Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Pre-eclampsia

An Author Correction to this article was published on 03 July 2023

This article has been updated

Abstract

Pre-eclampsia is a life-threatening disease of pregnancy unique to humans and a leading cause of maternal and neonatal morbidity and mortality. Women who survive pre-eclampsia have reduced life expectancy, with increased risks of stroke, cardiovascular disease and diabetes, while babies from a pre-eclamptic pregnancy have increased risks of preterm birth, perinatal death and neurodevelopmental disability and cardiovascular and metabolic disease later in life. Pre-eclampsia is a complex multisystem disease, diagnosed by sudden-onset hypertension (>20 weeks of gestation) and at least one other associated complication, including proteinuria, maternal organ dysfunction or uteroplacental dysfunction. Pre-eclampsia is found only when a placenta is or was recently present and is classified as preterm (delivery <37 weeks of gestation), term (delivery ≥37 weeks of gestation) and postpartum pre-eclampsia. The maternal syndrome of pre-eclampsia is driven by a dysfunctional placenta, which releases factors into maternal blood causing systemic inflammation and widespread maternal endothelial dysfunction. Available treatments target maternal hypertension and seizures, but the only ‘cure’ for pre-eclampsia is delivery of the dysfunctional placenta and baby, often prematurely. Despite decades of research, the aetiology of pre-eclampsia, particularly of term and postpartum pre-eclampsia, remains poorly defined. Significant advances have been made in the prediction and prevention of preterm pre-eclampsia, which is predicted in early pregnancy through combined screening and is prevented with daily low-dose aspirin, starting before 16 weeks of gestation. By contrast, the prediction of term and postpartum pre-eclampsia is limited and there are no preventive treatments. Future research must investigate the pathogenesis of pre-eclampsia, in particular of term and postpartum pre-eclampsia, and evaluate new prognostic tests and treatments in adequately powered clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Organs affected by pre-eclampsia.
Fig. 2: Syncytiotrophoblast stress is driven by dysfunctional placental perfusion.
Fig. 3: Algorithms to screen for pre-eclampsia in first, second and third trimesters.
Fig. 4: Treatment algorithm for pregnancies presenting with hypertension.

Similar content being viewed by others

Change history

References

  1. Poon, L. et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia. Int. J. Gynaecol. Obstet. 145, 1 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Magee, L. A. et al. The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 27, 148–169 (2022). This paper outlines best-practice guidelines for diagnosis and management of pre-eclampsia.

    Article  PubMed  Google Scholar 

  3. Pittara, T., Vyrides, A., Lamnisos, D. & Giannakou, K. Pre-eclampsia and long-term health outcomes for mother and infant: an umbrella review. BJOG https://doi.org/10.1111/1471-0528.16683 (2021).

    Article  PubMed  Google Scholar 

  4. Kvalvik, L., Wilcox, A. J., Skjærven, R., Østbye, T. & Harmon, Q. E. Term complications and subsequent risk of preterm birth. BMJ 369, m1007 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Davis, E. et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics 129, e1552 (2012).

    Article  PubMed  Google Scholar 

  6. O’Gorman, N. et al. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks’ gestation. Ultrasound Obstet. Gynecol. 49, 756 (2017).

    Article  PubMed  Google Scholar 

  7. Rolnik, D. et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 377, 613 (2017). A convincing large trial of aspirin to prevent pre-eclampsia in women at high risk for preterm pre-eclampsia that sparked many follow-up trials and resulted in the worldwide clinical use of aspirin to prevent preterm pre-eclampsia.

    Article  CAS  PubMed  Google Scholar 

  8. Roberts, J. M., Rich-Edwards, J. W., McElrath, T. F. & Garmire, L. Subtypes of preeclampsia: recognition and determining clinical usefulness. Hypertension https://doi.org/10.1161/hypertensionaha.120.14781 (2021).

    Article  PubMed  Google Scholar 

  9. Simard, J. F. et al. Evidence of under-reporting of early-onset preeclampsia using register data. Paediatr. Perinat. Epidemiol. 35, 596–600 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tomimatsu, T. et al. Preeclampsia: maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20174246 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Amaral, L. M., Cunningham, M. W. Jr, Cornelius, D. C. & LaMarca, B. Preeclampsia: long-term consequences for vascular health. Vasc. Health Risk Manag. 11, 403–415 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Paul, T. et al. Prediction of adverse maternal outcomes in preeclampsia at term. Pregnancy Hypertens. 18, 75 (2019).

    Article  PubMed  Google Scholar 

  13. Brown, M. A. et al. The hypertensive disorders of pregnancy: ISSHP classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 13, 291–310 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Abalos, E., Cuesta, C., Grosso, A. L., Chou, D. & Say, L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 170, 1–7 (2013).

    Article  PubMed  Google Scholar 

  15. Tan, M. Y. et al. Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE. Ultrasound Obstet. Gynecol. 51, 743–750 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Poon, L. C. et al. ASPRE trial: incidence of preterm pre-eclampsia in patients fulfilling ACOG and NICE criteria according to risk by FMF algorithm. Ultrasound Obstet. Gynecol. 51, 738–742 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Park, F. J. et al. Clinical evaluation of a first trimester algorithm predicting the risk of hypertensive disease of pregnancy. Aust. NZ J. Obstet. Gynaecol. 53, 532–539 (2013).

    Article  Google Scholar 

  18. Wertaschnigg, D. et al. Hypertensive disorders in pregnancy–trends over eight years: a population-based cohort study. Pregnancy Hypertens. 28, 60–65 (2022).

    Article  PubMed  Google Scholar 

  19. Lokken, E. M. et al. Pooled prevalence of adverse pregnancy and neonatal outcomes in Malawi, South Africa, Uganda, and Zimbabwe: results from a systematic review and meta-analyses to inform trials of novel HIV prevention interventions during pregnancy. Front. Reprod. Health 3, 672446 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abalos, E. et al. Pre-eclampsia, eclampsia and adverse maternal and perinatal outcomes: a secondary analysis of the World Health Organization multicountry survey on maternal and newborn health. BJOG 121, 14–24 (2014).

    Article  PubMed  Google Scholar 

  21. Hodgins, S. et al. A new look at care in pregnancy: simple, effective interventions for neglected populations. PLoS ONE 11, e0160562 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Khan, K. S., Wojdyla, D., Say, L., Gülmezoglu, A. M. & Van Look, P. F. WHO analysis of causes of maternal death: a systematic review. Lancet 367, 1066–1074 (2006).

    Article  PubMed  Google Scholar 

  23. Say, L. et al. Global causes of maternal death: a WHO systematic analysis. Lancet Glob. Health 2, e323–e333 (2014).

    Article  PubMed  Google Scholar 

  24. Elawad, T. et al. Risk factors for pre-eclampsia in clinical practice guidelines: comparison with the evidence. BJOG https://doi.org/10.1111/1471-0528.17320 (2022).

    Article  PubMed  Google Scholar 

  25. [No authors listed.] ACOG practice bulletin No 202: gestational hypertension and preeclampsia. Obstet. Gynecol. 133, e1–e25 (2019).

    Google Scholar 

  26. Webster, K., Fishburn, S., Maresh, M., Findlay, S. C. & Chappell, L. C. Diagnosis and management of hypertension in pregnancy: summary of updated NICE guidance. BMJ 366, l5119 (2019).

    Article  PubMed  Google Scholar 

  27. Heestermans, T. et al. Prognostic models for adverse pregnancy outcomes in low-income and middle-income countries: a systematic review. BMJ Glob. Health 4, e001759 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chesley, L. C. & Cooper, D. W. Genetics of hypertension in pregnancy: possible single gene control of pre-eclampsia and eclampsia in the descendants of eclamptic women. BJOG 93, 898–908 (1986).

    Article  CAS  Google Scholar 

  29. Arngrimsson, R. et al. Genetic and familial predisposition to eclampsia and pre-eclampsia in a defined population. Br. J. Obstet. Gynaecol. 97, 762–769 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Duckitt, K. & Harrington, D. Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ 330, 565 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cincotta, R. B. & Brennecke, S. P. Family history of pre-eclampsia as a predictor for pre-eclampsia in primigravidas. Int. J. Gynaecol. Obstet. 60, 23–27 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Boyd, H. A., Tahir, H., Wohlfahrt, J. & Melbye, M. Associations of personal and family preeclampsia history with the risk of early-, intermediate- and late-onset preeclampsia. Am. J. Epidemiol. 178, 1611–1619 (2013).

    Article  PubMed  Google Scholar 

  33. Steinthorsdottir, V. et al. Genetic predisposition to hypertension is associated with preeclampsia in European and Central Asian women. Nat. Commun. 11, 5976–5976 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fong, F. M. et al. Maternal genotype and severe preeclampsia: a HuGE review. Am. J. Epidemiol. 180, 335–345 (2014).

    Article  PubMed  Google Scholar 

  35. Benedetto, C. et al. Factor V Leiden and factor II G20210A in preeclampsia and HELLP syndrome. Acta Obstet. Gynecol. Scand. 81, 1095–1100 (2002).

    Article  PubMed  Google Scholar 

  36. Wang, X., Bai, T., Liu, S., Pan, H. & Wang, B. Association between thrombophilia gene polymorphisms and preeclampsia: a meta-analysis. PLoS ONE 9, e100789 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ahmed, N. A., Hamdan, H. Z., Kamis, A. H. & Adam, I. The association of the prothrombin G20210A single-nucleotide polymorphism and the risk of preeclampsia: systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 253, 162–169 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Nasri, F. et al. Are genetic variations in IL-1β and IL-6 cytokines associated with the risk of pre-eclampsia? Evidence from a systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. https://doi.org/10.1080/14767058.2021.1918092 (2021).

    Article  PubMed  Google Scholar 

  39. Hiby, S. E. et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200, 957–965 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, J., Song, G., Zhao, G. & Meng, T. Gene polymorphism associated with TGF-β1 and susceptibility to preeclampsia: a meta-analysis and trial sequential analysis. J. Obstet. Gynaecol. Res. 47, 2031–2041 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Dotters-Katz, S. K. et al. Trisomy 13 and the risk of gestational hypertensive disorders: a population-based study. J. Matern. Fetal Neonatal Med. 31, 1951–1955 (2018).

    Article  PubMed  Google Scholar 

  42. Zeisler, H. et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N. Engl. J. Med. 374, 13–22 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Feitosa, M. F. et al. Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries. PLoS ONE 13, e0198166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sung, Y. J. et al. A large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure. Am. J. Hum. Genet. 102, 375–400 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gong, J., Savitz, D. A., Stein, C. R. & Engel, S. M. Maternal ethnicity and pre-eclampsia in New York City, 1995-2003. Paediatr. Perinat. Epidemiol. 26, 45–52 (2012).

    Article  PubMed  Google Scholar 

  47. Zhang, S. et al. Racial disparities in economic and clinical outcomes of pregnancy among Medicaid recipients. Matern. Child Health J. 17, 1518–1525 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Anderson, N. H., Sadler, L. C., Stewart, A. W., Fyfe, E. M. & McCowan, L. M. Ethnicity, body mass index and risk of pre-eclampsia in a multiethnic New Zealand population. Aust. NZ J. Obstet. Gynaecol. 52, 552–558 (2012).

    Article  Google Scholar 

  49. Ramaraj, R. & Chellappa, P. Cardiovascular risk in South Asians. Postgrad. Med. J. 84, 518–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Cappuccio, F. P. Ethnicity and cardiovascular risk: variations in people of African ancestry and South Asian origin. J. Hum. Hypertens. 11, 571–576 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Cappuccio, F. P., Cook, D. G., Atkinson, R. W. & Strazzullo, P. Prevalence, detection, and management of cardiovascular risk factors in different ethnic groups in south London. Heart 78, 555–563 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Arechvo, A. et al. Maternal race and preeclampsia: cohort study and systematic review with meta-analysis. BJOG https://doi.org/10.1111/1471-0528.17240 (2022).

    Article  PubMed  Google Scholar 

  53. Liu, B. et al. Reducing health inequality in Black, Asian and other minority ethnic pregnant women: impact of first trimester combined screening for placental dysfunction on perinatal mortality. BJOG 129, 1750–1756 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bianco, A. et al. Pregnancy outcome at age 40 and older. Obstet. Gynecol. 87, 917–922 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Poon, L. C., Kametas, N. A., Chelemen, T., Leal, A. & Nicolaides, K. H. Maternal risk factors for hypertensive disorders in pregnancy: a multivariate approach. J. Hum. Hypertens. 24, 104–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Mittendorf, R., Lain, K. Y., Williams, M. A. & Walker, C. K. Preeclampsia. A nested, case-control study of risk factors and their interactions. J. Reprod. Med. 41, 491–496 (1996).

    CAS  PubMed  Google Scholar 

  57. Robillard, P.-Y. et al. The blurring boundaries between placental and maternal preeclampsia: a critical appraisal of 1800 consecutive preeclamptic cases. J. Matern. Fetal Neonatal Med. https://doi.org/10.1080/14767058.2020.1786516 (2020).

    Article  PubMed  Google Scholar 

  58. Conde-Agudelo, A. & Belizán, J. M. Risk factors for pre-eclampsia in a large cohort of Latin American and Caribbean women. BJOG 107, 75–83 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Tita, A. T. et al. Treatment for mild chronic hypertension during pregnancy. N. Engl. J. Med. 386, 1781–1792 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Robillard, P. Y. et al. Increased BMI has a linear association with late-onset preeclampsia: a population-based study. PLoS ONE 14, e0223888 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Syngelaki, A., Bredaki, F. E., Vaikousi, E., Maiz, N. & Nicolaides, K. H. Body mass index at 11-13 weeks’ gestation and pregnancy complications. Fetal Diagn. Ther. 30, 250–265 (2011).

    Article  PubMed  Google Scholar 

  62. Wadhwani, P., Saha, P. K., Kalra, J. K., Gainder, S. & Sundaram, V. A study to compare maternal and perinatal outcome in early vs. late onset preeclampsia. Obstet. Gynecol. Sci. 63, 270–277 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Durst, J. K., Tuuli, M. G., Stout, M. J., Macones, G. A. & Cahill, A. G. Degree of obesity at delivery and risk of preeclampsia with severe features. Am. J. Obstet. Gynecol. 214, 651.e1–651.e5 (2016).

    Article  PubMed  Google Scholar 

  64. Martínez-Hortelano, J. A. et al. Interpregnancy weight change and hypertension during pregnancy: a systematic review and meta-analysis. Obstet. Gynecol. 135, 68–79 (2020).

    Article  PubMed  Google Scholar 

  65. Davenport, M. H. et al. Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: a systematic review and meta-analysis. Br. J. Sports Med. 52, 1367 (2018).

    Article  PubMed  Google Scholar 

  66. Garner, P. R., D’Alton, M. E., Dudley, D. K., Huard, P. & Hardie, M. Preeclampsia in diabetic pregnancies. Am. J. Obstet. Gynecol. 163, 505–508 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, Y. & Wu, N. Gestational diabetes mellitus and preeclampsia: correlation and influencing factors. Front. Cardiovasc. Med. 9, 831297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Al Khalaf, S. et al. Chronic kidney disease and adverse pregnancy outcomes: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 226, 656–670.e32 (2022).

    Article  PubMed  Google Scholar 

  69. Toloza, F. J. K. et al. Association between maternal thyroid function and risk of gestational hypertension and pre-eclampsia: a systematic review and individual-participant data meta-analysis. Lancet Diabetes Endocrinol. 10, 243–252 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Shinohara, D. R. et al. Pregnancy complications associated with maternal hypothyroidism: a systematic review. Obstet. Gynecol. Surv. 73, 219–230 (2018).

    Article  PubMed  Google Scholar 

  71. Vissenberg, R. et al. Treatment of thyroid disorders before conception and in early pregnancy: a systematic review. Hum. Reprod. Update 18, 360–373 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Alves Junior, J. M., Bernardo, W. M., Ward, L. S. & Villagelin, D. Effect of hyperthyroidism control during pregnancy on maternal and fetal outcome: a systematic review and meta-analysis. Front. Endocrinol. 13, 800257 (2022).

    Article  Google Scholar 

  73. Jiao, X.-F. et al. The impact of levothyroxine therapy on the pregnancy, neonatal and childhood outcomes of subclinical hypothyroidism during pregnancy: an updated systematic review, meta-analysis and trial sequential analysis. Front. Endocrinol. 13, 964084 (2022).

    Article  Google Scholar 

  74. Stamilio, D. M., Sehdev, H. M., Morgan, M. A., Propert, K. & Macones, G. A. Can antenatal clinical and biochemical markers predict the development of severe preeclampsia. Am. J. Obstet. Gynecol. 182, 589–594 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Clowse, M. E. B., Jamison, M., Myers, E. & James, A. H. A national study of the complications of lupus in pregnancy. Am. J. Obstet. Gynecol. 199, 127.e1–127.e6 (2008).

    Article  PubMed  Google Scholar 

  76. Abou-Nassar, K., Carrier, M., Ramsay, T. & Rodger, M. A. The association between antiphospholipid antibodies and placenta mediated complications: a systematic review and meta-analysis. Thromb. Res. 128, 77–85 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Wu, J., Ma, J., Zhang, W.-H. & Di, W. Management and outcomes of pregnancy with or without lupus nephritis: a systematic review and meta-analysis. Ther. Clin. Risk Manag. 14, 885–901 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Walter, I. J. et al. Pregnancy outcome predictors in antiphospholipid syndrome: a systematic review and meta-analysis. Autoimmun. Rev. 20, 102901 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Branch, D. W., Andres, R., Digre, K. B., Rote, N. S. & Scott, J. R. The association of antiphospholipid antibodies with severe preeclampsia. Obstet. Gynecol. 73, 541–545 (1989).

    CAS  PubMed  Google Scholar 

  80. Pattison, N. S., Chamley, L. W., McKay, E. J., Liggins, G. C. & Butler, W. S. Antiphospholipid antibodies in pregnancy: prevalence and clinical associations. Br. J. Obstet. Gynaecol. 100, 909–913 (1993).

    Article  CAS  PubMed  Google Scholar 

  81. Dreyfus, M. et al. Antiphospholipid antibodies and preeclampsia: a case-control study. Obstet. Gynecol. 97, 29–34 (2001).

    CAS  PubMed  Google Scholar 

  82. Sletnes, K. E., Wisløff, F., Moe, N. & Dale, P. O. Antiphospholipid antibodies in pre-eclamptic women: relation to growth retardation and neonatal outcome. Acta Obstet. Gynecol. Scand. 71, 112–117 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, X. et al. Gut dysbiosis induces the development of pre-eclampsia through bacterial translocation. Gut 69, 513 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Lv, L.-J. et al. Early-onset preeclampsia is associated with gut microbial alterations in antepartum and postpartum women. Front. Cell. Infect. Microbiol. 9, 224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Collier, A.-R. Y., Smith, L. A. & Karumanchi, S. A. Review of the immune mechanisms of preeclampsia and the potential of immune modulating therapy. Hum. Immunol. 82, 362–370 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Dekker, G. A. & Sibai, B. M. Etiology and pathogenesis of preeclampsia: current concepts. Am. J. Obstet. Gynecol. 179, 1359–1375 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Robillard, P. Y. et al. Paternity patterns and risk of preeclampsia in the last pregnancy in multiparae. J. Reprod. Immunol. 24, 1–12 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Skjaerven, R., Wilcox, A. J. & Lie, R. T. The interval between pregnancies and the risk of preeclampsia. N. Engl. J. Med. 346, 33–38 (2002).

    Article  PubMed  Google Scholar 

  89. Keukens, A., van Wely, M., van der Meulen, C. & Mochtar, M. H. Pre-eclampsia in pregnancies resulting from oocyte donation, natural conception or IVF: a systematic review and meta-analysis. Hum. Reprod. 37, 586–599 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. Pohjonen, E. M. et al. Obstetric and perinatal risks after the use of donor sperm: a systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 274, 210–228 (2022).

    Article  PubMed  Google Scholar 

  91. Narang, K. & Szymanski, L. M. Multiple gestations and hypertensive disorders of pregnancy: what do we know? Curr. Hypertens. Rep. 23, 1 (2020).

    Article  PubMed  Google Scholar 

  92. Jhee, J. H. et al. Prediction model development of late-onset preeclampsia using machine learning-based methods. PLoS ONE 14, e0221202 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Campbell, D. M., MacGillivray, I. & Carr-Hill, R. Pre-eclampsia in second pregnancy. Br. J. Obstet. Gynaecol. 92, 131–140 (1985).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, C. J. et al. Risk factors for pre-eclampsia in an Asian population. Int. J. Gynaecol. Obstet. 70, 327–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Mostello, D., Catlin, T. K., Roman, L., Holcomb, W. L. Jr & Leet, T. Preeclampsia in the parous woman: who is at risk? Am. J. Obstet. Gynecol. 187, 425–429 (2002).

    Article  PubMed  Google Scholar 

  96. Robillard, P. Y. et al. Validation of the 34-week gestation as definition of late onset preeclampsia: testing different cutoffs from 30 to 37 weeks on a population-based cohort of 1700 preeclamptics. Acta Obstet. Gynecol. Scand. 99, 1181–1190 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. van Oostwaard, M. F. et al. Recurrence of hypertensive disorders of pregnancy: an individual patient data metaanalysis. Am. J. Obstet. Gynecol. 212, 624.e1–624.e17 (2015).

    Article  PubMed  Google Scholar 

  98. Bhattacharya, S., McLernon, D. J., Lee, A. J. & Bhattacharya, S. Reproductive outcomes following ectopic pregnancy: register-based retrospective cohort study. PLoS Med. 9, e1001243 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sibai, B. M. et al. Risk factors associated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention (CPEP) Study Group. Am. J. Obstet. Gynecol. 177, 1003–1010 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. Aksornphusitaphong, A. & Phupong, V. Risk factors of early and late onset pre-eclampsia. J. Obstet. Gynaecol. Res. 39, 627–631 (2013).

    Article  PubMed  Google Scholar 

  101. Opdahl, S. et al. Risk of hypertensive disorders in pregnancies following assisted reproductive technology: a cohort study from the CoNARTaS group. Hum. Reprod. 30, 1724–1731 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. von Versen-Höynck, F. et al. Absent or excessive corpus luteum number is associated with altered maternal vascular health in early pregnancy. Hypertension 73, 680–690 (2019).

    Article  Google Scholar 

  103. Shi, Y. et al. Transfer of fresh versus frozen embryos in ovulatory women. N. Engl. J. Med. 378, 126–136 (2018).

    Article  PubMed  Google Scholar 

  104. Saito, K. et al. Endometrial preparation methods for frozen-thawed embryo transfer are associated with altered risks of hypertensive disorders of pregnancy, placenta accreta, and gestational diabetes mellitus. Hum. Reprod. 34, 1567–1575 (2019).

    Article  PubMed  Google Scholar 

  105. Garrido-Gómez, T., Castillo-Marco, N., Cordero, T. & Simón, C. Decidualization resistance in the origin of preeclampsia. Am. J. Obstet. Gynecol. 226, S886–S894 (2022).

    Article  PubMed  Google Scholar 

  106. Conde-Agudelo, A. & Romero, R. SARS-CoV-2 infection during pregnancy and risk of preeclampsia: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 226, 68–89.e63 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Yaghoobpoor, S. et al. Cardiovascular complications of COVID-19 among pregnant women and their fetuses: a systematic review. J. Clin. Med. 11, 6194 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mullins, E. et al. Pregnancy and neonatal outcomes of COVID-19: the PAN-COVID study. Eur. J. Obstetr. Gynecol. Reprod. Biol. 276, 161–167 (2022).

    Article  CAS  Google Scholar 

  109. Getahun, D. et al. Association between SARS-CoV-2 infection and adverse perinatal outcomes in a large health maintenance organization. Am. J. Perinatol. https://doi.org/10.1055/s-0042-1749666 (2022).

    Article  PubMed  Google Scholar 

  110. Snelgrove, J. W. et al. Preeclampsia and severe maternal morbidity during the COVID-19 pandemic: a population-based cohort study in Ontario, Canada. J. Obstet. Gynaecol. Can. 44, 777–784 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tossetta, G. et al. Preeclampsia and severe acute respiratory syndrome coronavirus 2 infection: a systematic review. J. Hypertens. 40, 1629–1638 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Zamudio, S. High-altitude hypoxia and preeclampsia. Front. Biosci. 12, 2967–2977 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moore, L. G. Hypoxia and reproductive health: reproductive challenges at high altitude: fertility, pregnancy and neonatal well-being. Reproduction 161, F81–F90 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Nieves-Colón, M. A. et al. Clotting factor genes are associated with preeclampsia in high-altitude pregnant women in the Peruvian Andes. Am. J. Hum. Genet. 109, 1117–1139 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Mandakh, Y. et al. Maternal exposure to ambient air pollution and risk of preeclampsia: a population-based cohort study in Scania, Sweden. Int. J. Env. Res. Public Health 17, 1744 (2020).

    Article  CAS  Google Scholar 

  116. Bearblock, E., Aiken, C. E. & Burton, G. J. Air pollution and pre-eclampsia; associations and potential mechanisms. Placenta 104, 188–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Gogna, P., Villeneuve, P. J., Borghese, M. M. & King, W. D. An exposure-response meta-analysis of ambient PM2.5 during pregnancy and preeclampsia. Environ. Res. 210, 112934 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Pijnenborg, R., Dixon, G., Robertson, W. B. & Brosens, I. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta 1, 3–19 (1980).

    Article  CAS  PubMed  Google Scholar 

  119. Evans, J. et al. Fertile ground: human endometrial programming and lessons in health and disease. Nat. Rev. Endocrinol. 12, 654–667 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Lunghi, L., Ferretti, M., Medici, S., Biondi, C. & Vesce, F. Control of human trophoblast function. Reprod. Biol. Endocrinol. 5, 6 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Pijnenborg, R., Bland, J. M., Robertson, W. B. & Brosens, I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta 4, 397–413 (1983).

    Article  CAS  PubMed  Google Scholar 

  122. Menkhorst, E. et al. Invasive trophoblast promote stromal fibroblast decidualization via Profilin 1 and ALOX5. Sci. Rep. 7, 8690 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Deryabin, P., Griukova, A., Nikolsky, N. & Borodkina, A. The link between endometrial stromal cell senescence and decidualization in female fertility: the art of balance. Cell. Mol. Life Sci. 77, 1357–1370 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Burton, G. J., Jauniaux, E. & Charnock-Jones, D. S. The influence of the intrauterine environment on human placental development. Int. J. Dev. Biol. 54, 303–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Lash, G. E. et al. Interaction between uterine natural killer cells and extravillous trophoblast cells: effect on cytokine and angiogenic growth factor production. Hum. Reprod. 26, 2289–2295 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Burton, G. J. & Jauniaux, E. The cytotrophoblastic shell and complications of pregnancy. Placenta 60, 134–139 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Aplin, J. D., Myers, J. E., Timms, K. & Westwood, M. Tracking placental development in health and disease. Nat. Rev. Endocrinol. 16, 479–494 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Osol, G., Ko, N. L. & Mandalà, M. Plasticity of the maternal vasculature during pregnancy. Annu. Rev. Physiol. 81, 89–111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kumar, S., Gordon, G. H., Abbott, D. H. & Mishra, J. S. Androgens in maternal vascular and placental function: implications for preeclampsia pathogenesis. Reproduction 156, R155–R167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lumbers, E. R., Delforce, S. J., Arthurs, A. L. & Pringle, K. G. Causes and consequences of the dysregulated maternal renin-angiotensin system in preeclampsia. Front. Endocrinol. 10, 563 (2019).

    Article  Google Scholar 

  131. Pereira, M. M., Torrado, J., Sosa, C., Zócalo, Y. & Bia, D. Role of arterial impairment in preeclampsia: should the paradigm shift? Am. J. Physiol. Heart Circ. Physiol. 320, H2011–H2030 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Johnson, A. C. in Handbook of Clinical Neurology Vol. 171 (eds Steegers, E. A. P., Cipolla, M. J. & Miller, E. C.) 85–96 (Elsevier, 2020).

  133. Phipps, E., Prasanna, D., Brima, W. & Jim, B. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin. J. Am. Soc. Nephrol. 11, 1102–1113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Aneman, I. et al. Mechanisms of key innate immune cells in early- and late-onset preeclampsia. Front. Immunol. 11, 1864 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Redman, C. W. G., Staff, A. C. & Roberts, J. M. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2020.09.047 (2020). A comprehensive review of our understanding of the aetiology of pre-eclampsia that encompasses both preterm and term physiology.

    Article  PubMed  Google Scholar 

  136. Staff, A. C. The two-stage placental model of preeclampsia: an update. J. Reprod. Immunol. 134–135, 1–10 (2019).

    Article  PubMed  Google Scholar 

  137. Redman, C. W., Sargent, I. L. & Staff, A. C. IFPA senior award lecture: making sense of pre-eclampsia - two placental causes of preeclampsia? Placenta 35 (Suppl.), S20–S25 (2014).

    Article  PubMed  Google Scholar 

  138. Hu, X. Q. & Zhang, L. Mitochondrial dysfunction in the pathogenesis of preeclampsia. Curr. Hypertens. Rep. 24, 157–172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pankiewicz, K., Fijałkowska, A., Issat, T. & Maciejewski, T. M. Insight into the key points of preeclampsia pathophysiology: uterine artery remodeling and the role of microRNAs. Int. J. Mol. Sci. 22, 3132 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Burton, G. J., Yung, H. W., Cindrova-Davies, T. & Charnock-Jones, D. S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30 (Suppl. A), S43–S48 (2009).

    Article  PubMed  Google Scholar 

  141. Staff, A. C. et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2020.09.026 (2020).

    Article  PubMed  Google Scholar 

  142. Kroll, J. & Waltenberger, J. VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem. Biophys. Res. Commun. 252, 743–746 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Mills, J. L. et al. Prostacyclin and thromboxane changes predating clinical onset of preeclampsia: a multicenter prospective study. JAMA 282, 356–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  144. Burton, G. J., Redman, C. W., Roberts, J. M. & Moffett, A. Pre-eclampsia: pathophysiology and clinical implications. BMJ 366, l2381 (2019).

    Article  PubMed  Google Scholar 

  145. Lyall, F., Robson, S. C. & Bulmer, J. N. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension 62, 1046–1054 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Gerretsen, G., Huisjes, H. J. & Elema, J. D. Morphological changes of the spiral arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. Br. J. Obstet. Gynaecol. 88, 876–881 (1981).

    Article  CAS  PubMed  Google Scholar 

  147. Robertson, W. B., Brosens, I. & Dixon, G. Maternal uterine vascular lesions in the hypertensive complications of pregnancy. Perspect. Nephrol. Hypertens. 5, 115–127 (1976). This publication identified that spiral artery remodelling was impaired in preterm pre-eclampsia.

    CAS  PubMed  Google Scholar 

  148. Brosens, I., Dixon, H. G. & Robertson, W. B. Fetal growth retardation and the arteries of the placental bed. Br. J. Obstet. Gynaecol. 84, 656–663 (1977).

    Article  CAS  PubMed  Google Scholar 

  149. Redman, C. W. & Staff, A. C. Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. Am. J. Obstet. Gynecol. 213 (Suppl. 4), S9.e1–S9.e4 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. O’Gorman, N. et al. Accuracy of competing-risks model in screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks’ gestation. Ultrasound Obstet. Gynecol. 49, 751–755 (2017).

    Article  PubMed  Google Scholar 

  151. Saito, S., Sakai, M., Sasaki, Y., Nakashima, A. & Shiozaki, A. Inadequate tolerance induction may induce pre-eclampsia. J. Reprod. Immunol. 76, 30–39 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Sakaguchi, S., Miyara, M., Costantino, C. M. & Hafler, D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Hosseini, A., Dolati, S., Hashemi, V., Abdollahpour-Alitappeh, M. & Yousefi, M. Regulatory T and T helper 17 cells: their roles in preeclampsia. J. Cell. Physiol. 233, 6561–6573 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Zolfaghari, M. A. et al. T lymphocytes and preeclampsia: The potential role of T-cell subsets and related MicroRNAs in the pathogenesis of preeclampsia. Am. J. Reprod. Immunol. 86, e13475 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Sargent, I. L., Borzychowski, A. M. & Redman, C. W. NK cells and human pregnancy — an inflammatory view. Trends Immunol. 27, 399–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Robertson, S. A. & Sharkey, D. J. Seminal fluid and fertility in women. Fertil. Steril. 106, 511–519 (2016).

    Article  PubMed  Google Scholar 

  157. Martínez-Varea, A., Pellicer, B., Perales-Marín, A. & Pellicer, A. Relationship between maternal immunological response during pregnancy and onset of preeclampsia. J. Immunol. Res. 2014, 210241 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Lei, J. et al. The prognostic role of angiotensin II type 1 receptor autoantibody in non-gravid hypertension and pre-eclampsia: a meta-analysis and our studies. Medicine 95, e3494 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Melchiorre, K., Sutherland, G. R., Baltabaeva, A., Liberati, M. & Thilaganathan, B. Maternal cardiac dysfunction and remodeling in women with preeclampsia at term. Hypertension 57, 85–93 (2011).

    Article  CAS  PubMed  Google Scholar 

  160. Melchiorre, K., Giorgione, V. & Thilaganathan, B. The placenta and preeclampsia: villain or victim? Am. J. Obstet. Gynecol. 226, S954–S962 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Thilaganathan, B. & Kalafat, E. Cardiovascular system in preeclampsia and beyond. Hypertension 73, 522–531 (2019).

    Article  CAS  PubMed  Google Scholar 

  162. Thilaganathan, B. Pre-eclampsia and the cardiovascular-placental axis. Ultrasound Obstet. Gynecol. 51, 714–717 (2018).

    Article  CAS  PubMed  Google Scholar 

  163. Hu, M., Li, J., Baker, P. N. & Tong, C. Revisiting preeclampsia: a metabolic disorder of the placenta. FEBS J. 289, 336–354 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Bahado-Singh, R. O. et al. Metabolomic determination of pathogenesis of late-onset preeclampsia. J. Matern. Fetal Neonatal Med. 30, 658–664 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Farina, A. et al. Gene expression in chorionic villous samples at 11 weeks’ gestation from women destined to develop preeclampsia. Prenat. Diagn. 28, 956–961 (2008).

    Article  PubMed  Google Scholar 

  166. Founds, S. A. et al. Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta 30, 15–24 (2009).

    Article  CAS  PubMed  Google Scholar 

  167. Rabaglino, M. B. & Conrad, K. P. Evidence for shared molecular pathways of dysregulated decidualization in preeclampsia and endometrial disorders revealed by microarray data integration. FASEB J. 33, 11682–11695 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jia, K., Ma, L., Wu, S. & Yang, W. Serum levels of complement factors C1q, Bb, and H in normal pregnancy and severe pre-eclampsia. Med. Sci. Monit. 25, 7087–7093 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vennou, K. E., Kontou, P. I., Braliou, G. G. & Bagos, P. G. Meta-analysis of gene expression profiles in preeclampsia. Pregnancy Hypertens. 19, 52–60 (2020).

    Article  PubMed  Google Scholar 

  170. Ren, Z. et al. Distinct placental molecular processes associated with early-onset and late-onset preeclampsia. Theranostics 11, 5028–5044 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Saei, H., Govahi, A., Abiri, A., Eghbali, M. & Abiri, M. Comprehensive transcriptome mining identified the gene expression signature and differentially regulated pathways of the late-onset preeclampsia. Pregnancy Hypertens. 25, 91–102 (2021).

    Article  PubMed  Google Scholar 

  172. Than, N. G. et al. Early pathways, biomarkers, and four distinct molecular subclasses of preeclampsia: the intersection of clinical, pathological, and high-dimensional biology studies. Placenta 125, 10–19 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Michalczyk, M., Celewicz, A., Celewicz, M., Woźniakowska-Gondek, P. & Rzepka, R. The role of inflammation in the pathogenesis of preeclampsia. Mediators Inflamm. 2020, 3864941 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. George, E. M. & Granger, J. P. Recent insights into the pathophysiology of preeclampsia. Expert Rev. Obstet. Gynecol. 5, 557–566 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Matsubara, K., Matsubara, Y., Uchikura, Y. & Sugiyama, T. Pathophysiology of preeclampsia: the role of exosomes. Int. J. Mol. Sci. 22, 2572 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wang, Z., Zhao, G., Zeng, M., Feng, W. & Liu, J. Overview of extracellular vesicles in the pathogenesis of preeclampsia. Biol. Reprod. 105, 32–39 (2021).

    Article  PubMed  Google Scholar 

  177. Flint, E. J., Cerdeira, A. S., Redman, C. W. & Vatish, M. The role of angiogenic factors in the management of preeclampsia. Acta Obstet. Gynecol. Scand. 98, 700–707 (2019).

    Article  PubMed  Google Scholar 

  178. Verlohren, S. et al. An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am. J. Obstet. Gynecol. 202, 161.e1–161.e11 (2010).

    Article  PubMed  Google Scholar 

  179. Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003). Publication demonstrating the importance of sFLT1 in the aetiology of pre-eclampsia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Venkatesha, S. et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12, 642–649 (2006).

    Article  CAS  PubMed  Google Scholar 

  181. Margioula-Siarkou, G. et al. Soluble endoglin concentration in maternal blood as a diagnostic biomarker of preeclampsia: a systematic review and meta-analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 258, 366–381 (2021).

    Article  CAS  PubMed  Google Scholar 

  182. Murthi, P., Pinar, A. A., Dimitriadis, E. & Samuel, C. S. Inflammasomes-a molecular link for altered immunoregulation and inflammation mediated vascular dysfunction in preeclampsia. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21041406 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Silber, M. et al. Inflammasome activation in preeclampsia and intrauterine growth restriction. Am. J. Reprod. Immunol. 88, e13598 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Guo, H., Callaway, J. B. & Ting, J. P. Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Nunes, P. R., Mattioli, S. V. & Sandrim, V. C. NLRP3 Activation and its relationship to endothelial dysfunction and oxidative stress: implications for preeclampsia and pharmacological interventions. Cells https://doi.org/10.3390/cells10112828 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Winship, A. L. et al. Interleukin-11 alters placentation and causes preeclampsia features in mice. Proc. Natl Acad. Sci. USA 112, 15928–15933 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Menkhorst, E. et al. Medawar’s PostEra: galectins emerged as key players during fetal-maternal glycoimmune adaptation. Front. Immunol. 12, 784473 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Menkhorst, E. et al. Galectin-7 impairs placentation and causes preeclampsia features in mice. Hypertension 76, 1185–1194 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Menkhorst, E. et al. Galectin-7 dysregulates renin-angiotensin-aldosterone and NADPH oxide synthase pathways in preeclampsia. Pregnancy Hypertens. https://doi.org/10.1016/j.preghy.2022.09.008 (2022).

    Article  PubMed  Google Scholar 

  190. Menkhorst, E., Koga, K., Van Sinderen, M. & Dimitriadis, E. Galectin-7 serum levels are altered prior to the onset of pre-eclampsia. Placenta 35, 281–285 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Pillay, P., Maharaj, N., Moodley, J. & Mackraj, I. Placental exosomes and pre-eclampsia: maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta 46, 18–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Ayala-Ramírez, P. et al. Assessment of placental extracellular vesicles-associated fas ligand and TNF-related apoptosis-inducing ligand in pregnancies complicated by early and late onset preeclampsia. Front. Physiol. 12, 708824 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Chen, Y., Huang, Y., Jiang, R. & Teng, Y. Syncytiotrophoblast-derived microparticle shedding in early-onset and late-onset severe pre-eclampsia. Int. J. Gynaecol. Obstet. 119, 234–238 (2012).

    Article  PubMed  Google Scholar 

  194. Feng, Y. et al. The blocking of integrin-mediated interactions with maternal endothelial cells reversed the endothelial cell dysfunction induced by EVs, derived from preeclamptic placentae. Int. J. Mol. Sci. https://doi.org/10.3390/ijms232113115 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Murugesan, S. et al. Extracellular vesicles from women with severe preeclampsia impair vascular endothelial function. Anesth. Analg. 134, 713–723 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Cronqvist, T. et al. Syncytiotrophoblast derived extracellular vesicles transfer functional placental miRNAs to primary human endothelial cells. Sci. Rep. 7, 4558–4558 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Palei, A. C., Spradley, F. T., Warrington, J. P., George, E. M. & Granger, J. P. Pathophysiology of hypertension in pre-eclampsia: a lesson in integrative physiology. Acta Physiol. 208, 224–233 (2013).

    Article  CAS  Google Scholar 

  198. Armaly, Z., Jadaon, J. E., Jabbour, A. & Abassi, Z. A. Preeclampsia: novel mechanisms and potential therapeutic approaches. Front. Physiol. 9, 973 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Gyselaers, W. Hemodynamic pathways of gestational hypertension and preeclampsia. Am. J. Obstet. Gynecol. 226, S988–S1005 (2022).

    Article  PubMed  Google Scholar 

  200. Örgül, G. et al. First trimester complete blood cell indices in early and late onset preeclampsia. Turk. J. Obstet. Gynecol. 16, 112–117 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Sciscione, A. C. et al. Acute pulmonary edema in pregnancy. Obstet. Gynecol. 101, 511–515 (2003).

    PubMed  Google Scholar 

  202. Pordeus, A. C. B., Katz, L., Soares, M. C., Maia, S. B. & Amorim, M. M. R. Acute pulmonary edema in an obstetric intensive care unit: a case series study. Medicine 97, e11508 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Pretorius, T., van Rensburg, G., Dyer, R. A. & Biccard, B. M. The influence of fluid management on outcomes in preeclampsia: a systematic review and meta-analysis. Int. J. Obstet. Anesth. 34, 85–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Cypher, R. L. Pulmonary edema in obstetrics: essential facts for critical care nurses. AACN Adv. Crit. Care 29, 327–335 (2018).

    Article  PubMed  Google Scholar 

  205. Stillman, I. E. & Karumanchi, S. A. The glomerular injury of preeclampsia. J. Am. Soc. Nephrol. 18, 2281–2284 (2007).

    Article  PubMed  Google Scholar 

  206. Garovic, V. D. et al. Urinary podocyte excretion as a marker for preeclampsia. Am. J. Obstet. Gynecol. 196, 320.e1–320.e7 (2007).

    Article  PubMed  Google Scholar 

  207. Collino, F. et al. Preeclamptic sera induce nephrin shedding from podocytes through endothelin-1 release by endothelial glomerular cells. Am. J. Physiol. Ren. Physiol. 294, F1185–F1194 (2008).

    Article  CAS  Google Scholar 

  208. Magee, L. A., Nicolaides, K. H. & von Dadelszen, P. Preeclampsia. N. Engl. J. Med. 386, 1817–1832 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Steingrub, J. S. Pregnancy-associated severe liver dysfunction. Crit. Care Clin. 20, 763–776 (2004).

    Article  PubMed  Google Scholar 

  210. Mikolasevic, I. et al. Liver disease during pregnancy: a challenging clinical issue. Med. Sci. Monit. 24, 4080–4090 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Haram, K., Svendsen, E. & Abildgaard, U. The HELLP syndrome: clinical issues and management. A review. BMC Pregnancy Childbirth 9, 8 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Sibai, B. M. The HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets): much ado about nothing. Am. J. Obstet. Gynecol. 162, 311–316 (1990).

    Article  CAS  PubMed  Google Scholar 

  213. Miller, E. C. & Vollbracht, S. Neurology of preeclampsia and related disorders: an update in neuro-obstetrics. Curr. Pain Headache Rep. 25, 40 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Duley, L. The global impact of pre-eclampsia and eclampsia. Semin. Perinatol. 33, 130–137 (2009).

    Article  PubMed  Google Scholar 

  215. Miller, E. C. Preeclampsia and cerebrovascular disease. Hypertension 74, 5–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  216. Yousif, D. et al. Autonomic dysfunction in preeclampsia: a systematic review. Front. Neurol. 10, 816 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Mahendra, V., Clark, S. L. & Suresh, M. S. Neuropathophysiology of preeclampsia and eclampsia: a review of cerebral hemodynamic principles in hypertensive disorders of pregnancy. Pregnancy Hypertens. 23, 104–111 (2021).

    Article  PubMed  Google Scholar 

  218. Andersson, M. et al. Signs of neuroaxonal injury in preeclampsia — a case control study. PLoS ONE 16, e0246786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Nardozza, L. M. M. et al. Fetal growth restriction: current knowledge. Arch. Gynecol. Obstet. 295, 1061–1077 (2017).

    Article  PubMed  Google Scholar 

  220. Takahashi, M. et al. Fetal growth restriction as the initial finding of preeclampsia is a clinical predictor of maternal and neonatal prognoses: a single-center retrospective study. BMC Pregnancy Childbirth 21, 1–8 (2021).

    Article  Google Scholar 

  221. Wojtowicz, A. et al. Early-and late-onset preeclampsia: a comprehensive cohort study of laboratory and clinical findings according to the new ISHHP criteria. Int. J. Hypertens. 2019, 4108271 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Madazli, R. et al. Comparison of clinical and perinatal outcomes in early-and late-onset preeclampsia. Arch. Gynecol. Obstet. 290, 53–57 (2014).

    Article  PubMed  Google Scholar 

  223. Egbor, M., Ansari, T., Morris, N., Green, C. & Sibbons, P. Maternal medicine: morphometric placental villous and vascular abnormalities in early‐and late‐onset pre‐eclampsia with and without fetal growth restriction. BJOG 113, 580–589 (2006).

    Article  CAS  PubMed  Google Scholar 

  224. Brown, M. A., Lindheimer, M. D., de Swiet, M., Van Assche, A. & Moutquin, J. M. The classification and diagnosis of the hypertensive disorders of pregnancy: statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens. Pregnancy 20, ix–xiv (2001).

    Article  CAS  PubMed  Google Scholar 

  225. Lai, J., Syngelaki, A., Nicolaides, K. H., von Dadelszen, P. & Magee, L. A. Impact of new definitions of preeclampsia at term on identification of adverse maternal and perinatal outcomes. Am. J. Obstet. Gynecol. 224, 518.e1–518.e11 (2021).

    Article  CAS  PubMed  Google Scholar 

  226. Reddy, M. et al. The impact of the definition of preeclampsia on disease diagnosis and outcomes: a retrospective cohort study. Am. J. Obstet. Gynecol. 224, 217.e1–217.e11 (2021).

    Article  PubMed  Google Scholar 

  227. Sinkey, R. G. et al. Prevention, diagnosis, and management of hypertensive disorders of pregnancy: a comparison of international guidelines. Curr. Hypertens. Rep. 22, 66–66 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Chappell, L. C., Cluver, C. A., Kingdom, J. & Tong, S. Pre-eclampsia. Lancet 398, 341–354 (2021).

    Article  CAS  PubMed  Google Scholar 

  229. Agrawal, S., Cerdeira, A. S., Redman, C. & Vatish, M. Meta-analysis and systematic review to assess the role of soluble FMS-like tyrosine kinase-1 and placenta growth factor ratio in prediction of preeclampsia: the SaPPPhirE study. Hypertension 71, 306–316 (2018).

    Article  CAS  PubMed  Google Scholar 

  230. Veisani, Y., Jenabi, E., Delpisheh, A. & Khazaei, S. Angiogenic factors and the risk of preeclampsia: a systematic review and meta-analysis. Int. J. Reprod. Biomed. 17, 1–10 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Duhig, K. E. et al. Prognostic indicators of severe disease in late preterm pre-eclampsia to guide decision making on timing of delivery: the PEACOCK study. Pregnancy Hypertens. 24, 90–95 (2021).

    Article  PubMed  Google Scholar 

  232. Lim, S. et al. Biomarkers and the prediction of adverse outcomes in preeclampsia: a systematic review and meta-analysis. Obstet. Gynecol. 137, 72–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  233. Liu, Y. et al. Diagnostic accuracy of the soluble Fms-like tyrosine kinase-1/placental growth factor ratio for preeclampsia: a meta-analysis based on 20 studies. Arch. Gynecol. Obstet. 292, 507–518 (2015).

    Article  CAS  PubMed  Google Scholar 

  234. Huhn, E. A. et al. Diagnostic accuracy of different soluble fms-like tyrosine kinase 1 and placental growth factor cut-off values in the assessment of preterm and term preeclampsia: a gestational age matched case-control study. Front. Med. 5, 325–325 (2018).

    Article  Google Scholar 

  235. Duhig, K. E. et al. Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial. Lancet 393, 1807–1818 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Ovayolu, A. et al. Measuring the status of maternal serum thiol/disulfide couples in the diagnosis and/or the determination of the severity of late-onset preeclampsia. J. Matern. Fetal Neonatal Med. https://doi.org/10.1080/14767058.2021.1904393 (2021).

    Article  PubMed  Google Scholar 

  237. Cheng, S. et al. Novel blood test for early biomarkers of preeclampsia and Alzheimer’s disease. Sci. Rep. 11, 15934–15934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Uzun, N., Sarııbrahım Astepe, B., Uzun, F. & Kale, E. Predictive value of maternal serum podocalyxin in the diagnosis of preeclampsia: a prospective case-control study. Ginekol. Pol. https://doi.org/10.5603/GP.a2021.0108 (2021).

    Article  PubMed  Google Scholar 

  239. Sibai, B. M. et al. Maternal morbidity and mortality in 442 pregnancies with hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome). Am. J. Obstet. Gynecol. 169, 1000–1006 (1993).

    Article  CAS  PubMed  Google Scholar 

  240. Douglas, K. A. & Redman, C. W. Eclampsia in the United Kingdom. BMJ 309, 1395–1400 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Zwertbroek, E. F. et al. Prediction of progression to severe disease in women with late preterm hypertensive disorders of pregnancy. Acta Obstet. Gynecol. Scand. 96, 96–105 (2017).

    Article  PubMed  Google Scholar 

  242. von Dadelszen, P. et al. Prediction of adverse maternal outcomes in pre-eclampsia: development and validation of the fullPIERS model. Lancet 377, 219–227 (2011).

    Article  Google Scholar 

  243. Koopmans, C. M. et al. Induction of labour versus expectant monitoring for gestational hypertension or mild pre-eclampsia after 36 weeks’ gestation (HYPITAT): a multicentre, open-label randomised controlled trial. Lancet 374, 979–988 (2009).

    Article  PubMed  Google Scholar 

  244. Broekhuijsen, K. et al. Immediate delivery versus expectant monitoring for hypertensive disorders of pregnancy between 34 and 37 weeks of gestation (HYPITAT-II): an open-label, randomised controlled trial. Lancet 385, 2492–2501 (2015).

    Article  PubMed  Google Scholar 

  245. Bian, X. et al. Short-term prediction of adverse outcomes using the sFlt-1 (soluble fms-like tyrosine kinase 1)/PlGF (placental growth factor) ratio in Asian women with suspected preeclampsia. Hypertension 74, 164–172 (2019).

    Article  CAS  PubMed  Google Scholar 

  246. Reddy, M. et al. Role of placental, fetal and maternal cardiovascular markers in predicting adverse outcome in women with suspected or confirmed pre-eclampsia. Ultrasound Obstet. Gynecol. 59, 596–605 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. Ukah, U. V. et al. Assessment of the fullPIERS risk prediction model in women with early-onset preeclampsia. Hypertension 71, 659–665 (2018).

    Article  CAS  PubMed  Google Scholar 

  248. O’Gorman, N. et al. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obstet. Gynecol. 214, 103.e1–103.e12 (2016).

    Article  PubMed  Google Scholar 

  249. Tan, M. Y. et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks’ gestation. Ultrasound Obstet. Gynecol. 52, 186–195 (2018).

    Article  CAS  PubMed  Google Scholar 

  250. Wright, D., Wright, A. & Nicolaides, K. H. The competing risk approach for prediction of preeclampsia. Am. J. Obstet. Gynecol. 223, 12–23.e17 (2020).

    Article  CAS  PubMed  Google Scholar 

  251. Poon, L. C. et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. 145 (Suppl. 1), 1–33 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Rolnik, D. L. et al. Routine first trimester combined screening for preterm preeclampsia in Australia: a multicenter clinical implementation cohort study. Int. J. Gynaecol. Obstet. https://doi.org/10.1002/ijgo.14049 (2021).

    Article  PubMed  Google Scholar 

  253. Park, F., Deeming, S., Bennett, N. & Hyett, J. Cost-effectiveness analysis of a model of first-trimester prediction and prevention of preterm pre-eclampsia compared with usual care. Ultrasound Obstet. Gynecol. 58, 688–697 (2021).

    Article  CAS  PubMed  Google Scholar 

  254. Sotiriadis, A. et al. ISUOG Practice Guidelines: role of ultrasound in screening for and follow-up of pre-eclampsia. Ultrasound Obstet. Gynecol. 53, 7–22 (2019).

    Article  CAS  PubMed  Google Scholar 

  255. Litwinska, M., Syngelaki, A., Wright, A., Wright, D. & Nicolaides, K. H. Management of pregnancies after combined screening for pre-eclampsia at 19–24 weeks’ gestation. Ultrasound Obstet. Gynecol. 52, 365–372 (2018).

    Article  CAS  PubMed  Google Scholar 

  256. Black, C. et al. Prediction of preterm pre-eclampsia at midpregnancy using a multivariable screening algorithm. Aust. NZ J. Obstet. Gynaecol. 60, 675–682 (2020).

    Article  Google Scholar 

  257. Wright, D., Dragan, I., Syngelaki, A., Akolekar, R. & Nicolaides, K. H. Proposed clinical management of pregnancies after combined screening for pre-eclampsia at 30–34 weeks’ gestation. Ultrasound Obstet. Gynecol. 49, 194–200 (2017).

    Article  CAS  PubMed  Google Scholar 

  258. Panaitescu, A. et al. Screening for pre-eclampsia at 35–37 weeks’ gestation. Ultrasound Obstet. Gynecol. 52, 501–506 (2018).

    Article  CAS  PubMed  Google Scholar 

  259. Teoh, S. S. Y. et al. Low serum levels of HtrA3 at 15 weeks of gestation are associated with late-onset preeclampsia development and small for gestational age birth. Fetal Diagn. Ther. 46, 392–401 (2019).

    Article  PubMed  Google Scholar 

  260. Rasmussen, M. et al. RNA profiles reveal signatures of future health and disease in pregnancy. Nature 601, 422–427 (2022). This paper demonstrates that circulating placental RNA can predict pre-eclampsia risk, which has exciting potential as a predictive biomarker.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Moufarrej, M. N. et al. Early prediction of preeclampsia in pregnancy with cell-free RNA. Nature 602, 689–694 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Panaitescu, B. et al. ELABELA plasma concentrations are increased in women with late-onset preeclampsia. J. Matern. Fetal Neonatal Med. 33, 5–15 (2020).

    Article  CAS  PubMed  Google Scholar 

  263. Alici Davutoğlu, E. et al. Evaluation of maternal serum hypoxia inducible factor-1α, progranulin and syndecan-1 levels in pregnancies with early- and late-onset preeclampsia. J. Matern. Fetal Neonatal Med. 31, 1976–1982 (2018).

    Article  PubMed  Google Scholar 

  264. Beaufils, M., Uzan, S., Donsimoni, R. & Colau, J. C. Prevention of pre-eclampsia by early antiplatelet therapy. Lancet 1, 840–842 (1985).

    Article  CAS  PubMed  Google Scholar 

  265. Hauth, J. C. et al. Low-dose aspirin therapy to prevent preeclampsia. Am. J. Obstet. Gynecol. 168, 1083–1091 (1993).

    Article  CAS  PubMed  Google Scholar 

  266. Imperiale, T. F. & Petrulis, A. S. A meta-analysis of low-dose aspirin for the prevention of pregnancy-induced hypertensive disease. JAMA 266, 260–264 (1991).

    Article  CAS  PubMed  Google Scholar 

  267. Wallenburg, H. C. S., Makovitz, J. W., Dekker, G. A. & Rotmans, P. Low-dose aspirin prevents pregnancy-induced hypertension and pre-eclampsia in angiotensin-sensitive primigravidae. Lancet 327, 1–3 (1986).

    Article  Google Scholar 

  268. Askie, L. M., Duley, L., Henderson-Smart, D. J. & Stewart, L. A. Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data. Lancet 369, 1791–1798 (2007).

    Article  CAS  PubMed  Google Scholar 

  269. Kinshella, M.-L. W. et al. Calcium for pre-eclampsia prevention: a systematic review and network meta-analysis to guide personalised antenatal care. BJOG https://doi.org/10.1111/1471-0528.17222 (2022).

    Article  PubMed  Google Scholar 

  270. Grobman, W. A. et al. Labor induction versus expectant management in low-risk nulliparous women. N. Engl. J. Med. 379, 513–523 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Aldika Akbar, M. I. et al. INOVASIA study: a multicenter randomized clinical trial of pravastatin to prevent preeclampsia in high risk patients. Am. J. Perinatol. https://doi.org/10.1055/a-1798-1925 (2022).

    Article  Google Scholar 

  272. Döbert, M. et al. Pravastatin versus placebo in pregnancies at high risk of term preeclampsia. Circulation 144, 670–679 (2021).

    Article  PubMed  Google Scholar 

  273. Tarry-Adkins, J. L., Ozanne, S. E. & Aiken, C. E. Impact of metformin treatment during pregnancy on maternal outcomes: a systematic review/meta-analysis. Sci. Rep. 11, 9240 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Syngelaki, A. et al. Metformin versus placebo in obese pregnant women without diabetes mellitus. N. Engl. J. Med. 374, 434–443 (2016).

    Article  CAS  PubMed  Google Scholar 

  275. Irwinda, R., Hiksas, R., Lokeswara, A. W. & Wibowo, N. Vitamin D supplementation higher than 2000 IU/day compared to lower dose on maternal-fetal outcome: systematic review and meta-analysis. Womens Health 18, 17455057221111066 (2022).

    CAS  Google Scholar 

  276. Cruz-Lemini, M., Vázquez, J. C., Ullmo, J. & Llurba, E. Low-molecular-weight heparin for prevention of preeclampsia and other placenta-mediated complications: a systematic review and meta-analysis. Am. J. Obstet. Gynecol. 226, S1126–S1144.e17 (2022).

    Article  CAS  PubMed  Google Scholar 

  277. Sibai, B. M. Evaluation and management of severe preeclampsia before 34 weeks’ gestation. Am. J. Obstet. Gynecol. 205, 191–198 (2011).

    Article  PubMed  Google Scholar 

  278. Easterling, T. et al. Oral antihypertensive regimens (nifedipine retard, labetalol, and methyldopa) for management of severe hypertension in pregnancy: an open-label, randomised controlled trial. Lancet 394, 1011–1021 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Nij Bijvank, S. W. et al. Nicardipine for treating severe antepartum hypertension during pregnancy: Nine years of experience in more than 800 women. Acta Obstet. Gynecol. Scand. https://doi.org/10.1111/aogs.14406 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Impey, L. Severe hypotension and fetal distress following sublingual administration of nifedipine to a patient with severe pregnancy induced hypertension at 33 weeks. Br. J. Obstet. Gynaecol. 100, 959–961 (1993).

    Article  CAS  PubMed  Google Scholar 

  281. Magee, L. A., Namouz-Haddad, S., Cao, V., Koren, G. & von Dadelszen, P. Labetalol for hypertension in pregnancy. Expert Opin. Drug Saf. 14, 453–461 (2015).

    Article  CAS  PubMed  Google Scholar 

  282. Wiciński, M., Malinowski, B., Puk, O., Socha, M. & Słupski, M. Methyldopa as an inductor of postpartum depression and maternal blues: a review. Biomed. Pharmacother. 127, 110196 (2020).

    Article  PubMed  Google Scholar 

  283. Magee, L. A. et al. Less-tight versus tight control of hypertension in pregnancy. N. Engl. J. Med. 372, 407–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  284. Abalos, E., Duley, L., Steyn, D. W. & Gialdini, C. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database Syst. Rev. 10, CD002252 (2018).

    PubMed  Google Scholar 

  285. Chappell, L. C. et al. Planned early delivery or expectant management for late preterm pre-eclampsia (PHOENIX): a randomised controlled trial. Lancet 394, 1181–1190 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Beardmore-Gray, A. et al. Planned delivery or expectant management in preeclampsia: an individual participant data meta-analysis. Am. J. Obstet. Gynecol. 227, 218–230.e8 (2022).

    Article  PubMed  Google Scholar 

  287. Poon, L. C. et al. Aspirin for evidence-based preeclampsia prevention trial: effect of aspirin in prevention of preterm preeclampsia in subgroups of women according to their characteristics and medical and obstetrical history. Am. J. Obstet. Gynecol. 217, 585.e1–585.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  288. Bullo, M., Tschumi, S., Bucher, B. S., Bianchetti, M. G. & Simonetti, G. D. Pregnancy outcome following exposure to angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists: a systematic review. Hypertension 60, 444–450 (2012).

    Article  CAS  PubMed  Google Scholar 

  289. Duley, L. & Gulmezoglu, A. M. Magnesium sulphate versus lytic cocktail for eclampsia. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.Cd002960 (2001).

    Article  PubMed  Google Scholar 

  290. Altman, D. et al. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie trial: a randomised placebo-controlled trial. Lancet 359, 1877–1890 (2002).

    Article  PubMed  Google Scholar 

  291. Lam, M. T. C. & Dierking, E. Intensive care unit issues in eclampsia and HELLP syndrome. Int. J. Crit. Illn. Inj. Sci. 7, 136–141 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Mosca, L. et al. Effectiveness-based guidelines for the prevention of cardiovascular disease in women–2011 update: a guideline from the American Heart Association. Circulation 123, 1243–1262 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  293. Seely, E. W. et al. Cardiovascular health after preeclampsia: patient and provider perspective. J. Womens Health 30, 305–313 (2021).

    Article  Google Scholar 

  294. Cairns, A. E. et al. Self-management of postnatal hypertension: the SNAP-HT trial. Hypertension 72, 425–432 (2018).

    Article  CAS  PubMed  Google Scholar 

  295. Kitt, J. A. et al. Short-term postpartum blood pressure self-management and long-term blood pressure control: a randomized controlled trial. Hypertension 78, 469–479 (2021).

    Article  CAS  PubMed  Google Scholar 

  296. Mongraw-Chaffin, M. L., Cirillo, P. M. & Cohn, B. A. Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension 56, 166–171 (2010).

    Article  CAS  PubMed  Google Scholar 

  297. Dall’Asta, A. et al. Cardiovascular events following pregnancy complicated by pre‐eclampsia with emphasis on comparison between early‐and late‐onset forms: systematic review and meta‐analysis. Ultrasound Obstet. Gynecol. 57, 698–709 (2021).

    Article  PubMed  Google Scholar 

  298. Rich-Edwards, J. W. et al. Randomized trial to reduce cardiovascular risk in women with recent preeclampsia. J. Womens Health 28, 1493–1504 (2019).

    Article  Google Scholar 

  299. Paauw, N. D., Luijken, K., Franx, A., Verhaar, M. C. & Lely, A. T. Long-term renal and cardiovascular risk after preeclampsia: towards screening and prevention. Clin. Sci. 130, 239–246 (2016).

    Article  CAS  Google Scholar 

  300. Vikse, B. E., Irgens, L. M., Leivestad, T., Skjærven, R. & Iversen, B. M. Preeclampsia and the risk of end-stage renal disease. N. Engl. J. Med. 359, 800–809 (2008).

    Article  CAS  PubMed  Google Scholar 

  301. Postma, I. R. et al. Cerebral white matter lesions, subjective cognitive failures, and objective neurocognitive functioning: a follow-up study in women after hypertensive disorders of pregnancy. J. Clin. Exp. Neuropsychol. 38, 585–598 (2016).

    Article  PubMed  Google Scholar 

  302. Nuckols, V. R. et al. Twenty-four-hour blood pressure variability is associated with lower cognitive performance in young women with a recent history of preeclampsia. Am. J. Hypertens. 34, 1291–1299 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Bellamy, L., Casas, J.-P., Hingorani, A. D. & Williams, D. J. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335, 974 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Aukes, A. et al. Long‐term cerebral imaging after pre‐eclampsia. BJOG 119, 1117–1122 (2012).

    Article  CAS  PubMed  Google Scholar 

  305. Hammer, E. S. & Cipolla, M. J. Cerebrovascular dysfunction in preeclamptic pregnancies. Curr. Hypertens. Rep. 17, 1–8 (2015).

    Article  Google Scholar 

  306. Postma, I. R., Slager, S., Kremer, H. P., de Groot, J. C. & Zeeman, G. G. Long-term consequences of the posterior reversible encephalopathy syndrome in eclampsia and preeclampsia: a review of the obstetric and nonobstetric literature. Obstet. Gynecol. Surv. 69, 287–300 (2014).

    Article  PubMed  Google Scholar 

  307. Wang, F., Zhang, W., Cheng, W., Huo, N. & Zhang, S. Preeclampsia and cancer risk in women in later life: a systematic review and meta-analysis of cohort studies. Menopause 28, 1070–1078 (2021).

    Article  PubMed  Google Scholar 

  308. Benagiano, M., Mancuso, S., Brosens, J. J. & Benagiano, G. Long-term consequences of placental vascular pathology on the maternal and offspring cardiovascular systems. Biomolecules 11, 1625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Williams, D. Long-term complications of preeclampsia. Semin. Nephrol. 31, 111–122 (2011).

    Article  PubMed  Google Scholar 

  310. Hoodbhoy, Z. et al. Cardiovascular dysfunction in children exposed to preeclampsia during fetal life. J. Am. Soc. Echocardiogr. 34, 653–661 (2021).

    Article  PubMed  Google Scholar 

  311. Lazdam, M. et al. Unique blood pressure characteristics in mother and offspring after early onset preeclampsia. Hypertension 60, 1338–1345 (2012).

    Article  CAS  PubMed  Google Scholar 

  312. van Wassenaer, A. G. et al. Outcome at 4.5 years of children born after expectant management of early-onset hypertensive disorders of pregnancy. Am. J. Obstet. Gynecol. 204, e1–e9 (2011).

    Google Scholar 

  313. Stern, C. et al. The impact of severe preeclampsia on maternal quality of life. Qual. Life Res. 23, 1019–1026 (2014).

    Article  PubMed  Google Scholar 

  314. Cetin, O., Guzel Ozdemir, P., Kurdoglu, Z. & Sahin, H. G. Investigation of maternal psychopathological symptoms, dream anxiety and insomnia in preeclampsia. J. Matern. Fetal Neonatal Med. 30, 2510–2515 (2017).

    Article  PubMed  Google Scholar 

  315. Rep, A., Ganzevoort, W., Bonsel, G. J., Wolf, H. & de Vries, J. I. Psychosocial impact of early-onset hypertensive disorders and related complications in pregnancy. Am. J. Obstet. Gynecol. 197, 158.e1–158.e6 (2007).

    Article  PubMed  Google Scholar 

  316. Hoedjes, M. et al. Postpartum depression after mild and severe preeclampsia. J. Womens Health 20, 1535–1542 (2011).

    Article  Google Scholar 

  317. Hoedjes, M. et al. Poor health‐related quality of life after severe preeclampsia. Birth 38, 246–255 (2011).

    Article  PubMed  Google Scholar 

  318. Hoedjes, M. et al. Symptoms of post-traumatic stress after preeclampsia. J. Psychosom. Obstet. Gynaecol. 32, 126–134 (2011).

    Article  PubMed  Google Scholar 

  319. Gaugler-Senden, I. P. et al. Maternal psychosocial outcome after early onset preeclampsia and preterm birth. J. Matern. Fetal Neonatal Med. 25, 272–276 (2012).

    Article  PubMed  Google Scholar 

  320. Taylor, E. B. & George, E. M. Animal models of preeclampsia: mechanistic insights and promising therapeutics. Endocrinology https://doi.org/10.1210/endocr/bqac096 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  321. Waker, C. A., Kaufman, M. R. & Brown, T. L. Current state of preeclampsia mouse models: approaches, relevance, and standardization. Front. Physiol. 12, 681632 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Davisson, R. L. et al. Discovery of a spontaneous genetic mouse model of preeclampsia. Hypertension 39, 337–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  323. Kumasawa, K. et al. Pravastatin induces placental growth factor (PGF) and ameliorates preeclampsia in a mouse model. Proc. Natl Acad. Sci. USA 108, 1451–1455 (2011).

    Article  CAS  PubMed  Google Scholar 

  324. Takimoto, E. et al. Hypertension induced in pregnant mice by placental renin and maternal angiotensinogen. Science 274, 995–998 (1996).

    Article  CAS  PubMed  Google Scholar 

  325. Bohlender, J., Ganten, D. & Luft, F. C. Rats transgenic for human renin and human angiotensinogen as a model for gestational hypertension. J. Am. Soc. Nephrol. 11, 2056 (2000).

    Article  CAS  PubMed  Google Scholar 

  326. Doridot, L. et al. Preeclampsia-like symptoms induced in mice by fetoplacental expression of STOX1 are reversed by aspirin treatment. Hypertension 61, 662–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  327. Singh, J., Ahmed, A. & Girardi, G. Role of complement component C1q in the onset of preeclampsia in mice. Hypertension 58, 716–724 (2011).

    Article  CAS  PubMed  Google Scholar 

  328. Alexander, B. T. et al. Reduced uterine perfusion pressure during pregnancy in the rat is associated with increases in arterial pressure and changes in renal nitric oxide. Hypertension 37, 1191–1195 (2001).

    Article  CAS  PubMed  Google Scholar 

  329. Cavanagh, D., Rao, P. S., Tung, K. S. K. & Gaston, L. Eclamptogenic toxemia: the development of an experimental model in the subhuman primate. Am. J. Obstet. Gynecol. 120, 183–196 (1974).

    Article  CAS  PubMed  Google Scholar 

  330. Yallampalli, C. & Garfield, R. E. Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am. J. Obstet. Gynecol. 169, 1316–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  331. Fan, M. et al. LPS induces preeclampsia-like phenotype in rats and HTR8/SVneo cells dysfunction through TLR4/p38 MAPK pathway. Front. Physiol. 10, 1030 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  332. Kohli, S. et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood 128, 2153–2164 (2016).

    Article  CAS  PubMed  Google Scholar 

  333. Kalkunte, S. et al. Sera from preeclampsia patients elicit symptoms of human disease in mice and provide a basis for an in vitro predictive assay. Am. J. Pathol. 177, 2387–2398 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  334. Baijnath, S., Soobryan, N., Mackraj, I., Gathiram, P. & Moodley, J. The optimization of a chronic nitric oxide synthase (NOS) inhibition model of pre-eclampsia by evaluating physiological changes. Eur. J. Obstet. Gynecol. Reprod. Biol. 182, 71–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  335. Soobryan, N. et al. The effects of sildenafil citrate on uterine angiogenic status and serum inflammatory markers in an L-NAME rat model of pre-eclampsia. Eur. J. Pharmacol. 795, 101–107 (2017).

    Article  CAS  PubMed  Google Scholar 

  336. Baijnath, S., Murugesan, S., Mackraj, I., Gathiram, P. & Moodley, J. The effects of sildenafil citrate on urinary podocin and nephrin mRNA expression in an L-NAME model of pre-eclampsia. Mol. Cell Biochem. 427, 59–67 (2017).

    Article  CAS  PubMed  Google Scholar 

  337. Possomato-Vieira, J. S., Gonçalves-Rizzi, V. H., Graça, T. U., Nascimento, R. A. & Dias-Junior, C. A. Sodium hydrosulfide prevents hypertension and increases in vascular endothelial growth factor and soluble fms-like tyrosine kinase-1 in hypertensive pregnant rats. Naunyn Schmiedebergs Arch. Pharmacol. 389, 1325–1332 (2016).

    Article  CAS  PubMed  Google Scholar 

  338. Oludare, G. O., Jinadu, H. D. & Aro, O. O. L-arginine attenuates blood pressure and reverses the suppression of angiogenic risk factors in a rat model of preeclampsia. Pathophysiology 25, 389–395 (2018).

    Article  CAS  PubMed  Google Scholar 

  339. Kasture, V. et al. Maternal omega-3 fatty acids and vitamin E improve placental angiogenesis in late-onset but not early-onset preeclampsia. Mol. Cell Biochem. 461, 159–170 (2019).

    Article  CAS  PubMed  Google Scholar 

  340. Goulopoulou, S. Maternal vascular physiology in preeclampsia. Hypertension 70, 1066–1073 (2017).

    Article  CAS  PubMed  Google Scholar 

  341. Feng, X. et al. Comparison of vascular responses to vasoconstrictors in human placenta in preeclampsia between preterm and later term. Curr. Pharm. Biotechnol. 21, 727–733 (2020).

    Article  CAS  PubMed  Google Scholar 

  342. Langston-Cox, A., Leo, C. H., Tare, M., Wallace, E. M. & Marshall, S. A. Sulforaphane improves vascular reactivity in mouse and human arteries after “preeclamptic-like” injury. Placenta 101, 242–250 (2020).

    Article  CAS  PubMed  Google Scholar 

  343. Schneider, H. & Huch, A. Dual in vitro perfusion of an isolated lobe of human placenta: method and instrumentation. Contrib. Gynecol. Obstet. 13, 40–47 (1985).

    Article  CAS  PubMed  Google Scholar 

  344. Jain, A. et al. Hypoxic treatment of human dual placental perfusion induces a preeclampsia-like inflammatory response. Lab. Invest. 94, 873–880 (2014).

    Article  CAS  PubMed  Google Scholar 

  345. May, K. et al. Perfusion of human placenta with hemoglobin introduces preeclampsia-like injuries that are prevented by α1-microglobulin. Placenta 32, 323–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  346. Guller, S. et al. Protein composition of microparticles shed from human placenta during placental perfusion: potential role in angiogenesis and fibrinolysis in preeclampsia. Placenta 32, 63–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  347. Guller, S., Ma, Y., Malek, A., Di Santo, S. & Schneider, H. Differential release of plasminogen activator inhibitors (PAIs) during dual perfusion of human placenta: implications in preeclampsia. Placenta 28, 278–285 (2007).

    Article  CAS  PubMed  Google Scholar 

  348. Turco, M. Y. et al. Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 564, 263–267 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Dimitriadis, E., Menkhorst, E., Saito, S., Kutteh, W. H. & Brosens, J. J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers 6, 98 (2020).

    Article  PubMed  Google Scholar 

  350. Adorno, M., Maher-Griffiths, C. & Grush Abadie, H. R. HELLP syndrome. Crit. Care Nurs. Clin. North Am. 34, 277–288 (2022).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (E.M.); Epidemiology (E.M., D.L.R. and C.W); Mechanisms/pathophysiology (E.D., E.M., W.Z. and G.E.-G.); Diagnosis, screening and prevention (D.L.R., F.d.S.C., J.H. and K.N.); Management (D.L.R., K.K., R.P.V.F. and J.H.); Quality of life (W.Z. and F.d.S.C.); Outlook (E.D.); Overview of Primer (E.M. and E.D.)

Corresponding author

Correspondence to Ellen Menkhorst.

Ethics declarations

Competing interests

F.d.S.C. has Research Funding from ThermoFisher for an angiogenic marker study (sFLT1/PGF). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks M. K. Santillan; S. R. Hansson; R. Dechend; P. Nunes, who co-reviewed with V. C. Sandrim; E. Toivonen, who co-reviewed with H. M. Laivuori; and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Anticardiolipin antibodies

Auto-antibodies found in antiphospholipid syndrome.

Antiphospholipid syndrome

Autoimmune disease characterized by recurring thromboses, recurrent pregnancy loss and thrombocytopenia.

Chorionicity

The number of placentas in a pregnancy.

Cytotrophoblasts

Trophoblast progenitor stem cells located interior to the syncytiotrophoblast in placental villus and in cell columns that anchor placental villus to the decidua.

Decidua

The modified endometrial layer during pregnancy into which the placenta is anchored.

Extravillous trophoblasts

Differentiated cytotrophoblasts that invade from cell columns into the decidua and engraft maternal spiral arteries.

Lupus anticoagulant

Immunoglobulin that binds to phospholipids and increases the risk of developing thromboses.

Placental malperfusion

Reduced maternal blood flow to the intervillous space of the placenta.

Primiparity

Term used to describe a first pregnancy and/or to have given birth only once.

Syncytiotrophoblast

Multinucleated, continuous trophoblast that covers the entire surface of the placental villus and is in direct contact with maternal blood.

Trophoblast

Non-embryonic fetal cells derived from the trophectoderm of the blastocyst.

Uterine spiral arteries

Small arteries that supply blood to the endometrium of the uterus during the menstrual cycle and the intervillus space of the placenta during pregnancy.

Zygosity

Genetic similarity of fetuses in multifetal pregnancies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimitriadis, E., Rolnik, D.L., Zhou, W. et al. Pre-eclampsia. Nat Rev Dis Primers 9, 8 (2023). https://doi.org/10.1038/s41572-023-00417-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-023-00417-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing