mutation. Br. J. Cancer 112, 1121–1133 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Wegert, J. et al. WTX inactivation is a frequent, but late event in Wilms tumors without apparent clinical impact. Genes. Chromosom. Cancer 48, 1102–1111 (2009).

    CAS  PubMed  Google Scholar 

  55. Rakheja, D. et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat. Commun. 2, 4802 (2014).

    CAS  PubMed  Google Scholar 

  56. Torrezan, G. T. et al. Recurrent somatic mutation in DROSHA induces microRNA profile changes in Wilms tumour. Nat. Commun. 5, 4039 (2014).

    CAS  PubMed  Google Scholar 

  57. Wu, M. K. et al. Evolution of renal cysts to anaplastic sarcoma of lidney in a child with DICER1 syndrome. Pediatr. Blood Cancer 63, 1272–1275 (2016).

    CAS  PubMed  Google Scholar 

  58. Hill, D. A. et al. DICER1 mutations in familial pleuropulmonary blastoma. Science 325, 965 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Williams, R. D. et al. Multiple mechanisms of MYCN dysregulation in Wilms tumour. Oncotarget 6, 7232–7243 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Williams, R. D. et al. Subtype-specific FBXW7 mutation and MYCN copy number gain in Wilms’ tumor. Clin. Cancer Res. 16, 2036–2045 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu, J. et al. Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Dev. Cell 31, 434–447 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hanks, S. et al. Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour. Nat. Commun. 5, 4398 (2014).

    CAS  PubMed  Google Scholar 

  63. Hol, J. A. et al. TRIM28 variants and Wilms’ tumour predisposition. J. Pathol. 254, 494–504 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Diets, I. J. et al. TRIM28 haploinsufficiency predisposes to Wilms tumor. Int. J. Cancer 145, 941–951 (2019).

    CAS  PubMed  Google Scholar 

  65. Armstrong, A. E. et al. A unique subset of low-risk Wilms tumors is characterized by loss of function of TRIM28 (KAP1), a gene critical in early renal development: a Children’s Oncology Group study. PLoS ONE 13, e0208936 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Halliday, B. J. et al. Germline mutations and somatic inactivation of TRIM28 in Wilms tumour. PLoS Genet. 14, e1007399 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Kenny, C. et al. Mutually exclusive BCOR internal tandem duplications and YWHAE-NUTM2 fusions in clear cell sarcoma of kidney: not the full story. J. Pathol. 238, 617–620 (2016).

    CAS  PubMed  Google Scholar 

  68. Ueno-Yokohata, H. et al. Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat. Genet. 47, 861–863 (2015).

    CAS  PubMed  Google Scholar 

  69. Maschietto, M. et al. TP53 mutational status is a potential marker for risk stratification in Wilms tumour with diffuse anaplasia. PLoS ONE 9, e109924 (2014).

    PubMed  PubMed Central  Google Scholar 

  70. Ooms, A. H. A. G. et al. Significance of TP53 mutation in Wilms tumors with diffuse anaplasia: a report from the Children’s Oncology Group. Clin. Cancer Res. 22, 5582–5591 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wegert, J. et al. TP53 alterations in Wilms tumour represent progression events with strong intratumour heterogeneity that are closely linked but not limited to anaplasia. J. Pathol. Clin. Res. 3, 234–248 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Maciaszek, J. L., Oak, N. & Nichols, K. E. Recent advances in Wilms’ tumor predisposition. Hum. Mol. Genet. 29, R138–R149 (2020).

    CAS  PubMed  Google Scholar 

  73. Mahamdallie, S. et al. Identification of new Wilms tumour predisposition genes: an exome sequencing study. Lancet Child. Adolesc. Heal. 3, 322–331 (2019).

    Google Scholar 

  74. Beckwith, J. B., Kiviat, N. B. & Bonadio, J. F. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Fetal Pediatr. Pathol. 10, 1–36 (1990).

    CAS  Google Scholar 

  75. Vujanić, G. M. et al. Nephrogenic rests in Wilms tumors treated with preoperative chemotherapy: the UK SIOP Wilms Tumor 2001 Trial experience. Pediatr. Blood Cancer 64, e26547 (2017).

    Google Scholar 

  76. Fukuzawa, R., Heathcott, R. W., More, H. E. & Reeve, A. E. Sequential WT1 and CTNNB1 mutations and alterations of β-catenin localisation in intralobar nephrogenic rests and associated Wilms tumours: two case studies. J. Clin. Pathol. 60, 1013–1016 (2007).

    CAS  PubMed  Google Scholar 

  77. Vuononvirta, R. et al. Perilobar nephrogenic rests are nonobligate molecular genetic precursor lesions of insulin-like growth factor-II-associated Wilms tumors. Clin. Cancer Res. 14, 7635–7644 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cresswell, G. D. et al. Intra-tumor genetic heterogeneity in Wilms tumor: clonal evolution and clinical implications. EBioMedicine 9, 120–129 (2016).

    PubMed  PubMed Central  Google Scholar 

  79. Van Paemel, R. et al. Minimally invasive classification of paediatric solid tumours using reduced representation bisulphite sequencing of cell-free DNA: a proof-of-principle study. Epigenetics 16, 196–208 (2020).

    PubMed  PubMed Central  Google Scholar 

  80. Jiménez, I. et al. Circulating tumor DNA analysis enables molecular characterization of pediatric renal tumors at diagnosis. Int. J. Cancer 144, 68–79 (2019).

    PubMed  Google Scholar 

  81. Hu, Q. et al. Wt1 ablation and Igf2 upregulation in mice result in Wilms tumors with elevated ERK1/2 phosphorylation. J. Clin. Invest. 121, 174–183 (2011).

    CAS  PubMed  Google Scholar 

  82. Hunter, R. W. et al. Loss of Dis3l2 partially phenocopies Perlman syndrome in mice and results in upregulation of Igf2 in nephron progenitor cells. Genes Dev. 32, 903–908 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Urbach, A. et al. Lin28 sustains early renal progenitors and induces Wilms tumor. Genes Dev. 28, 971–982 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Moisan, A. et al. The WTX tumor suppressor regulates mesenchymal progenitor cell fate specification. Dev. Cell 20, 583–596 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kruber, P. et al. Loss or oncogenic mutation of DROSHA impairs kidney development and function, but is not sufficient for Wilms tumor formation. Int. J. Cancer 144, 1391–1400 (2019).

    CAS  PubMed  Google Scholar 

  86. Murphy, A. J. et al. Forty-five patient-derived xenografts capture the clinical and biological heterogeneity of Wilms tumor. Nat. Commun. 10, 5806 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Calandrini, C. et al. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat. Commun. 11, 1310 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Wegert, J. et al. High-risk blastemal Wilms tumor can be modeled by 3D spheroid cultures in vitro. Oncogene 39, 849–861 (2020).

    CAS  PubMed  Google Scholar 

  89. Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    CAS  PubMed  Google Scholar 

  90. Brok, J. et al. Unmet needs for relapsed or refractory Wilms tumour: mapping the molecular features, exploring organoids and designing early phase trials – a collaborative SIOP-RTSG, COG and ITCC session at the first SIOPE meeting. Eur. J. Cancer 144, 113–122 (2021).

    PubMed  Google Scholar 

  91. Mullen, E. & Graf, N. in Renal tumors of childhood: biology and therapy 1st edn (eds Pritchard-Jones, K. & Dome, J. S.) 39–52 (Springer, 2014).

  92. Fernandez, C. et al. in Pizzo & Poplack’s Pediatric Oncology 8th Edn Ch. 24 (eds Blaney, S. M., Helman, L. J. & Adamson, P. C.) 956–972 (Wolters Kluwer Health, 2020).

  93. Scott, R. H. et al. Surveillance for Wilms tumour in at-risk children: pragmatic recommendations for best practice. Arch. Dis. Child. 91, 995–999 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wilde, J. C. H. et al. Challenges and outcome of Wilms’ tumour management in a resource-constrained setting. Afr. J. Paediatr. Surg. 7, 159–162 (2010).

    CAS  PubMed  Google Scholar 

  95. Israels, T., Harif, M. & Pritchard-Jones, K. Treatment of Wilms tumor in low-income countries: challenges and potential solutions. Future Oncol. 9, 1057–1059 (2013).

    CAS  PubMed  Google Scholar 

  96. Vasquez, L. et al. Factors associated with the latency to diagnosis of childhood cancer in Peru. Pediatr. Blood Cancer 63, 1959–1965 (2016).

    PubMed  Google Scholar 

  97. Ooms, A. H. A. G. et al. Renal tumors of childhood–a histopathologic pattern-based diagnostic approach. Cancers 12, 729 (2020).

    CAS  PubMed Central  Google Scholar 

  98. Beckwith, J. B. & Palmer, N. F. Histopathology and prognosis of Wilms tumor: results from the first National Wilms’ Tumor study. Cancer 41, 1937–1948 (1978).

    CAS  PubMed  Google Scholar 

  99. Faria, P. et al. Focal versus diffuse anaplasia in Wilms tumor–new definitions with prognostic significance: a report from the National Wilms Tumor Study Group. Am. J. Surg. Pathol. 20, 909–920 (1996).

    CAS  PubMed  Google Scholar 

  100. Dome, J. S. et al. Treatment of anaplastic histology Wilms’ tumor: results from the fifth National Wilms’ Tumor Study. J. Clin. Oncol. 24, 2352–2358 (2006).

    PubMed  Google Scholar 

  101. Perlman, E. J. Pediatric renal tumors: practical updates for the pathologist. Pediatr. Dev. Pathol. 8, 320–338 (2005).

    PubMed  Google Scholar 

  102. Fernandez, C. V. et al. Outcome and prognostic factors in stage III favorable-histology Wilms tumor: a report from the Children’s Oncology Group Study AREN0532. J. Clin. Oncol. 36, 254–261 (2018).

    CAS  PubMed  Google Scholar 

  103. Kaste, S. C. et al. Wilms tumour: prognostic factors, staging, therapy and late effects. Pediatr. Radiol. 38, 2–17 (2008).

    PubMed  Google Scholar 

  104. Israels, T. et al. SIOP PODC: clinical guidelines for the management of children with Wilms tumour in a low income setting. Pediatr. Blood Cancer 60, 5–11 (2013).

    PubMed  Google Scholar 

  105. Watson, T., Oostveen, M., Rogers, H., Pritchard-Jones, K. & Olsen, Ø. The role of imaging in the initial investigation of paediatric renal tumours. Lancet Child. Adolesc. Health 4, 232–241 (2020).

    PubMed  Google Scholar 

  106. Sandberg, J. K. et al. Imaging characteristics of nephrogenic rests versus small Wilms tumors: a report from the Children’s Oncology Group Study AREN03B2. Am. J. Roentgenol. 214, 987–994 (2020).

    Google Scholar 

  107. Khanna, G. et al. Detection of preoperative Wilms tumor rupture with CT: a report from the Children’s Oncology Group. Radiology 266, 610–617 (2013).

    PubMed  PubMed Central  Google Scholar 

  108. Smets, A. M. J. B. et al. The contribution of chest CT-scan at diagnosis in children with unilateral Wilms’ tumour. Results of the SIOP 2001 study. Eur. J. Cancer 48, 1060–1065 (2012).

    PubMed  Google Scholar 

  109. Dix, D. B. et al. Treatment of stage IV favorable histology Wilms tumor with lung metastases: a report from the Children’s Oncology Group AREN0533 study. J. Clin. Oncol. 36, 1564–1570 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Littooij, A. S. et al. Apparent diffusion coefficient as it relates to histopathology findings in post-chemotherapy nephroblastoma: a feasibility study. Pediatr. Radiol. 47, 1608–1614 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Iaboni, D. S. M., Chi, Y. Y., Kim, Y., Dome, J. S. & Fernandez, C. V. Outcome of Wilms tumor patients with bone metastasis enrolled on National Wilms Tumor Studies 1-5: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 66, e27430 (2019).

    PubMed  Google Scholar 

  112. Seibel, N. L. et al. Impact of cyclophosphamide and etoposide on outcome of clear cell sarcoma of the kidney treated on the National Wilms Tumor Study-5 (NWTS-5). Pediatr. Blood Cancer 66, e27450 (2019).

    PubMed  Google Scholar 

  113. Brok, J. et al. Relapse of Wilms’ tumour and detection methods: a retrospective analysis of the 2001 Renal Tumour Study Group–International Society of Paediatric Oncology Wilms’ tumour protocol database. Lancet Oncol. 19, 1072–1081 (2018). First detailed analysis in a series of >4,000 patients on methods to detect WT relapse, laying the fundation for improved evidence-based follow-up schemes.

    PubMed  Google Scholar 

  114. Charlebois, J., Rivard, G. E. & St-Louis, J. Management of acquired von Willebrand syndrome. Transfus. Apher. Sci. 57, 721–723 (2018).

    PubMed  Google Scholar 

  115. Jackson, T. J. et al. The diagnostic accuracy and clinical utility of pediatric renal tumor biopsy: report of the UK experience in the SIOP UK WT 2001 trial. Pediatr. Blood Cancer 66, e27627 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Brisse, H. J., de la Monneraye, Y., Cardoen, L. & Schleiermacher, G. From Wilms to kidney tumors: which ones require a biopsy? Pediatr. Radiol. 50, 1049–1051 (2020).

    PubMed  Google Scholar 

  117. Weiser, D. A. et al. Progress toward liquid biopsies in pediatric solid tumors. Cancer Metastasis Rev. 38, 553–571 (2019).

    PubMed  PubMed Central  Google Scholar 

  118. Treger, T. D. et al. Somatic TP53 mutations are detectable in circulating tumor DNA from children with anaplastic wilms tumors. Transl Oncol. 11, 1301–1306 (2018).

    PubMed  PubMed Central  Google Scholar 

  119. Groenendijk, A. et al. Prognostic factors for Wilms tumor recurrence: a review of the literature. Cancers 13, 3142 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Dome, J. S., Perlman, E. J. & Graf, N. Risk stratification for Wilms tumor: current approach and future directions. Am. Soc. Clin. Oncol. Educ. B 34, 215–223 (2014).

    Google Scholar 

  121. Nelson, M. V., van den Heuvel-Eibrink, M. M., Graf, N. & Dome, J. S. New approaches to risk stratification for Wilms tumor. Curr. Opin. Pediatr. 33, 40–48 (2021).

    CAS  PubMed  Google Scholar 

  122. Vujanić, G. M. et al. Revised International Society of Paediatric Oncology (SIOP) working classification of renal tumors of childhood. Med. Pediatr. Oncol. 38, 79–82 (2002).

    PubMed  Google Scholar 

  123. Verschuur, A. et al. Treatment of pulmonary metastases in children with stage IV nephroblastoma with risk-based use of pulmonary radiotherapy. J. Clin. Oncol. 30, 3533–3539 (2012).

    PubMed  Google Scholar 

  124. Van Den Heuvel-Eibrink, M. M. et al. Outcome of localised blastemal-type Wilms tumour patients treated according to intensified treatment in the SIOP WT 2001 protocol, a report of the SIOP Renal Tumour Study Group (SIOP-RTSG). Eur. J. Cancer 51, 498–506 (2015).

    PubMed  Google Scholar 

  125. Daw, N. C. et al. Activity of vincristine and irinotecan in diffuse anaplastic Wilms tumor and therapy outcomes of stage II to IV disease: results of the Children’s Oncology Group AREN0321 study. J. Clin. Oncol. 38, 1558–1568 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Pasqualini, C. et al. Outcome of patients with stage IV high-risk Wilms tumour treated according to the SIOP2001 protocol: a report of the SIOP Renal Tumour Study Group. Eur. J. Cancer 128, 38–46 (2020).

    PubMed  Google Scholar 

  127. Malogolowkin, M. H. et al. Incidence and outcomes of patients with late recurrence of Wilms’ tumor. Pediatr. Blood Cancer 60, 1612–1615 (2013).

    CAS  PubMed  Google Scholar 

  128. Mullen, E. A. et al. Impact of surveillance imaging modality on survival after recurrence in patients with favorable-histology Wilms tumor: a report from the Children’s Oncology Group. J. Clin. Oncol. 36, 3396–3403 (2018).

    PubMed Central  Google Scholar 

  129. Spreafico, F. et al. Treatment of relapsed Wilms tumors: lessons learned. Expert. Rev. Anticancer. Ther. 9, 1807–1815 (2009).

    PubMed  Google Scholar 

  130. Spreafico, F. et al. High dose chemotherapy and autologous hematopoietic cell transplantation for Wilms tumor: a study of the European Society for Blood and Marrow Transplantation. Bone Marrow Transpl. 55, 376–383 (2020).

    CAS  Google Scholar 

  131. Kratz, C. P. et al. Predisposition to cancer in children and adolescents. Lancet Child. Adolesc. Health 5, 142–154 (2021).

    PubMed  Google Scholar 

  132. Apple, A. & Lovvorn, H. N. Wilms tumor in sub-Saharan Africa: molecular and social determinants of a global pediatric health disparity. Front. Oncol. 10, 606380 (2020).

    PubMed  PubMed Central  Google Scholar 

  133. Fiala, E. M. et al. 11p15.5 epimutations in children with Wilms tumor and hepatoblastoma detected in peripheral blood. Cancer 126, 3114–3121 (2020).

    CAS  PubMed  Google Scholar 

  134. Godzinski, J., Graf, N. & Audry, G. Current concepts in surgery for Wilms tumor–the risk and function-adapted strategy. Eur. J. Pediatr. Surg. 24, 457–460 (2014).

    PubMed  Google Scholar 

  135. Lopyan, N. M. & Ehrlich, P. F. Surgical management of Wilms tumor (nephroblastoma) and renal cell carcinoma in children and young adults. Surg. Oncol. Clin. N. Am. 30, 305323 (2021).

    Google Scholar 

  136. Green, D. M. et al. Treatment with nephrectomy only for small, stage I/favorable histology Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J. Clin. Oncol. 19, 3719–3724 (2001).

    CAS  PubMed  Google Scholar 

  137. Ehrlich, P. et al. Results of the first prospective multi-institutional treatment study in children with bilateral Wilms tumor (AREN0534): a report from the Children’s Oncology Group. Ann. Surg. 266, 470–478 (2017).

    PubMed  Google Scholar 

  138. Ehrlich, P. F. et al. Results of treatment for patients with multicentric or bilaterally predisposed unilateral Wilms tumor (AREN0534): a report from the Children’s Oncology Group. Cancer 126, 3516–3525 (2020).

    CAS  PubMed  Google Scholar 

  139. Shamberger, R. C. et al. Intravascular extension of Wilms tumor. Ann. Surg. 234, 116–121 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ritchey, M. et al. Ureteral extension in Wilms’ tumor: a report from the National Wilms’ Tumor Study Group (NWTSG). J. Pediatr. Surg. 43, 1625–1629 (2008).

    PubMed  PubMed Central  Google Scholar 

  141. Gow, K. W. et al. Primary nephrectomy and intraoperative tumor spill: report from the Children’s Oncology Group (COG) renal tumors committee. J. Pediatr. Surg. 48, 34–38 (2013).

    PubMed  PubMed Central  Google Scholar 

  142. Ehrlich, P. F. et al. Surgical protocol violations in children with renal tumors provides an opportunity to improve pediatric cancer care: a report from the Children’s Oncology Group. Pediatr. Blood Cancer 63, 1905–1910 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Aldrink, J. H. et al. Technical considerations for nephron-sparing surgery in children: what is needed to preserve renal units? J. Surg. Res. 232, 614–620 (2018).

    PubMed  Google Scholar 

  144. Murphy, A. & Davidoff, A. Bilateral Wilms tumor: a surgical perspective. Children 5, 134 (2018).

    PubMed Central  Google Scholar 

  145. Cox, S., Büyükünal, C. & Millar, A. J. W. Surgery for the complex Wilms tumour. Pediatr. Surg. Int. 36, 113–127 (2020).

    PubMed  Google Scholar 

  146. Malek, M. M. et al. Minimally invasive surgery for pediatric renal tumors: a systematic review by the APSA Cancer Committee. J. Pediatr. Surg. 55, 2251–2259 (2020).

    PubMed  Google Scholar 

  147. Fernandez, C. V. et al. Clinical outcome and biological predictors of relapse after nephrectomy only for very low-risk Wilms tumor: a report from Children’s Oncology Group AREN0532. Ann. Surg. 265, 835–840 (2017).

    PubMed  Google Scholar 

  148. Green, D. M. The treatment of stages I-IV favorable histology Wilms’ tumor. J. Clin. Oncol. 22, 1366–1372 (2004).

    PubMed  Google Scholar 

  149. Green, D. M. The evolution of treatment for Wilms tumor. J. Pediatr. Surg. 48, 14–19 (2013).

    PubMed  Google Scholar 

  150. Green, D. M. et al. Outcome of patients with stage II/favorable histology wilms tumor with and without local tumor spill: a report from the National Wilms Tumor Study Group. Pediatr. Blood Cancer 61, 134–139 (2014).

    PubMed  Google Scholar 

  151. Dix, D. B. et al. Augmentation of therapy for combined loss of heterozygosity 1p and 16q in favorable histology Wilms tumor: a Children’s Oncology Group AREN0532 and AREN0533 study report. J. Clin. Oncol. 37, 2769–2777 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Green, D. M. et al. Treatment of Wilms tumor relapsing after initial treatment with vincristine and actinomycin D: a report from the National Wilms Tumor Study Group. Pediatr. Blood Cancer 48, 493–499 (2007).

    PubMed  Google Scholar 

  153. Malogolowkin, M. et al. Treatment of Wilms tumor relapsing after initial treatment with vincristine, actinomycin D, and doxorubicin. A report from the National Wilms Tumor Study Group. Pediatr. Blood Cancer 50, 236–241 (2008).

    PubMed  Google Scholar 

  154. Ha, T. C. et al. An international strategy to determine the role of high dose therapy in recurrent Wilms’ tumour. Eur. J. Cancer 49, 194–210 (2013).

    CAS  PubMed  Google Scholar 

  155. Dome, J. S. et al. Impact of the first generation of Children’s Oncology Group clinical trials on clinical practice for Wilms tumor. J. Natl Compr. Cancer Netw. 19, 978–985 (2021).

    Google Scholar 

  156. Kalapurakal, J. A. et al. Intraoperative spillage of favorable histology Wilms tumor cells: influence of irradiation and chemotherapy regimens on abdominal recurrence. a report from the National Wilms Tumor Study Group. Int. J. Radiat. Oncol. Biol. Phys. 76, 201–206 (2010).

    PubMed  PubMed Central  Google Scholar 

  157. Kalapurakal, J. A. et al. Cardiac-sparing whole lung intensity modulated radiation therapy in children with Wilms tumor: final report on technique and abdominal field matching to maximize normal tissue protection. Pract. Radiat. Oncol. 9, e62–e73 (2019).

    PubMed  Google Scholar 

  158. Kalapurakal, J. A. et al. Outcomes of children with favorable histology Wilms tumor and peritoneal implants treated in National Wilms Tumor Studies-4 and -5. Int. J. Radiat. Oncol. Biol. Phys. 77, 554–558 (2010).

    PubMed  PubMed Central  Google Scholar 

  159. National Comprehensive Cancer Network. Wilms Tumor (Nephroblastoma). NCCN https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1500 (2021).

  160. Tournade, M. F. et al. Optimal duration of preoperative therapy in unilateral and nonmetastatic Wilms’ tumor in children older than 6 months: Results of the Ninth International Society of Pediatric Oncology Wilms’ Tumor Trial and Study. J. Clin. Oncol. 19, 488–500 (2001).

    CAS  PubMed  Google Scholar 

  161. Fajardo, R. D. et al. Is radiotherapy required in first-line treatment of stage I diffuse anaplastic Wilms tumor? A report of SIOP-RTSG, AIEOP, JWiTS, and UKCCSG. Pediatr. Blood Cancer 67, e28039 (2020).

    PubMed  Google Scholar 

  162. Janssens, G. O. et al. The SIOP-Renal Tumour Study Group consensus statement on flank target volume delineation for highly conformal radiotherapy. Lancet Child. Adolesc. Health 4, 846–852 (2020).

    PubMed  Google Scholar 

  163. Abuidris, D. O. et al. Wilms tumour in Sudan. Pediatr. Blood Cancer 50, 1135–1137 (2008).

    PubMed  Google Scholar 

  164. Israels, T. et al. Improved outcome at end of treatment in the collaborative Wilms tumour Africa project. Pediatr. Blood Cancer 65, e26945 (2018).

    PubMed  Google Scholar 

  165. Valverde, P. et al. An analysis of treatment failure in Wilms tumor (WT): a report from the Central American Association of Pediatric Hematology/Oncology (AHOPCA) [abstract 57]. J. Glob. Oncol. 2 (Suppl. 3), 2s (2016).

    Google Scholar 

  166. Gibson, T. N. et al. Baseline characteristics and outcomes of children with cancer in the English-speaking Caribbean: a multinational retrospective cohort. Pediatr. Blood Cancer 65, e27298 (2018).

    CAS  PubMed  Google Scholar 

  167. Lam, C. G., Howard, S. C., Bouffet, E. & Pritchard-Jones, K. Science and health for all children with cancer. Science 363, 1182–1186 (2019).

    CAS  PubMed  Google Scholar 

  168. Molyneux, E., Mathanga, D., Witte, D. & Molyneux, M. Practical issues in relation to clinical trials in children in low-income countries: experience from the front line. Arch. Dis. Child. 97, 848–851 (2012).

    PubMed  Google Scholar 

  169. Libes, J. et al. Risk factors for abandonment of Wilms tumor therapy in Kenya. Pediatr. Blood Cancer 62, 252–256 (2015).

    PubMed  Google Scholar 

  170. Pribnow, A. K., Ortiz, R., Báez, L. F., Mendieta, L. & Luna-Fineman, S. Effects of malnutrition on treatment-related morbidity and survival of children with cancer in Nicaragua. Pediatr. Blood Cancer 64, e26590 (2017).

    Google Scholar 

  171. Sala, A. et al. Nutritional status at diagnosis is related to clinical outcomes in children and adolescents with cancer: a perspective from Central America. Eur. J. Cancer 48, 243–252 (2012).

    PubMed  Google Scholar 

  172. Israels, T. et al. Malnourished Malawian patients presenting with large Wilms tumours have a decreased vincristine clearance rate. Eur. J. Cancer 46, 1841–1847 (2010).

    PubMed  Google Scholar 

  173. Israëls, T. et al. Acute malnutrition is common in Malawian patients with a Wilms tumour: a role for peanut butter. Pediatr. Blood Cancer 53, 1221–1226 (2009).

    PubMed  Google Scholar 

  174. World Health Organization. WHO Global Initiative for Childhood Cancer: an Overview. WHO https://www.who.int/publications/m/item/global-initiative-for-childhood-cancer (2020).

  175. Israels, T. et al. Management of children with a Wilms tumor in Malawi, sub-Saharan Africa. J. Pediatr. Hematol. Oncol. 34, 606–610 (2012).

    PubMed  Google Scholar 

  176. Israels, T. et al. The efficacy and toxicity of SIOP preoperative chemotherapy in Malawian children with a Wilms tumour. Pediatr. Blood Cancer 59, 636–641 (2012).

    PubMed  Google Scholar 

  177. Israëls, T. et al. Clinical trials to improve childhood cancer care and survival in sub-Saharan Africa. Nat. Rev. Clin. Oncol. 10, 599–604 (2013).

    PubMed  Google Scholar 

  178. Chitsike, I. et al. Working together to build a better future for children with cancer in Africa. JCO Glob. Oncol. 6, 1076–1078 (2020).

    PubMed  Google Scholar 

  179. Paintsil, V. et al. The Collaborative Wilms Tumour Africa Project; baseline evaluation of Wilms tumour treatment and outcome in eight institutes in sub-Saharan Africa. Eur. J. Cancer 51, 84–91 (2015).

    PubMed  Google Scholar 

  180. Chagaluka, G. et al. Improvement of overall survival in the Collaborative Wilms Tumour Africa Project. Pediatr. Blood Cancer 67, e28383 (2020).

    PubMed  Google Scholar 

  181. SIOP. Treatment Guidelines: Collaborative Wilms Tumour Africa Project. SIOP https://siop-online.org/wp-content/uploads/2020/04/Treatment-Guidelines-Collaborative-Wilms-Tumour-Africa-Project-Phase-II-doc-v1.8-FINAL.pdf (2020).

  182. Oeffinger, K. C. et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 355, 1572–1582 (2006).

    CAS  PubMed  Google Scholar 

  183. Lee, J. S. et al. Second malignant neoplasms among children, adolescents and young adults with Wilms tumor. Pediatr. Blood Cancer 62, 1259–1264 (2015).

    PubMed  PubMed Central  Google Scholar 

  184. Cotton, C. A. et al. Early and late mortality after diagnosis of Wilms tumor. J. Clin. Oncol. 27, 1304–1309 (2009).

    PubMed  PubMed Central  Google Scholar 

  185. Chu, D. I. et al. Kidney outcomes and hypertension in survivors of wilms tumor: a prospective cohort study. J. Pediatr. 230, 215–220 (2021).

    CAS  PubMed  Google Scholar 

  186. Green, D. M. et al. Congestive heart failure after treatment for Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J. Clin. Oncol. 19, 1926–1934 (2001).

    CAS  PubMed  Google Scholar 

  187. Green, D. M. et al. Long-term renal function after treatment for unilateral, nonsyndromic Wilms tumor. A report from the St. Jude Lifetime Cohort Study. Pediatr. Blood Cancer 67, e28271 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Breslow, N. E. et al. End stage renal disease in patients with Wilms tumor: results from the National Wilms Tumor Study Group and the United States Renal Data System. J. Urol. 174, 1972–1975 (2005).

    PubMed  PubMed Central  Google Scholar 

  189. Grigoriev, Y. et al. Treatments and outcomes for end-stage renal disease following Wilms tumor. Pediatr. Nephrol. 27, 1325–1333 (2012).

    PubMed  PubMed Central  Google Scholar 

  190. Interiano, R. B. et al. Renal function in survivors of nonsyndromic Wilms tumor treated with unilateral radical nephrectomy. Cancer 121, 2449–2456 (2015).

    PubMed  Google Scholar 

  191. Lange, J. et al. Risk factors for end stage renal disease in non-WT1-syndromic Wilms tumor. J. Urol. 186, 378–386 (2011).

    PubMed  PubMed Central  Google Scholar 

  192. Van Dorp, W. et al. Reproductive function and outcomes in female survivors of childhood, adolescent, and young adult cancer: a review. J. Clin. Oncol. 36, 2169–2180 (2018).

    PubMed  PubMed Central  Google Scholar 

  193. Levitt, G. Renal tumours: long-term outcome. Pediatr. Nephrol. 27, 911–916 (2012).

    PubMed  Google Scholar 

  194. Chemaitilly, W. et al. Premature ovarian insufficiency in childhood cancer survivors: a report from the St. Jude Lifetime Cohort. J. Clin. Endocrinol. Metab. 102, 2242–2250 (2017).

    PubMed  PubMed Central  Google Scholar 

  195. van den Berg, M. et al. Fertility among female survivors of childhood, adolescent, and young adult cancer: protocol for two pan-European studies (PanCareLIFE). JMIR Res. Protoc. 7, E10824 (2018).

    PubMed  PubMed Central  Google Scholar 

  196. Papagiannopoulos, D. & Gong, E. Revisiting sports precautions in children with solitary kidneys and congenital anomalies of the kidney and urinary tract. Urology 101, 9–14 (2017).

    PubMed  Google Scholar 

  197. Spreafico, F. et al. Why should survivors of childhood renal tumor and others with only one kidney be denied the chance to play contact sports? Expert. Rev. Anticancer. Ther. 14, 363–366 (2014).

    CAS  PubMed  Google Scholar 

  198. Committee on Sports Medicine and Fitness. American Academy of Pediatrics: medical conditions affecting sports participation. Pediatrics 107, 1205–1209 (2001).

    Google Scholar 

  199. Adamson, P. C. et al. A phase 2 trial of all-trans-retinoic acid in combination with interferon-α2a in children with recurrent neuroblastoma or Wilms tumor: A Pediatric Oncology Branch, NCI and Children’s Oncology Group Study. Pediatr. Blood Cancer 49, 661–665 (2007).

    PubMed  Google Scholar 

  200. Friesenbichler, W. et al. Outcome of two patients with bilateral nephroblastomatosis/Wilms tumour treated with an add-on 13-cis retinoic acid therapy–case report. Pediatr. Hematol. Oncol. 35, 218–224 (2018).

    CAS  PubMed  Google Scholar 

  201. Wegert, J. et al. Retinoic acid pathway activity in Wilms tumors and characterization of biological responses in vitro. Mol. Cancer 10, 136 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Brok, J., Pritchard-Jones, K., Geller, J. I. & Spreafico, F. Review of phase I and II trials for Wilms’ tumour–can we optimise the search for novel agents? Eur. J. Cancer 79, 205–213 (2017).

    CAS  PubMed  Google Scholar 

  203. Nomura, M. et al. Tegavivint and the β-catenin/ALDH axis in chemotherapy-resistant and metastatic osteosarcoma. J. Natl Cancer Inst. 111, 1216–1227 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).

    CAS  PubMed  Google Scholar 

  205. Rogers, H. J., Verhagen, M. V., Shelmerdine, S. C., Clark, C. A. & Hales, P. W. An alternative approach to contrast-enhanced imaging: diffusion-weighted imaging and T1-weighted imaging identifies and quantifies necrosis in Wilms tumour. Eur. Radiol. 29, 4141–4149 (2019).

    PubMed  Google Scholar 

  206. Brok, J. et al. The clinical impact of observer variability in lung nodule classification in children with Wilms tumour. Paedr. Blood Cancer 67, 4141–4149 (2020).

    Google Scholar 

  207. Miguez, A. C. K. et al. Assessment of somatic mutations in urine and plasma of Wilms tumor patients. Cancer Med. 9, 5948–5959 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04322318?term=NCT04322318&draw=2&rank=1 (2021).

  209. Fischbach, B. V., Trout, K. L., Lewis, J., Luis, C. A. & Sika, M. WAGR syndrome: a clinical review of 54 cases. Pediatrics 116, 984–988 (2005).

    PubMed  Google Scholar 

  210. Mueller, R. F. The Denys-Drash syndrome. J. Med. Genet. 6, 471–477 (1994).

    Google Scholar 

  211. Brioude, F. et al. Overgrowth syndromes–clinical and molecular aspects and tumour risk. Nat. Rev. Endocrinol. 15, 299–311 (2019).

    CAS  PubMed  Google Scholar 

  212. Birch, J. M. et al. Relative frequency and morphology of cancers in carriers of germline TP53 mutations. Oncogene 20, 4621–4628 (2001).

    CAS  PubMed  Google Scholar 

  213. Kajii, T. et al. Cancer-prone syndrome of mosaic variegated aneuploidy and total premature chromatid separation: report of five infants. Am. J. Med. Genet. 104, 57–64 (2001).

    CAS  PubMed  Google Scholar 

  214. Yost, S. et al. Biallelic TRIP13 mutations predispose to Wilms tumor and chromosome missegregation. Nat. Genet. 49, 1148–1151 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Reid, S. et al. Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. J. Med. Genet. 42, 147–151 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Reid, S. et al. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 39, 162–164 (2007).

    CAS  PubMed  Google Scholar 

  217. Kakinuma. A. et al. Familial primary hyperparathyroidism complicated with Wilms’ tumor. Intern. Med. 33, 123–126 (1994).

    PubMed  Google Scholar 

  218. Szabo, J. et al. Hereditary hyperparathyroidism-jaw tumor syndrome: the endocrine tumor gene HRPT2 maps to chromosome 1q21-q31. Am. J. Hum. Genet. 56, 944–950 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Cunniff, C. et al. Health supervision for people with Bloom syndrome. Am. J. Med. Genet. Part. A 176, 1872–1881 (2018).

    PubMed  Google Scholar 

  220. Astuti, D. et al. Germline mutations in DIS3L2 cause the Perlman syndrome of overgrowth and Wilms tumor susceptibility. Nat. Genet. 44, 277–284 (2012).

    CAS  PubMed  Google Scholar 

  221. Carey, J. C. & Barnes, A. M. Wilms tumor and trisomy 18: is there an association? Am. J. Med. Genet. C. Semin. Med. Genet. 172, 307–308 (2016).

    PubMed  Google Scholar 

  222. Karlberg, N. et al. High frequency of tumours in Mulibrey nanism. J. Pathol. 218, 163–171 (2009).

    PubMed  Google Scholar 

  223. Sivunen, J. et al. Renal findings in patients with Mulibrey nanism. Pediatr. Nephrol. 32, 163–171 (2017).

    Google Scholar 

  224. Perotti, D. et al. Is Wilms tumor a candidate neoplasia for treatment with WNT/β-catenin pathway modulators?–A report from the Renal Tumors Biology-Driven Drug Development Workshop. Mol. Cancer Ther. 12, 2619–2627 (2013).

    CAS  PubMed  Google Scholar 

  225. Wolpaw, A. J. et al. Drugging the ‘undruggable’ MYCN oncogenic transcription factor: overcoming previous obstacles to impact childhood cancers. Cancer Res. 81, 1627–1632 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Maschietto, M. et al. The IGF signalling pathway in Wilms tumours–a report from the ENCCA Renal Tumours Biology-Driven Drug Development Workshop. Oncotarget 5, 8014–8026 (2014).

    PubMed  PubMed Central  Google Scholar 

  227. Meadows, A. T. et al. Patterns of second malignant neoplasms in children. Cancer 40, 1903–1911 (1977).

    CAS  PubMed  Google Scholar 

  228. Lemerle, J. et al. Preoperative versus postoperative radiotherapy, single versus multiple courses of actinomycin D, in the treatment of Wilms’ tumor. Preliminary results of a controlled clinical trial conducted by the International Society of Paediatric Oncology (S.I.O.P.). Cancer 38, 647–654 (1976).

    CAS  PubMed  Google Scholar 

  229. Graf, N. et al. Fifty years of clinical and research studies for childhood renal tumors within the International Society of Pediatric Oncology (SIOP). Ann. Oncol. https://doi.org/10.1016/j.annonc.2021.08.1749 (2021).

    Article  PubMed  Google Scholar 

  230. Tournade, M. F. et al. Results of the Sixth International Society of Pediatric Oncology Wilms’ tumor trial and study: a risk-adapted therapeutic approach in Wilms’ tumor. J. Clin. Oncol. 11, 1014–1023 (1993).

    CAS  PubMed  Google Scholar 

  231. de Kraker, J. et al. Wilm’s tumor with pulmonary metastases at diagnosis: the significance of primary chemotherapy. International Society of Pediatric Oncology Nephroblastoma Trial and Study Committee. J. Clin. Oncol. 8, 1187–1190 (1990).

    PubMed  Google Scholar 

  232. Green, D. M. et al. Comparison between single-dose and divided-dose administration of dactinomycin and doxorubicin for patients with Wilms’ tumor: a report from the National Wilms’ Tumor Study Group. J. Clin. Oncol. 16, 237–245 (1998).

    CAS  PubMed  Google Scholar 

  233. De Camargo, B. & Franco, E. L. A randomized clinical trial of single-dose versus fractionated-dose dactinomycin in the treatment of Wilms’ tumor. Results after extended follow-up. Cancer 73, 3081–3086 (1994).

    PubMed  Google Scholar 

  234. International Agency for Research on Cancer. Estimated age-standardized mortality rates (world) in 2020, kidney, both sexes, ages 0–14. IARC https://gco.iarc.fr/today/online-analysis-map?v=2020&mode=population&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=29&type=1&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=2&nb_items=10&group_cancer=1&include_nmsc=1&include_nmsc_other=1&projection=natural-earth&color_palette=default&map_scale=quantile&map_nb_colors=5&continent=0&show_ranking=0&rotate=%255B10%252C0%255D (2020).

  235. Johnson, B. K. & Comstock, R. D. Epidemiology of chest, rib, thoracic spine, and abdomen injuries among United States high school athletes, 2005/06 to 2013/14. Clin. J. Sport. Med. 27, 388–393 (2017).

    PubMed  Google Scholar 

  236. Kim, J. K. et al. A systematic review of genitourinary injuries arising from rugby and football. J. Pediatr. Urol. 16, 130–148 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank both the SIOP Renal Tumour Study Group and the Children’s Oncology Group Renal Tumour Committee for their collective expertise. Their work laid the foundations for this Review article. The authors also thank parents and survivors of childhood Wilms tumour for their contribution to setting research priorities.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (F.S. and K.P.-J.); Epidemiology (F.S., K.P.-J. and K.N.); Mechanisms/pathophysiology (F.S., K.P.-J., M.G., M.M. and S.B.); Diagnosis, screening and prevention (F.S., K.P-J., C.V.F., J.B., S.L.-F. and G.V.); Management (F.S., C.V.F., K.P.-J., S.L.-F. and V.P.); Quality of life (F.S., K.P.-J. and A.P.); Outlook (F.S., K.P.-J., C.V.F., J.B., M.G., S.L.-F. and J.I.G.); Overview of the Primer (F.S. and K.P.-J.).

Corresponding author

Correspondence to Filippo Spreafico.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Peer reviewer information

Nature Reviews Disease Primers thanks R. Furtwängler, N. Cost, J. Kalapurakal and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Nephron-sparing surgery

An operation to remove a kidney tumour by removing only part of the surrounding normal renal parenchyma.

Nephrogenic rests

Abnormally persistent foci of embryonal cells regarded as precursor lesions of Wilms tumour. Rests are subdivided into two main types: perilobar, confined to the periphery of the renal lobe, and intralobar, found anywhere within the renal lobe.

Overgrowth syndromes

A heterogeneous group of disorders in which the main characteristic is that weight, height or head circumference is two to three standard deviations above the mean for sex and age. The different presentations are dependent on the developmental pathways and organ systems affected.

Aniridia

A rare condition characterized by a partial or complete absence of the iris of the eye.

Nephrotic syndrome

A rare clinical disorder defined by massive proteinuria (>40 mg/m2 per hour) responsible for hypoalbuminaemia (<25 g/l), with resulting hyperlipidaemia, oedema, and various complications.

WAGR syndrome

A rare contiguous gene deletion syndrome (Wilms tumour (WT), aniridia, genitourinary anomalies, and range of developmental delays) associated with a 45–60% risk of developing WT.

Hypospadias

An anatomical congenital malformation of the male external genitalia, characterized by abnormal development of the urethral fold and the ventral foreskin of the penis that causes abnormal positioning of the urethral opening.

Cryptorchidism

The absence of at least one testicle from the scrotum.

Denys–Drash syndrome

A rare condition caused by mutations in the tumour-suppressor gene WT1, characterized by a triad of disorders: ambiguous genitalia, nephrotic syndrome leading to end-stage renal disease, and Wilms tumour.

Frasier syndrome

A rare autosomal recessive disorder that presents with male pseudohermaphroditism with gonadal dysgenesis, renal failure in early adulthood and increased risk of developing gonadoblastoma.

Chromothripsis

A catastrophic chromosomal shattering event associated with random rejoining.

Li–Fraumeni syndrome

An inherited autosomal dominant cancer predisposition disorder that is usually associated with abnormalities in TP53 located on chromosome 17p13.

Anaplasia

Cells with hyperchromatic, pleomorphic nuclei that are three times larger than adjacent cells and have abnormal mitotic figures. Anaplasia is associated with a poor response to chemotherapy.

Oophorectomy

A surgical procedure to remove one or both ovaries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spreafico, F., Fernandez, C.V., Brok, J. et al. Wilms tumour. Nat Rev Dis Primers 7, 75 (2021). https://doi.org/10.1038/s41572-021-00308-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-021-00308-8

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer