Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Keratoconus

Abstract

Keratoconus is a progressive eye disorder primarily affecting individuals in adolescence and early adulthood. The ectatic changes in the cornea cause thinning and cone-like steepening leading to irregular astigmatism and reduced vision. Keratoconus is a complex disorder with a multifaceted aetiology and pathogenesis, including genetic, environmental, biomechanical and cellular factors. Environmental factors, such as eye rubbing, UV light exposure and contact lens wearing, are associated with disease progression. On the cellular level, a complex interplay of hormonal changes, alterations in enzymatic activity that modify extracellular membrane stiffness, and changes in biochemical and biomechanical signalling pathways disrupt collagen cross-linking within the stroma, contributing to structural integrity loss and distortion of normal corneal anatomy. Clinically, keratoconus is diagnosed through clinical examination and corneal imaging. Advanced imaging platforms have improved the detection of keratoconus, facilitating early diagnosis and monitoring of disease progression. Treatment strategies for keratoconus are tailored to disease severity and progression. In early stages, vision correction with glasses or soft contact lenses may suffice. As the condition advances, rigid gas-permeable contact lenses or scleral lenses are prescribed. Corneal cross-linking has emerged as a pivotal treatment aimed at halting the progression of corneal ectasia. In patients with keratoconus with scarring or contact lens intolerance, surgical interventions are performed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural changes in the cornea during keratoconus progression.
Fig. 2: Corneal inflammation, apoptosis and tissue remodelling in keratoconus.
Fig. 3: Slit lamp examination findings in progressive keratoconus.
Fig. 4: AS-OCT imaging of corneal hydrops and oedema resolution in keratoconus.
Fig. 5: Corneal tomography patterns of keratoconic corneas.
Fig. 6: Management strategies for keratoconus based on risk factors and disease progression.
Fig. 7: Overview of CXL techniques for keratoconus treatment.
Fig. 8: Overview of surgical management for keratoconus.
Fig. 9: Outcomes of DALK.

Similar content being viewed by others

References

  1. Jhanji, V., Sharma, N. & Vajpayee, R. B. Management of keratoconus: current scenario. Br. J. Ophthalmol. 95, 1044–1050 (2011).

    Article  PubMed  Google Scholar 

  2. Gomes, J. A. P. et al. Global consensus on keratoconus and ectatic diseases. Cornea 34, 359–369 (2015).

    Article  PubMed  Google Scholar 

  3. Krachmer, J. H., Feder, R. S. & Belin, M. W. Keratoconus and related noninflammatory corneal thinning disorders. Surv. Ophthalmol. 28, 293–322 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Gokul, A., Patel, D. V. & McGhee, C. N. J. Dr John Nottingham’s 1854 landmark treatise on conical cornea considered in the context of the current knowledge of keratoconus. Cornea 35, 673–678 (2016).

    Article  PubMed  Google Scholar 

  5. Jiménez, J. L. O., Jurado, J. C. G., Rodriguez, F. J. B. & Laborda, D. S. Keratoconus: age of onset and natural history. Optom. Vis. Sci. 74, 147–151 (1997).

    Article  Google Scholar 

  6. McComish, B. J. et al. Association of genetic variation with keratoconus. JAMA Ophthalmol. 138, 174–181 (2020).

    Article  PubMed  Google Scholar 

  7. Karolak, J. A. et al. Variants in SKP1, PROB1, and IL17B genes at keratoconus 5q31.1-q35.3 susceptibility locus identified by whole-exome sequencing. Eur. J. Hum. Genet. 25, 73–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Nowak, D. M. & Gajecka, M. Nonrandom distribution of miRNAs genes and single nucleotide variants in keratoconus loci. PLoS ONE 10, e0132143 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bykhovskaya, Y., Margines, B. & Rabinowitz, Y. S. Genetics in keratoconus: where are we. Eye Vis. 3, 16 (2016).

    Article  Google Scholar 

  10. Bykhovskaya, Y. & Rabinowitz, Y. S. Update on the genetics of keratoconus. Exp. Eye Res 202, 108398 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Galvis, V., Tello, A., Carreño, N. I., Berrospi, R. D. & Niño, C. A. Risk factors for keratoconus: atopy and eye rubbing. Cornea 36, e1 (2017).

    Article  PubMed  Google Scholar 

  12. Seth, I. et al. The association between keratoconus and allergic eye diseases: a systematic review and meta-analysis. Clin. Exp. Ophthalmol. 50, 280–293 (2022).

    Article  PubMed  Google Scholar 

  13. Yang, K. et al. Independent and interactive effects of eye rubbing and atopy on keratoconus. Front. Immunol. 13, 999435 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bawazeer, A. M., Hodge, W. G. & Lorimer, B. Atopy and keratoconus: a multivariate analysis. Br. J. Ophthalmol. 84, 834–836 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Harrison, R. J., Klouda, P. T., Easty, D. L., Manku, M. & Stewart, J. C. C. M. Association between keratoconus and atopy. Br. J. Ophthalmol. 73, 816–822 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barbara, R. et al. in Controversies in the Management of Keratoconus (ed Barabara, A.) 1–16 (Springer, 2019).

  17. Kounsar, H. & Rameez. Pattern of keratoconus - a hospital based study. Int. J. Res. Rev. 10, 12–16 (2023).

    Article  Google Scholar 

  18. Crawford, A. Z., Zhang, J., Gokul, A., McGhee, C. N. J. & Ormonde, S. E. The enigma of environmental factors in keratoconus. Asia Pac. J. Ophthalmol. 9, 549–556 (2020).

    Article  Google Scholar 

  19. Macsai, M. S., Varley, G. A. & Krachmer, J. H. Development of keratoconus after contact lens wear: patient characteristics. Arch. Ophthalmol. 108, 534–538 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, R., El-Massry, A., El-Massry, Y. & Bradley Randleman, J. Bilateral, asymmetric keratoconus induced by thyrotoxicosis with long-term stability after corneal cross-linking. J. Refract. Surg. 34, 354–356 (2018).

    Article  PubMed  Google Scholar 

  21. Gatzioufas, Z. & Thanos, S. Acute keratoconus induced by hypothyroxinemia during pregnancy. J. Endocrinol. Invest. 31, 262–266 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. AlHawari, H. H. et al. Autoimmune thyroid disease and keratoconus: is there an association. Int. J. Endocrinol. 2018, 7907512 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. El-Massry, A. et al. Association between keratoconus and thyroid gland dysfunction: a cross-sectional case-control study. J. Refract. Surg. 36, 253–257 (2020).

    Article  PubMed  Google Scholar 

  24. Bassiouny, R. M. et al. Corneal tomographic analysis among patients with thyroid gland dysfunction. J. Refract. Surg. 37, 192–197 (2021).

    Article  PubMed  Google Scholar 

  25. Naderan, M. & Jahanrad, A. Topographic, tomographic and biomechanical corneal changes during pregnancy in patients with keratoconus: a cohort study. Acta Ophthalmol. 95, e291–e296 (2017).

    Article  PubMed  Google Scholar 

  26. Stock, R. A., Thumé, T. & Bonamigo, E. L. Acute corneal hydrops during pregnancy with spontaneous resolution after corneal cross-linking for keratoconus: a case report. J. Med. Case Rep. 11, 53 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Toprak, I. To what extent is pregnancy-induced keratoconus progression reversible? A case-report and literature review. Eur. J. Ophthalmol. 33, NP37–NP41 (2023).

    Article  PubMed  Google Scholar 

  28. Bilgihan, K., Hondur, A., Sul, S. & Ozturk, S. Pregnancy-induced progression of keratoconus. Cornea 30, 991–994 (2011).

    Article  PubMed  Google Scholar 

  29. Thanos, S. et al. Role of thyroxine in the development of keratoconus. Cornea 35, 1338–1346 (2016).

    Article  PubMed  Google Scholar 

  30. Mas Tur, V., MacGregor, C., Jayaswal, R., O’Brart, D. & Maycock, N. A review of keratoconus: diagnosis, pathophysiology, and genetics. Surv. Ophthalmol. 62, 770–783 (2017).

    Article  PubMed  Google Scholar 

  31. Dudeja, L., Chauhan, T. & Vohra, S. Sequence of events leading to diagnosis of keratoconus and its impact on quality of life. Indian. J. Ophthalmol. 69, 3478–3481 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sharif, R., Bak-Nielsen, S., Hjortdal, J. & Karamichos, D. Pathogenesis of keratoconus: the intriguing therapeutic potential of Prolactin-inducible protein. Prog. Retin. Eye Res. 67, 150–167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, D. et al. Corneal cross-linking: the evolution of treatment for corneal diseases. Front. Pharmacol. 12, 686630 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wollensak, G., Spoerl, E. & Seiler, T. Riboflavin/ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus. Am. J. Ophthalmol. 135, 620–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Amer, I. et al. Long-term visual, refractive and topographic outcomes of “epi-off” corneal collagen cross-linking in pediatric keratoconus: standard versus accelerated protocol. Clin. Ophthalmol. 14, 3747–3754 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Singal, N. et al. Comparison of accelerated CXL alone, accelerated CXL-ICRS, and accelerated CXL-TG-PRK in progressive keratoconus and other corneal ectasias. J. Cataract Refract. Surg. 46, 276–286 (2020).

    Article  PubMed  Google Scholar 

  37. Vinciguerra, R. et al. Transepithelial iontophoresis-assisted cross linking for progressive keratoconus: up to 7 years of follow up. J. Clin. Med. 11, 678 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sarnicola, E. et al. Cannula DALK versus needle DALK for keratoconus. Cornea 35, 1508–1511 (2016).

    Article  PubMed  Google Scholar 

  39. Daas, L., Hamon, L., Ardjomand, N., Safi, T. & Seitz, B. Excimer laser-assisted DALK: a case report from the Homburg Keratoconus Center (HKC) [German]. Ophthalmologe 118, 1245–1248 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Favuzza, E. et al. Manual DALK in keratoconus: an ex vivo light and transmission electron microscopy analysis 2 years after surgery. Cornea 41, 370–373 (2022).

    Article  PubMed  Google Scholar 

  41. Zadnik, K., Money, S. & Lindsley, K. Intrastromal corneal ring segments for treating keratoconus. Cochrane Database Syst. Rev. 5, CD011150 (2019).

    PubMed  Google Scholar 

  42. Bteich, Y. et al. Asymmetric All-Femtosecond Laser-Cut Corneal Allogenic Intrastromal Ring Segments. J. Refract. Surg. 39, 856–862 (2023).

    Article  PubMed  Google Scholar 

  43. Jacob, S. et al. Corneal Allogenic Intrastromal Ring Segments (CAIRS) combined with corneal cross-linking for keratoconus. J. Refract. Surg. 34, 296–303 (2018).

    Article  PubMed  Google Scholar 

  44. Rechichi, M. et al. Selective transepithelial ablation with simultaneous accelerated corneal crosslinking for corneal regularization of keratoconus: STARE-X protocol. J. Cataract Refract. Surg. 47, 1403–1410 (2021).

    Article  PubMed  Google Scholar 

  45. Kymionis, G. D. et al. Long-term results of combined transepithelial phototherapeutic keratectomy and corneal collagen crosslinking for keratoconus: Cretan protocol. J. Cataract Refract. Surg. 40, 1439–1445 (2014).

    Article  PubMed  Google Scholar 

  46. Santodomingo-Rubido, J. et al. Keratoconus: an updated review. Contact Lens Anterior Eye 45, 101559 (2022).

    Article  PubMed  Google Scholar 

  47. Jonas, J. B., Nangia, V., Matin, A., Kulkarni, M. & Bhojwani, K. Prevalence and associations of keratoconus in rural Maharashtra in central India: the Central India Eye and Medical Study. Am. J. Ophthalmol. 148, 760–765 (2009).

    Article  PubMed  Google Scholar 

  48. Gorskova, E. N. & Sevost’ianov, E. N. Epidemiology of keratoconus in the Urals [Russian]. Vestn. Oftamol. 114, 38–40 (1998).

    CAS  Google Scholar 

  49. Hofstetter, H. W. A keratoscopic survey of 13,395 eyes. Optometry Vis. Sci. 36, 3–11 (1959).

    Article  CAS  Google Scholar 

  50. Kennedy, R. H., Bourne, W. M. & Dyer, J. A. A 48-year clinical and epidemiologic study of keratoconus. Am. J. Ophthalmol. 101, 267–273 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Singh, R. B., Parmar, U. P. S. & Jhanji, V. Prevalence and economic burden of keratoconus in the United States. Am. J. Ophthalmol. 259, 71–78 (2024). This paper analyses the prevalence and economic burden of keratoconus in the USA.

    Article  PubMed  Google Scholar 

  52. Millodot, M., Shneor, E., Albou, S., Atlani, E. & Gordon-Shaag, A. Prevalence and associated factors of keratoconus in jerusalem: a cross-sectional study. Ophthalmic Epidemiol. 18, 91–97 (2011).

    Article  PubMed  Google Scholar 

  53. Xu, L., Wang, Y. X., Guo, Y., You, Q. S. & Jonas, J. B. Prevalence and associations of steep cornea/keratoconus in greater Beijing. the Beijing Eye Study. PLoS ONE https://doi.org/10.1371/journal.pone.0039313 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Valdez-García, J. E., Sepúlveda, R., Salazar-Martínez, J. J. & Lozano-Ramírez, J. F. Prevalence of keratoconus in an adolescent population. Rev. Mex. Oftalmol. 88, 95–98 (2014).

    Google Scholar 

  55. Chan, E. et al. Incidence and prevalence of keratoconus based on Scheimpflug imaging. Ophthalmology 130, 445–448 (2023).

    Article  PubMed  Google Scholar 

  56. Pearson, A. R., Soneji, B., Sarvananthan, N. & Sanford-Smith, J. H. Does ethnic origin influence the incidence or severity of keratoconus? Eye 14, 625–628 (2000).

    Article  PubMed  Google Scholar 

  57. Cozma, I. et al. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asian and white patients. Eye 19, 924–926 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Hashemi, H., Khabazkhoob, M. & Fotouhi, A. Topographic keratoconus is not rare in an Iranian population: the Tehran eye study. Ophthalmic Epidemiol 20, 385–391 (2013).

    Article  PubMed  Google Scholar 

  59. Almusawi, L. A. & Hamied, F. M. Risk factors for development of keratoconus: a matched pair case-control study. Clin. Ophthalmol. 15, 3473–3479 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Awan, Z. et al. Evaluating the association of keratoconus with consanguinity. Pak. Biomed. J. 5, 138–142 (2022).

    Google Scholar 

  61. Gordon-Shaag, A. et al. Is consanguinity a risk factor for keratoconus? Optom. Vis. Sci. 90, 448–454 (2013).

    Article  PubMed  Google Scholar 

  62. Pan, C. W. et al. Ethnic variation in central corneal refractive power and steep cornea in Asians. Ophthalmic Epidemiol. 21, 99–105 (2014).

    Article  PubMed  Google Scholar 

  63. Lass, J. H. et al. Clinical management of keratoconus: a multicenter analysis. Ophthalmology 97, 433–445 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Ertan, A. & Muftuoglu, O. Keratoconus clinical findings according to different age and gender groups. Cornea 27, 1109–1113 (2008).

    Article  PubMed  Google Scholar 

  65. Georgiou, T., Funnell, C. L., Cassels-Brown, A. & O’Conor, R. Influence of ethnic origin on the incidence of keratoconus and associated atopic disease in Asians and white patients. Eye 18, 379–383 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Assiri, A. A., Yousuf, B. I., Quantock, A. J., Murphy, P. J. & Assiri, A. A. Incidence and severity of keratoconus in Asir province, Saudi Arabia. Br. J. Ophthalmol. 89, 1403–1406 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Torres Netto, E. A. et al. Prevalence of keratoconus in paediatric patients in Riyadh, Saudi Arabia. Br. J. Ophthalmol. 102, 1436–1441 (2018).

    Article  PubMed  Google Scholar 

  68. Munir, S. Z., Munir, W. M. & Albrecht, J. Estimated prevalence of keratoconus in the United States from a large vision insurance database. Eye Contact Lens 47, 505–510 (2021).

    Article  PubMed  Google Scholar 

  69. Romagnani, S. The increased prevalence of allergy and the hygiene hypothesis: missing immune deviation, reduced immune suppression, or both? Immunology 112, 352–363 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pobelle-Frasson, C., Velou, S., Huslin, V., Massicault, B. & Colin, J. Kératocône: que deviennent les patients âgés? [French]. J. Fr. Ophtalmol. 27, 779–782 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Ihalainen, A. Clinical and epidemiological features of keratoconus genetic and external factors in the pathogenesis of the disease. Acta Ophthalmol. Suppl. 178, 1–64 (1986).

    CAS  PubMed  Google Scholar 

  72. Jacobs, D. S. & Dohlman, C. H. Is keratoconus genetic? Int. Ophthalmol. Clin. 33, 249–260 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Ridley, F. Eye-rubbing and contact lenses. Br. J. Ophthalmol. 45, 631 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Balasubramanian, S. A., Pye, D. C. & Willcox, M. D. P. Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus. Clin. Exp. Optom. 96, 214–218 (2013).

    Article  PubMed  Google Scholar 

  75. Ben-Eli, H., Erdinest, N. & Solomon, A. Pathogenesis and complications of chronic eye rubbing in ocular allergy. Curr. Opin. Allergy Clin. Immunol. 19, 526–534 (2019).

    Article  PubMed  Google Scholar 

  76. Kalogeropoulos, G., Chang, S., Bolton, T. & Jalbert, I. The effects of short-term lens wear and eye rubbing on the corneal epithelium. Eye Contact Lens 35, 255–259 (2009).

    Article  PubMed  Google Scholar 

  77. Kallinikos, P. & Efron, N. On the etiology of keratocyte loss during contact lens wear. Invest. Ophthalmol. Vis. Sci. 45, 3011–3020 (2004).

    Article  PubMed  Google Scholar 

  78. Liu, W. C., Lee, S. M., Graham, A. D. & Lin, M. C. Effects of eye rubbing and breath holding on corneal biomechanical properties and intraocular pressure. Cornea 30, 855–860 (2011).

    Article  PubMed  Google Scholar 

  79. Wagner, H., Barr, J. T. & Zadnik, K. Collaborative longitudinal evaluation of keratoconus (CLEK) study: methods and findings to date. Contact Lens Anterior Eye. 30, 223–232 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jafri, B., Lichter, H. & Stulting, R. D. Asymmetric keratoconus attributed to eye rubbing. Cornea 23, 560–564 (2004).

    Article  PubMed  Google Scholar 

  81. Rahman, A. et al. Keratoconus: early onset, the worst prognosis, eye rubbing and hand-dominance. Adv. Ophthalmol. Vis. Syst. 10, 79–84 (2020).

    Article  Google Scholar 

  82. Mcmonnies, C. W. & Boneham, G. C. Keratoconus, allergy, itch, eye-rubbing and hand-dominance. Clin. Exp. Optom. 86, 376–384 (2003).

    Article  PubMed  Google Scholar 

  83. Kandarakis, A. et al. A case of bilateral self-induced keratoconus in a patient with Tourette syndrome associated with compulsive eye rubbing: case report. BMC Ophthalmol. 11, 28 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mashor, R. S., Kumar, N. L., Ritenour, R. J. & Rootman, D. S. Keratoconus caused by eye rubbing in patients with Tourette syndrome. Can. J. Ophthalmol. 46, 83–86 (2011).

    Article  PubMed  Google Scholar 

  85. Knutsson, K. A., Paganoni, G., Ambrosio, O., Ferrari, G. & Rama, P. Corneal collagen cross-linking for management of keratoconus in patients affected by Tourette syndrome. Eur. J. Ophthalmol. 31, 2233–2236 (2021).

    Article  PubMed  Google Scholar 

  86. Palamar, M., Dincer, G., Teker, M. E., Kayahan, B. & Gonul, A. S. Bilateral keratoconus, acute hydrops and unilateral corneal perforation due to Tourette syndrome. Saudi J. Ophthalmol. 33, 177–179 (2019).

    Article  PubMed  Google Scholar 

  87. Shinzawa, M. et al. Corneal cross-linking for keratoconus caused by compulsive eye rubbing in patients with Tourette syndrome: three case reports. Medicine. 98, e15658 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Waked, N., Fayad, A. M., Fadlallah, A. & El Rami, H. Keratoconus screening in a Lebanese students’ population [French]. J. Fr. Ophtalmol. 35, 23–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Owens, H. & Gamble, G. A profile of keratoconus in New Zealand. Cornea 22, 122–125 (2003).

    Article  PubMed  Google Scholar 

  90. Rabinowitz, Y. S., Galvis, V., Tello, A., Rueda, D. & García, J. D. Genetics vs chronic corneal mechanical trauma in the etiology of keratoconus. Exp. Eye Res. 202, 108328 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Merdler, I. et al. Keratoconus and allergic diseases among Israeli adolescents between 2005 and 2013. Cornea 34, 525–529 (2015).

    Article  PubMed  Google Scholar 

  92. Naderan, M., Rajabi, M. T., Zarrinbakhsh, P. & Bakhshi, A. Effect of allergic diseases on keratoconus severity. Ocul. Immunol. Inflamm. 25, 418–423 (2017).

    Article  CAS  PubMed  Google Scholar 

  93. Sahebjada, S. et al. Risk factors and association with severity of keratoconus: the Australian Study of Keratoconus. Int. Ophthalmol. 41, 891–899 (2021).

    Article  PubMed  Google Scholar 

  94. Bak-Nielsen, S., Ramlau-Hansen, C. H., Ivarsen, A., Plana-Ripoll, O. & Hjortdal, J. A nationwide population-based study of social demographic factors, associated diseases and mortality of keratoconus patients in Denmark from 1977 to 2015. Acta Ophthalmol. 97, 497–504 (2019).

    Article  PubMed  Google Scholar 

  95. Galvis, V. et al. Keratoconus: an inflammatory disorder? Eye. 29, 843–859 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bak-Nielsen, S., Ramlau-Hansen, C. H., Ivarsen, A., Plana-Ripoll, O. & Hjortdal, J. Incidence and prevalence of keratoconus in Denmark – an update. Acta Ophthalmol. 97, 752–755 (2019).

    Article  PubMed  Google Scholar 

  97. Gordon-Shaag, A. et al. Risk factors for keratoconus in Israel: a case-control study. Ophthalmic Physiol. Opt. 35, 673–681 (2015).

    Article  PubMed  Google Scholar 

  98. Kenney, M. C. & Brown, D. J. The cascade hypothesis of keratoconus. Contact Lens Anterior Eye 26, 139–146 (2003).

    Article  Google Scholar 

  99. Van, L. et al. Prospective observational study evaluating systemic hormones and corneal crosslinking effects in keratoconus. Ophthalmol. Sci. 4, 100364 (2024).

    Article  PubMed  Google Scholar 

  100. Kelly, D. S., Sabharwal, S., Ramsey, D. J. & Morkin, M. I. The effects of female sex hormones on the human cornea across a woman’s life cycle. BMC Ophthalmol. 23, 358 (2023).

    Article  PubMed Central  Google Scholar 

  101. Ghahfarokhi, N. A. et al. Evaluation of corneal thickness alterations during menstrual cycle in productive age women. Indian. J. Ophthalmol. 63, 30–32 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Yang, Y. et al. Changes in corneal biomechanics during pregnancy in Chinese healthy female. Eur. J. Ophthalmol. 31, 361–366 (2021).

    Article  PubMed  Google Scholar 

  103. Usha, C., Pramila, B. & Kalaiselvi, B. A study on changes in the central corneal thickness among pregnant mothers in south India. Indian. J. Clin. Exp. Ophthalmol. 5, 219–221 (2019).

    Article  Google Scholar 

  104. Yuksel, E., Yalinbas, D., Aydin, B. & Bilgihan, K. Keratoconus progression induced by in vitro fertilization treatment. J. Refract. Surg. 32, 60–63 (2016).

    Article  PubMed  Google Scholar 

  105. McKay, T. B., Priyadarsini, S. & Karamichos, D. Sex hormones, growth hormone, and the cornea. Cells. 11, 224 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Torres-Netto, E. A., Randleman, J. B., Hafezi, N. L. & Hafezi, F. Late-onset progression of keratoconus after therapy with selective tissue estrogenic activity regulator. J. Cataract Refract. Surg. 45, 101–104 (2019).

    Article  PubMed  Google Scholar 

  107. Hashemi, H. et al. The prevalence and risk factors for keratoconus: a systematic review and meta-analysis. Cornea 39, 263–270 (2020).

    Article  PubMed  Google Scholar 

  108. Shanti, Y. et al. Characteristics of keratoconic patients at two main eye centres in Palestine: a cross-sectional study. BMC Ophthalmol. 18, 95 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Suzuki, T. & Sullivan, D. A. Estrogen stimulation of proinflammatory cytokine and matrix metalloproteinase gene expression in human corneal epithelial cells. Cornea 24, 1004–1009 (2005).

    Article  PubMed  Google Scholar 

  110. di Martino, E., Ali, M. & Inglehearn, C. F. Matrix metalloproteinases in keratoconus – too much of a good thing. Exp. Eye Res. 182, 137–143 (2019).

    Article  PubMed  Google Scholar 

  111. Spoerl, E., Zubaty, V., Raiskup-Wolf, F. & Pillunat, L. E. Oestrogen-induced changes in biomechanics in the cornea as a possible reason for keratectasia. Br. J. Ophthalmol. 91, 1547–1550 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mogilner, I. G., Ruderman, G. & Grigera, J. R. Collagen stability, hydration and native state. J. Mol. Graph. Model. 21, 209–213 (2002).

    Article  CAS  PubMed  Google Scholar 

  113. Haseeb, A. et al. Down syndrome: a review of ocular manifestations. Ther. Adv. Ophthalmol. 14, 25158414221101718 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Imbornoni, L. M., Wise, R. E., Taravella, M. J., Hickey, F. & McCourt, E. A. Keratoconus and corneal morphology in patients with Down syndrome at a pediatric hospital. J. AAPOS. 24, 140.e1–140.e5 (2020).

    Article  PubMed  Google Scholar 

  115. Alio, J. L. et al. Corneal morphologic characteristics in patients with Down syndrome. JAMA Ophthalmol. 136, 971–978 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Woodward, M. A., Blachley, T. S. & Stein, J. D. The association between sociodemographic factors, common systemic diseases, and keratoconus: an analysis of a nationwide heath care claims database. Ophthalmology 123, 457–465 (2016). This is a population-based study highlighting the impact of race and systemic diseases on the diagnosis of keratoconus.

    Article  PubMed  Google Scholar 

  117. Haugen, O. H., Høvding, G. & Eide, G. E. Biometric measurements of the eyes in teenagers and young adults with Down syndrome. Acta Ophthalmol. Scand. 79, 616–625 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Mathan, J. J. et al. Topographic screening reveals keratoconus to be extremely common in Down syndrome. Clin. Exp. Ophthalmol. 48, 1160–1167 (2020).

    Article  PubMed  Google Scholar 

  119. Hashemi, H. et al. Keratoconus detection by novel indices in patients with Down syndrome: a cohort population-based study. Jpn. J. Ophthalmol. 64, 285–291 (2020).

    Article  PubMed  Google Scholar 

  120. Vincent, A. L. et al. Computerized corneal topography in a paediatric population with Down syndrome. Clin. Exp. Ophthalmol. 33, 47–52 (2005).

    Article  PubMed  Google Scholar 

  121. Unni, P. & Lee, H. J. Systemic associations with keratoconus. Life 13, 1363 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Woodward, E. G. & Morris, M. T. Joint hypermobility in keratoconus. Ophthalmic Physiol. Opt. 10, 360–362 (1990).

    Article  CAS  PubMed  Google Scholar 

  123. Kumps, C. et al. The connective tissue disorder associated with recessive variants in the SLC39A13 zinc transporter gene (spondylo-dysplastic Ehlers–Danlos syndrome type 3): insights from four novel patients and follow-up on two original cases. Genes 11, 420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cameron, J. A. Corneal abnormalities in Ehlers–Danlos syndrome type VI. Cornea 12, 54–59 (1993).

    Article  CAS  PubMed  Google Scholar 

  125. Fransen, E. et al. Resequencing of candidate genes for keratoconus reveals a role for Ehlers–Danlos syndrome genes. Eur. J. Hum. Genet. 29, 1745–1755 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Beardsley, T. L. & Foulks, G. N. An association of keratoconus and mitral valve prolapse. Ophthalmology 89, 35–37 (1982).

    Article  CAS  PubMed  Google Scholar 

  127. Sharif, K. W., Casey, T. A. & Coltart, J. Prevalence of mitral valve prolapse in keratoconus patients. J. R. Soc. Med. 85, 446–448 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lichter, H. et al. Keratoconus and mitral valve prolapse. Am. J. Ophthalmol. 129, 667–668 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Kalkan Akcay, E. et al. Impaired corneal biomechanical properties and the prevalence of keratoconus in mitral valve prolapse. J. Ophthalmol. 2014, 402193 (2014).

    PubMed  PubMed Central  Google Scholar 

  130. Rabbanikhah, Z. et al. Association between acute corneal hydrops in patients with keratoconus and mitral valve prolapse. Cornea 30, 154–157 (2011).

    Article  PubMed  Google Scholar 

  131. Chang, Y. S. et al. Risk of mitral valve prolapse in patients with keratoconus in Taiwan: a population-based cohort study. Int. J. Env. Res. Public Health 17, 1–10 (2020).

    Article  Google Scholar 

  132. Skorin, L. & Knutson, R. Ophthalmic diseases in patients with obstructive sleep apnea. J. Am. Osteopath. Assoc. 116, 522–529 (2016).

    PubMed  Google Scholar 

  133. Salinas, R., Puig, M., Fry, C. L., Johnson, D. A. & Kheirkhah, A. Floppy eyelid syndrome: a comprehensive review. Ocul. Surf. 18, 31–39 (2020).

    Article  PubMed  Google Scholar 

  134. Bulloch, G., Seth, I., Zhu, Z., Sukumar, S. & McNab, A. Ocular manifestations of obstructive sleep apnea: a systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 262, 19–32 (2024).

    Article  PubMed  Google Scholar 

  135. Karaca, U. et al. Comparison of obstructive sleep apnea syndrome and keratoconus patients on elevation maps. Int. Ophthalmol. 42, 933–938 (2022).

    Article  PubMed  Google Scholar 

  136. Naderan, M., Rajabi, M. T., Zarrinbakhsh, P., Naderan, M. & Bakhshi, A. Association between family history and keratoconus severity. Curr. Eye Res. 41, 1414–1418 (2016).

    Article  PubMed  Google Scholar 

  137. Elder, M. J. Leber congenital amaurosis and its association with keratoconus and keratoglobus. J. Pediatr. Ophthalmol. Strabismus 31, 38–40 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Dharmaraj, S. et al. The phenotype of Leber congenital amaurosis in patients with AIPL1 mutations. Arch. Ophthalmol. 122, 1029–1037 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. McMahon, T. T. et al. CRB1 gene mutations are associated with keratoconus in patients with Leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci. 50, 3185–3187 (2009).

    Article  PubMed  Google Scholar 

  140. Ehrenberg, M., Pierce, E. A., Cox, G. F. & Fulton, A. B. CRB1: one gene, many phenotypes. Semin. Ophthalmol. 28, 397–405 (2013).

    Article  PubMed  Google Scholar 

  141. Winkler, M. et al. Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma. Invest. Ophthalmol. Vis. Sci. 54, 7293–7301 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Meek, K. M. Corneal collagen – its role in maintaining corneal shape and transparency. Biophys. Rev. 1, 83–93 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Bergmanson, J. P. G., Horne, J., Doughty, M. J., Garcia, M. & Gondo, M. Assessment of the number of lamellae in the central region of the normal human corneal stroma at the resolution of the transmission electron microscope. Eye Contact Lens 31, 281–287 (2005).

    Article  PubMed  Google Scholar 

  144. Winkler, M. et al. Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. Invest. Ophthalmol. Vis. Sci. 52, 8818–8827 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Mikula, E. et al. Axial mechanical and structural characterization of keratoconus corneas. Exp. Eye Res. 175, 14–19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Blackburn, B. J., Jenkins, M. W., Rollins, A. M. & Dupps, W. J. A review of structural and biomechanical changes in the cornea in aging, disease, and photochemical crosslinking. Front. Bioeng. Biotechnol. 7, 439243 (2019).

    Article  Google Scholar 

  147. Sherwin, T., Brookes, N. H., Loh, I. P., Poole, C. A. & Clover, G. M. Cellular incursion into Bowman’s membrane in the peripheral cone of the keratoconic cornea. Exp. Eye Res. 74, 473–482 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Morishige, N. et al. Quantitative analysis of collagen lamellae in the normal and keratoconic human cornea by second harmonic generation imaging microscopy. Invest. Ophthalmol. Vis. Sci. 55, 8377–8385 (2014).

    Article  PubMed  Google Scholar 

  149. Mocan, M. C., Yilmaz, P. T., Irkec, M. & Orhan, M. In vivo confocal microscopy for the evaluation of corneal microstructure in keratoconus. Curr. Eye Res. 33, 933–939 (2008).

    Article  PubMed  Google Scholar 

  150. White, T. L. et al. Elastic microfibril distribution in the cornea: differences between normal and keratoconic stroma. Exp. Eye Res. 159, 40–48 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Thyssen, J. P. et al. Incidence, prevalence, and risk of selected ocular disease in adults with atopic dermatitis. J. Am. Acad. Dermatol. 77, 280–286.e1 (2017).

    Article  PubMed  Google Scholar 

  152. McMonnies, C. W. Inflammation and keratoconus. Optometry Vis. Sci. 92, e35–e41 (2015).

    Article  Google Scholar 

  153. Sorkhabi, R., Ghorbanihaghjo, A., Taheri, N. & Ahoor, M. H. Tear film inflammatory mediators in patients with keratoconus. Int. Ophthalmol. 35, 467–472 (2015).

    Article  PubMed  Google Scholar 

  154. Claessens, J. L. J., Godefrooij, D. A., Vink, G., Frank, L. E. & Wisse, R. P. L. Nationwide epidemiological approach to identify associations between keratoconus and immune-mediated diseases. Br. J. Ophthalmol. 106, 1350–1354 (2022). This study identified associations between keratoconus and Hashimoto’s thyroiditis and inflammatory skin conditions including allergic rash, asthma and bronchial hyperresponsiveness, and allergic rhinitis.

    Article  PubMed  Google Scholar 

  155. Wisse, R. P. L. et al. Cytokine expression in keratoconus and its corneal microenvironment: a systematic review. Ocul. Surf. 13, 272–283 (2015).

    Article  PubMed  Google Scholar 

  156. Kim, W. J., Rabinowitz, Y. S., Meisler, D. M. & Wilson, S. E. Keratocyte apoptosis associated with keratoconus. Exp. Eye Res. 69, 475–481 (1999).

    Article  CAS  PubMed  Google Scholar 

  157. Hasby, E. A. & Saad, H. A. Immunohistochemical expression of Fas ligand (FasL) and neprilysin (neutral endopeptidase/CD10) in keratoconus. Int. Ophthalmol. 33, 125–131 (2013).

    Article  PubMed  Google Scholar 

  158. Jun, A. S. et al. Subnormal cytokine profile in the tear fluid of keratoconus patients. PLoS ONE 6, e16437 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Erdinest, N., Ivanir, Y., Orukov, F., Pe’er, J. J. P. & Solomon, A. Increased expression of inflammatory cytokines and cathepsins in the corneal epithelium in keratoconus. Contact Lens Anterior Eye 35, e17–e18 (2012).

    Google Scholar 

  160. Dudakova, L. et al. Changes in lysyl oxidase (LOX) distribution and its decreased activity in keratoconus corneas. Exp. Eye Res. 104, 74–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Dudakova, L. & Jirsova, K. The impairment of lysyl oxidase in keratoconus and in keratoconus-associated disorders. J. Neural Transm. 120, 977–982 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Wojcik, K. A., Blasiak, J., Szaflik, J. & Szaflik, J. P. Role of biochemical factors in the pathogenesis of keratoconus. Acta Biochim. Pol. 61, 55–62 (2014).

    Article  PubMed  Google Scholar 

  163. Chaerkady, R. et al. The keratoconus corneal proteome: loss of epithelial integrity and stromal degeneration. J. Proteom. 87, 122–131 (2013).

    Article  CAS  Google Scholar 

  164. García, B. et al. Differential expression of proteoglycans by corneal stromal cells in keratoconus. Invest. Ophthalmol. Vis. Sci. 57, 2618–2628 (2016). The study identified differential expression of proteoglycans in human corneas from cadaver donors and patients undergoing penetrating keratoplasty.

    Article  PubMed  Google Scholar 

  165. Chakravarti, S. et al. Lumican regulates collagen fibril assembly: skin fragility and corneal opacity in the absence of lumican. J. Cell Biol. 141, 1277–1286 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhang, G. et al. Genetic evidence for the coordinated regulation of collagen fibrillogenesis in the cornea by decorin and biglycan. J. Biol. Chem. 284, 8888–8897 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Bykhovskaya, Y., Gromova, A., Makarenkova, H. P. & Rabinowitz, Y. S. Abnormal regulation of extracellular matrix and adhesion molecules in corneas of patients with keratoconus. Int. J. Keratoconus Ectatic Corneal Dis. 5, 63–70 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Smith, V. A., Matthews, F. J., Majid, M. A. & Cook, S. D. Keratoconus: matrix metalloproteinase-2 activation and TIMP modulation. Biochim. Biophys. Acta Mol. Basis Dis. 1762, 431–439 (2006).

    Article  CAS  Google Scholar 

  169. Matthews, F. J., Cook, S. D., Majid, M. A., Dick, A. D. & Smith, V. A. Changes in the balance of the tissue inhibitor of matrix metalloproteinases (TIMPs)-1 and -3 may promote keratocyte apoptosis in keratoconus. Exp. Eye Res. 84, 1125–1134 (2007).

    Article  CAS  PubMed  Google Scholar 

  170. Lema, I. & Durán, J. A. Inflammatory molecules in the tears of patients with keratoconus. Ophthalmology 112, 654–659 (2005).

    Article  PubMed  Google Scholar 

  171. Lema, I., Sobrino, T., Durán, J. A., Brea, D. & Díez-Feijoo, E. Subclinical keratoconus and inflammatory molecules from tears. Br. J. Ophthalmol. 93, 820–824 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Dua, H. S., Darren, S. J., Mouhamed Al-Aqaba, T. & Said, D. G. in Keratoconus Ch. 5 (eds Izquierdlo, L., Henriquez, M. & Mannis, M.) 51–64 (Elsevier, 2022).

  173. Collier, S. A. Is the corneal degradation in keratoconus caused by matrix-metalloproteinases? Clin. Exp. Ophthalmol. 29, 340–344 (2001).

    CAS  PubMed  Google Scholar 

  174. Sawaguchi, S. et al. Alpha-1 proteinase inhibitor levels in keratoconus. Exp. Eye Res. 50, 549–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  175. Chwa, M. et al. Hypersensitive response to oxidative stress in keratoconus corneal fibroblasts. Invest. Ophthalmol. Vis. Sci. 49, 4361–4369 (2008).

    Article  PubMed  Google Scholar 

  176. Kenney, M. C. et al. Increased levels of catalase and cathepsin V/l2 but decreased TIMP-1 in keratoconus corneas: evidence that oxidative stress plays a role in this disorder. Invest. Ophthalmol. Vis. Sci. 46, 823–832 (2005).

    Article  PubMed  Google Scholar 

  177. Buddi, R. et al. Evidence of oxidative stress in human corneal diseases. J. Histochem. Cytochem. 50, 341–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  178. Squadrito, G. L. & Pryor, W. A. Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free. Radic. Biol. Med. 25, 392–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  179. Olofsson, E. M., Marklund, S. L., Pedrosa-Domellöf, F. & Behndig, A. Interleukin-1alpha downregulates extracellular-superoxide dismutase in human corneal keratoconus stromal cells. Mol. Vis. 13, 1285–1290 (2007).

    CAS  PubMed  Google Scholar 

  180. Brown, D. J. et al. Elements of the nitric oxide pathway can degrade TIMP-1 and increase gelatinase activity. Mol. Vis. 10, 281–288 (2004).

    CAS  PubMed  Google Scholar 

  181. Behndig, A., Karlsson, K., Johansson, B. O., Brännström, T. & Marklund, S. L. Superoxide dismutase isoenzymes in the normal and diseased human cornea. Invest. Ophthalmol. Vis. Sci. 42, 2293–2296 (2001).

    CAS  PubMed  Google Scholar 

  182. Arnal, E., Peris-Martínez, C., Menezo, J. L., Johnsen-Soriano, S. & Romero, F. J. Oxidative stress in keratoconus. Invest. Ophthalmol. Vis. Sci. 52, 8592–8597 (2011).

    Article  CAS  PubMed  Google Scholar 

  183. Atilano, S. R. et al. Accumulation of mitochondrial DNA damage in keratoconus corneas. Invest. Ophthalmol. Vis. Sci. 46, 1256–1263 (2005).

    Article  PubMed  Google Scholar 

  184. Moussa, S., Grabner, G., Ruckhofer, J., Dietrich, M. & Reitsamer, H. Genetics in keratoconus – what is new? Open. Ophthalmol. J. 11, 201–210 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Wheeler, J., Hauser, M. A., Afshari, N. A., Allingham, R. & Liu, Y. The genetics of keratoconus: a review. Reprod. Syst. Sex. Disord. S6, 001 (2012).

    Google Scholar 

  186. Abu-Amero, K. K., Al-Muammar, A. M. & Kondkar, A. A. Genetics of keratoconus: where do we stand? J. Ophthalmol. 2014, 641708 (2014).

    PubMed  PubMed Central  Google Scholar 

  187. Chang, H. Y. P. & Chodosh, J. The genetics of keratoconus. Semin. Ophthalmol. 28, 275–280 (2013).

    Article  PubMed  Google Scholar 

  188. Nielsen, K. et al. Altered expression of CLC, DSG3, EMP3, S100A2, and SLPI in corneal epithelium from keratoconus patients. Cornea 24, 661–668 (2005).

    Article  PubMed  Google Scholar 

  189. Li, X. et al. Two-stage genome-wide linkage scan in keratoconus sib pair families. Invest. Ophthalmol. Vis. Sci. 47, 3791–3795 (2006).

    Article  PubMed  Google Scholar 

  190. Tang, Y. G. et al. Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. Genet. Med. 7, 397–405 (2005).

    Article  CAS  PubMed  Google Scholar 

  191. Hutchings, H. et al. Identification of a new locus for isolated familial keratoconus at 2p24. J. Med. Genet. 42, 88–94 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bisceglia, L. et al. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive loci. Invest. Ophthalmol. Vis. Sci. 50, 1081–1086 (2009).

    Article  PubMed  Google Scholar 

  193. Burdon, K. P. et al. Apparent autosomal dominant keratoconus in a large Australian pedigree accounted for by digenic inheritance of two novel loci. Hum. Genet. 124, 379–386 (2008).

    Article  PubMed  Google Scholar 

  194. Hao, X. D., Chen, P., Chen, Z. L., Li, S. X. & Wang, Y. Evaluating the association between keratoconus and reported genetic loci in a Han Chinese population. Ophthalmic Genet. 36, 132–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Burdon, K. P. et al. Association of polymorphisms in the hepatocyte growth factor gene promoter with keratoconus. Invest. Ophthalmol. Vis. Sci. 52, 8514–8519 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Bykhovskaya, Y. et al. Variation in the lysyl oxidase (LOX) gene is associated with keratoconus in family-based and case-control studies. Invest. Ophthalmol. Vis. Sci. 53, 4152–4157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Fontes, B. M., Ambrósio, R., Jardim, D., Velarde, G. C. & Nosé, W. Corneal biomechanical metrics and anterior segment parameters in mild keratoconus. Ophthalmology 117, 673–679 (2010).

    Article  PubMed  Google Scholar 

  198. Lu, Y. et al. Common genetic variants near the brittle cornea syndrome locus ZNF469 influence the blinding disease risk factor central corneal thickness. PLoS Genet. 6, 1000947 (2010).

    Article  Google Scholar 

  199. Lu, Y. et al. Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat. Genet. 45, 155–163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Loukovitis, E. et al. Genetic aspects of keratoconus: a literature review exploring potential genetic contributions and possible genetic relationships with comorbidities. Ophthalmol. Ther. 7, 263–292 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Rong, S. S. et al. Genetic associations for keratoconus: a systematic review and meta-analysis. Sci. Rep. 7, 4620 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Vithana, E. N. et al. Collagen-related genes influence the glaucoma risk factor, central corneal thickness. Hum. Mol. Genet. 20, 649–658 (2011).

    Article  CAS  PubMed  Google Scholar 

  203. Yu, Q. et al. Canonical nf-kb signaling maintains corneal epithelial integrity and prevents corneal aging via retinoic acid. eLife 10, e67315 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Alam, J., Yu, Z., de Paiva, C. S. & Pflugfelder, S. C. Retinoid regulation of ocular surface innate inflammation. Int. J. Mol. Sci. 22, 1092 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Gordon-Shaag, A., Millodot, M., Ifrah, R. & Shneor, E. Aberrations and topography in normal, keratoconus-suspect, and keratoconic eyes. Optometry Vis. Sci. 89, 411–418 (2012).

    Article  Google Scholar 

  206. Applegate, R. A. et al. Corneal first surface optical aberrations and visual performance. J. Refract. Surg. 16, 507–514 (2000).

    Article  CAS  PubMed  Google Scholar 

  207. Vehof, J., Snieder, H., Jansonius, N. & Hammond, C. J. Prevalence and risk factors of dry eye in 79,866 participants of the population-based lifelines cohort study in the Netherlands. Ocul. Surf. 19, 83–93 (2021).

    Article  PubMed  Google Scholar 

  208. Averich, V. V. Dry eye disease in keratoconus: etiology and medical treatment. Russian J. Clin. Ophthalmol. 22, 122–126 (2022).

    Article  Google Scholar 

  209. Pinto, R. D. P. et al. Meibomian gland dysfunction and dry eye in keratoconus. Arq. Bras. Oftalmol. 85, 406–410 (2022).

    Article  Google Scholar 

  210. Cruzat, A., Qazi, Y. & Hamrah, P. In vivo confocal microscopy of corneal nerves in health and disease. Ocul. Surf. 15, 15–47 (2017).

    Article  PubMed  Google Scholar 

  211. Syed, Z. A., Meghpara, B. B. & Rapuano, C. J. Clinical diagnosis of keratoconus. Keratoconus: Diagnosis Treat. https://doi.org/10.1007/978-981-19-4262-4_5 (2022).

  212. Ribas, M. M. & Carballo, J. Contact lens fitting in keratoconus with high structural degradation [Spanish]. Psychologia Latina. Especial, 283–286 (2018).

    Google Scholar 

  213. Güngör, İ. U., Beden, Ü. & Sönmez, B. Bilateral horizontal Vogt’s striae in keratoconus. Clin. Ophthalmol. 2, 653 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Gold, J., Chauhan, V., Rojanasthien, S. & Fitzgerald, J. Munson’s sign: an obvious finding to explain acute vision loss. Clin. Pract. Cases Emerg. Med. 3, 312–313 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Rizzuti, A. B. Diagnostic illumination test for keratoconus. Am. J. Ophthalmol. 70, 141–143 (1970).

    Article  CAS  PubMed  Google Scholar 

  216. Patel, D. V. & McGhee, C. N. J. Mapping the corneal sub-basal nerve plexus in keratoconus by in vivo laser scanning confocal microscopy. Invest. Ophthalmol. Vis. Sci. 47, 1348–1351 (2006).

    Article  PubMed  Google Scholar 

  217. Pahuja, N. K. et al. An in vivo confocal microscopic study of corneal nerve morphology in unilateral keratoconus. Biomed. Res. Int. 2016, 5067853 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Mannion, L. S., Tromans, C. & O’Donnell, C. An evaluation of corneal nerve morphology and function in moderate keratoconus. Contact Lens Anterior Eye 28, 185–192 (2005).

    Article  Google Scholar 

  219. Flockerzi, E., Daas, L. & Seitz, B. Structural changes in the corneal subbasal nerve plexus in keratoconus. Acta Ophthalmol. 98, e928–e932 (2020).

    Article  PubMed  Google Scholar 

  220. Dienes, L. et al. Corneal sensitivity and dry eye symptoms in patients with keratoconus. PLoS ONE 10, e0141621 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Fan Gaskin, J. C., Patel, D. V. & McGhee, C. N. J. Acute corneal hydrops in keratoconus - new perspectives. Am. J. Ophthalmol. 157, 921–928 (2014).

    Article  PubMed  Google Scholar 

  222. Barsam, A. et al. Acute corneal hydrops in keratoconus: a national prospective study of incidence and management. Eye 29, 469–474 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Tuft, S. J., Gregory, W. M. & Buckley, R. J. Acute corneal hydrops in keratoconus. Ophthalmology 101, 1738–1744 (1994).

    Article  CAS  PubMed  Google Scholar 

  224. Grewal, S. et al. Acute hydrops in the corneal ectasias: associated factors and outcomes. Trans. Am. Ophthalmological Soc. 97, 187–203 (1999).

    CAS  Google Scholar 

  225. Pahuja, N. et al. Application of high resolution OCT to evaluate irregularity of Bowman’s layer in asymmetric keratoconus. J. Biophotonics. 10, 701–707 (2017).

    Article  PubMed  Google Scholar 

  226. Rigi, M. et al. Collagen type XII is undetectable in keratoconus Bowman’s layer. Br. J. Ophthalmol. 108, 343–348 (2024).

    Article  PubMed  Google Scholar 

  227. Paranjpe, V., Galor, A., Monsalve, P., Dubovy, S. R. & Karp, C. L. Salzmann nodular degeneration: prevalence, impact, and management strategies. Clin. Ophthalmol. 13, 1305–1314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Negris, R. Floppy eyelid syndrome associated with keratoconus. J. Am. Optom. Assoc. 63, 316–319 (1992).

    CAS  PubMed  Google Scholar 

  229. Donnenfeld, E. D., Perry, H. D., Gibralter, R. P., Ingraham, H. J. & Udell, I. J. Keratoconus associated with floppy eyelid syndrome. Ophthalmology 98, 1674–1678 (1991).

    Article  CAS  PubMed  Google Scholar 

  230. Hughes, A. E. et al. Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am. J. Hum. Genet. 89, 628–633 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Hughes, A. E., Dash, D. P., Jackson, A. J., Frazer, D. G. & Silvestri, G. Familial keratoconus with cataract: linkage to the long arm of chromosome 15 and exclusion of candidate genes. Invest. Ophthalmol. Vis. Sci. 44, 5063–5066 (2003).

    Article  PubMed  Google Scholar 

  232. Fan, R., Chan, T. C. Y., Prakash, G. & Jhanji, V. Applications of corneal topography and tomography: a review. Clin. Exp. Ophthalmol. 46, 133–146 (2018).

    Article  PubMed  Google Scholar 

  233. Martin, R. Cornea and anterior eye assessment with placido-disc keratoscopy, slit scanning evaluation topography and scheimpflug imaging tomography. Indian. J. Ophthalmol. 66, 360–366 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Cavas-Martínez, F., De la Cruz Sánchez, E., Nieto Martínez, J., Fernández Cañavate, F. J. & Fernández-Pacheco, D. G. Corneal topography in keratoconus: state of the art. Eye Vis. 3, 5 (2016).

    Article  Google Scholar 

  235. Yip, H. & Chan, E. Optical coherence tomography imaging in keratoconus. Clin. Exp. Optom. 102, 218–223 (2019).

    Article  PubMed  Google Scholar 

  236. Schröder, S. et al. Comparison of corneal tomography: repeatability, precision, misalignment, mean elevation, and mean pachymetry. Curr. Eye Res. 43, 709–716 (2018).

    Article  PubMed  Google Scholar 

  237. Shetty, R., Gupta, S., Ranade, R. & Khamar, P. Newer diagnostic technology for diagnosis of keratoconus. Keratoconus: Diagnosis Treat. https://doi.org/10.1007/978-981-19-4262-4_11 (2022).

  238. Ozgurhan, E. B. et al. Evaluation of corneal microstructure in keratoconus: a confocal microscopy study. Am. J. Ophthalmol. 156, 885–893.e2. (2013).

    Article  PubMed  Google Scholar 

  239. Uçakhan, Ö. Ö., Kanpolat, A., Ylmaz, N. & Özkan, M. In vivo confocal microscopy findings in keratoconus. Eye Contact Lens. 32, 183–191 (2006).

    Article  PubMed  Google Scholar 

  240. Terai, N., Raiskup, F., Haustein, M., Pillunat, L. E. & Spoerl, E. Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr. Eye Res. 37, 553–562 (2012).

    Article  PubMed  Google Scholar 

  241. Ambrósio, R. et al. Dynamic ultra high speed scheimpflug imaging for assessing corneal biomechanical properties. Rev. Bras. Oftalmol. 72, 99–102 (2013).

    Article  Google Scholar 

  242. Vinciguerra, R. et al. Detection of keratoconus with a new biomechanical index. J. Refract. Surg. 32, 803–810 (2016).

    Article  PubMed  Google Scholar 

  243. Scarcelli, G., Besner, S., Pineda, R. & Yun, S. H. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest. Ophthalmol. Vis. Sci. 55, 4490–4495 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Roberts, C. J. & Dupps, W. J. Biomechanics of corneal ectasia and biomechanical treatments. J. Cataract Refract. Surg. 40, 991–998 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Shao, P. et al. Spatially-resolved Brillouin spectroscopy reveals biomechanical abnormalities in mild to advanced keratoconus in vivo. Sci. Rep. 9, 7467 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Kamiya, K., Ishii, R., Shimizu, K. & Igarashi, A. Evaluation of corneal elevation, pachymetry and keratometry in keratoconic eyes with respect to the stage of Amsler–Krumeich classification. Br. J. Ophthalmol. 98, 459–463 (2014).

    Article  PubMed  Google Scholar 

  247. Giannaccare, G. et al. Comparison of Amsler–Krumeich and Sandali classifications for staging eyes with keratoconus. Appl. Sci. 11, 4007 (2021).

    Article  CAS  Google Scholar 

  248. Belin, M. W., Jang, H. S. & Borgstrom, M. Keratoconus: diagnosis and staging. Cornea 41, 1–11 (2022).

    Article  PubMed  Google Scholar 

  249. Belin, M. W. et al. ABCD: a new classification for keratoconus. Indian. J. Ophthalmol. 68, 2831–2834 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Belin, M. W., Meyer, J. J., Duncan, J. K., Gelman, R. & Borgstrom, M. Assessing progression of keratoconus and cross-linking efficacy: the Belin ABCD progression display. Int. J. Keratoconus Ectatic Corneal Dis 6, 1–10 (2017).

    Article  Google Scholar 

  251. Ozalp, O. & Atalay, E. Belin ABCD progression display identifies keratoconus progression earlier than conventional metrics. Am. J. Ophthalmol. 236, 45–52 (2022).

    Article  CAS  PubMed  Google Scholar 

  252. Ozkurt, Y. B. et al. Rose K contact lens fitting for keratoconus. Int. Ophthalmol. 28, 395–398 (2008).

    Article  PubMed  Google Scholar 

  253. Sudharman, P. M., Rathi, V., Dumapati, S. & Rose, K. Lenses for keratoconus – an Indian experience. Eye Contact Lens. 36, 220–222 (2010).

    Article  Google Scholar 

  254. Sengor, T., Kurna, S. A., Aki, S. & Özkurt, Y. High Dk piggyback contact lens system for contact lens-intolerant keratoconus patients. Clin. Ophthalmol. 5, 331 (2011).

    PubMed  PubMed Central  Google Scholar 

  255. Fuller, D. G. & Wang, Y. Safety and efficacy of scleral lenses for keratoconus. Optometry Vis. Sci. 97, 741–748 (2020).

    Article  Google Scholar 

  256. Rathi, V. M., Mandathara, P. S., Taneja, M., Dumpati, S. & Sangwan, V. S. Scleral lens for keratoconus: technology update. Clin. Ophthalmol. 9, 2013–2018 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Kreps, E. O., Claerhout, I. & Koppen, C. The outcome of scleral lens fitting for keratoconus with resolved corneal hydrops. Cornea 38, 855–858 (2019).

    Article  PubMed  Google Scholar 

  258. Koppen, C. et al. Scleral lenses reduce the need for corneal transplants in severe keratoconus. Am. J. Ophthalmol. 185, 43–47 (2018).

    Article  PubMed  Google Scholar 

  259. Larco, P., Larco, P., Torres, D. & Piñero, D. P. Intracorneal ring segment implantation for the management of keratoconus in children. Vision 5, 1–11 (2021).

    Article  Google Scholar 

  260. Dockery, P. W., Parker, J. S., Massenzio, E. M. & Parker, J. S. Intracorneal ring segment implantation in advanced keratoconus. Eur. J. Ophthalmol. 33, 1324–1330 (2023).

    Article  PubMed  Google Scholar 

  261. Warrak, E. L. et al. Long-term follow up of intracorneal ring segment implantation in 932 keratoconus eyes. J. Fr. Ophtalmol. 43, 1020–1024 (2020).

    Article  CAS  PubMed  Google Scholar 

  262. Peris-Martínez, C. et al. Two-year follow-up of intracorneal ring segments implantation in adolescent patients with keratoconus. J. Refract. Surg. 37, 91–97 (2021).

    Article  PubMed  Google Scholar 

  263. Kang, M. J., Byun, Y. S., Yoo, Y. S., Whang, W. J. & Joo, C. K. Long-term outcome of intrastromal corneal ring segments in keratoconus: five-year follow up. Sci. Rep. 9, 315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  264. de Araujo, B. S., Kubo, L., Marinho, D. R. & Kwitko, S. Keratoconus progression after intrastromal corneal ring segment implantation according to age: 5-year follow-up cohort study. Int. Ophthalmol. 40, 2847–2854 (2020).

    Article  PubMed  Google Scholar 

  265. Khanthik, A. et al. Factors predicting the visual outcome of intracorneal ring segment for keratoconus. PLoS ONE 19, e0288181 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Park, J. & Gritz, D. C. Evolution in the use of intrastromal corneal ring segments for corneal ectasia. Curr. Opin. Ophthalmol. 24, 296–301 (2013).

    Article  PubMed  Google Scholar 

  267. Sakellaris, D. et al. Intracorneal ring segment implantation in the management of keratoconus: an evidence-based approach. Ophthalmol. Ther. 8, 5–14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Raiskup, F. & Spoerl, E. Corneal crosslinking with riboflavin and ultraviolet A. Part II. clinical indications and results. Ocul. Surf. 11, 93–108 (2013).

    Article  PubMed  Google Scholar 

  269. Daxer, A., Misof, K., Grabner, B., Ettl, A. & Fratzl, P. Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol. Vis. Sci. 39, 644–648 (1998).

    CAS  PubMed  Google Scholar 

  270. Mastropasqua, L. Collagen cross-linking: when and how? A review of the state of the art of the technique and new perspectives. Eye Vis. 2, 19 (2015).

    Article  Google Scholar 

  271. McCall, A. S. et al. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest. Ophthalmol. Vis. Sci. 51, 129–138 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Angelo, L., Gokul Boptom, A., McGhee, C. & Ziaei, M. Corneal crosslinking: present and future. Asia Pac. J. Ophthalmol. 11, 441–452 (2022).

    Article  Google Scholar 

  273. Shalchi, Z., Wang, X. & Nanavaty, M. A. Safety and efficacy of epithelium removal and transepithelial corneal collagen crosslinking for keratoconus. Eye 29, 15–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  274. Khoo, P., Cabrera-Aguas, M. & Watson, S. L. Microbial keratitis after corneal collagen cross-linking for corneal ectasia. Asia Pac. J. Ophthalmol. 10, 355–359 (2021).

    Article  Google Scholar 

  275. Baiocchi, S., Mazzotta, C., Cerretani, D., Caporossi, T. & Caporossi, A. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J. Cataract Refract. Surg. 35, 893–899 (2009).

    Article  PubMed  Google Scholar 

  276. Majumdar, S., Hippalgaonkar, K. & Repka, M. A. Effect of chitosan, benzalkonium chloride and ethylenediaminetetraacetic acid on permeation of acyclovir across isolated rabbit cornea. Int. J. Pharm. 348, 175–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  277. Chang, S. W., Chi, R. F., Wu, C. C. & Su, M. J. Benzalkonium chloride and gentamicin cause a leak in corneal epithelial cell membrane. Exp. Eye Res. 71, 3–10 (2000).

    Article  CAS  PubMed  Google Scholar 

  278. Heikal, M. A., Soliman, T. T., Fayed, A. & Hamed, A. M. Efficacy of transepithelial corneal collagen crosslinking for keratoconus: 12-month follow-up. Clin. Ophthalmol. 11, 767–771 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Caporossi, A. et al. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J. Cataract Refract. Surg. 39, 1157–1163 (2013).

    Article  PubMed  Google Scholar 

  280. Cassagne, M. et al. Iontophoresis transcorneal delivery technique for transepithelial corneal collagen crosslinking with riboflavin in a rabbit model. Invest. Ophthalmol. Vis. Sci. 57, 594–603 (2016).

    Article  CAS  PubMed  Google Scholar 

  281. Jia, H. Z. et al. Iontophoresis-assisted corneal crosslinking using 0.1% riboflavin for progressive keratoconus. Int. J. Ophthalmol. 10, 717–722 (2017).

    PubMed  PubMed Central  Google Scholar 

  282. Bikbova, G. & Bikbov, M. Transepithelial corneal collagen cross-linking by iontophoresis of riboflavin. Acta Ophthalmol. 92, e30–e34 (2014).

    Article  CAS  PubMed  Google Scholar 

  283. Jouve, L. et al. Conventional and iontophoresis corneal cross-linking for keratoconus: efficacy and assessment by optical coherence tomography and confocal microscopy. Cornea 36, 153–162 (2017).

    Article  PubMed  Google Scholar 

  284. Cantemir, A. et al. Evaluation of iontophoretic collagen cross-linking for early stage of progressive keratoconus compared to standard cross-linking: a non-inferiority study. Ophthalmol. Ther. 6, 147–160 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Lombardo, M., Serrao, S., Raffa, P., Rosati, M. & Lombardo, G. Novel technique of transepithelial corneal cross-linking using iontophoresis in progressive keratoconus. J. Ophthalmol. 2016, 7472542 (2016).

    PubMed  PubMed Central  Google Scholar 

  286. Mastropasqua, L. et al. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am. J. Ophthalmol. 157, 623–630.e1 (2014).

    Article  CAS  PubMed  Google Scholar 

  287. Kymionis, G. D. et al. Corneal collagen cross-linking with riboflavin and ultraviolet-A irradiation in patients with thin corneas. Am. J. Ophthalmol. 153, 24–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  288. Mazzotta, C. et al. Corneal collagen cross-linking with riboflavin and ultraviolet A light for pediatric keratoconus: ten-year results. Cornea 37, 560–566 (2018).

    Article  PubMed  Google Scholar 

  289. Greenstein, S. A., Shah, V. P., Fry, K. L. & Hersh, P. S. Corneal thickness changes after corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J. Cataract Refract. Surg. 37, 691–700 (2011).

    Article  PubMed  Google Scholar 

  290. Shetty, R. et al. Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am. J. Ophthalmol. 160, 243–249 (2015).

    Article  PubMed  Google Scholar 

  291. Tomita, M., Mita, M. & Huseynova, T. Accelerated versus conventional corneal collagen crosslinking. J. Cataract Refract. Surg 40, 1013–1020 (2014).

    Article  PubMed  Google Scholar 

  292. Medeiros, C. S. et al. Accelerated corneal collagen crosslinking: technique, efficacy, safety, and applications. J. Cataract Refract. Surg 42, 1826–1835 (2016).

    Article  PubMed  Google Scholar 

  293. Ashena, Z. et al. Flattening of central, paracentral, and peripheral cones after non-accelerated and accelerated epithelium-off CXL in keratoconus: a multicenter study. J. Refract. Surg. 38, 310–316 (2022).

    Article  PubMed  Google Scholar 

  294. Touboul, D. et al. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. J. Refract. Surg. 28, 769–775 (2012).

    Article  PubMed  Google Scholar 

  295. Ozgurhan, E. B. et al. Evaluation of corneal stromal demarcation line after two different protocols of accelerated corneal collagen cross-linking procedures using anterior segment optical coherence tomography and confocal microscopy. J. Ophthalmol. 2014, 981893 (2014).

    PubMed  PubMed Central  Google Scholar 

  296. Kymionis, G. D. et al. Corneal stroma demarcation line after standard and high-intensity collagen crosslinking determined with anterior segment optical coherence tomography. J. Cataract Refract. Surg. 40, 736–740 (2014).

    Article  PubMed  Google Scholar 

  297. Moramarco, A., Iovieno, A., Sartori, A. & Fontana, L. Corneal stromal demarcation line after accelerated crosslinking using continuous and pulsed light. J. Cataract Refract. Surg. 41, 2546–2551 (2015).

    Article  PubMed  Google Scholar 

  298. Ziaei, M., Vellara, H., Gokul, A., Patel, D. & McGhee, C. N. J. Prospective 2-year study of accelerated pulsed transepithelial corneal crosslinking outcomes for keratoconus. Eye 33, 1897–1903 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Belviranli, S. & Oltulu, R. Efficacy of pulsed-light accelerated crosslinking in the treatment of progressive keratoconus: two-year results. Eur. J. Ophthalmol. 30, 1256–1260 (2020).

    Article  PubMed  Google Scholar 

  300. Jacob, S. et al. Contact lens-assisted collagen cross-linking (CACXL): a new technique for cross-linking thin corneas. J. Refract. Surg. 30, 366–372 (2014).

    Article  PubMed  Google Scholar 

  301. Nour, M. M., El-Agha, M. S. H., Sherif, A. M. & Shousha, S. M. Efficacy and safety of contact lens-assisted corneal crosslinking in the treatment of keratoconus with thin corneas. Eye Contact Lens 47, 500–504 (2021).

    Article  PubMed  Google Scholar 

  302. Kling, S. & Hafezi, F. An algorithm to predict the biomechanical stiffening effect in corneal crosslinking. J. Refract. Surg. 33, 128–136 (2017).

    Article  PubMed  Google Scholar 

  303. Hafezi, F. et al. Individualized corneal cross-linking with riboflavin and UV-A in ultrathin corneas: the sub400 protocol. Am. J. Ophthalmol. 224, 133–142 (2021).

    Article  PubMed  Google Scholar 

  304. Sachdev, M. S., Gupta, D., Sachdev, G. & Sachdev, R. Tailored stromal expansion with a refractive lenticule for crosslinking the ultrathin cornea. J. Cataract Refract. Surg. 41, 918–923 (2015).

    Article  PubMed  Google Scholar 

  305. Iselin, K. C. et al. Changing trends in corneal transplantation: a national review of current practices in the Republic of Ireland. Ir. J. Med. Sci. 190, 825–834 (2021).

    Article  PubMed  Google Scholar 

  306. Barraquer, R. I., Pareja-Aricò, L., Gómez-Benlloch, A. & Michael, R. Risk factors for graft failure after penetrating keratoplasty. Medicine 98, e15274 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Cheng, Y. Y. Y. et al. Endothelial cell loss and visual outcome of deep anterior lamellar keratoplasty versus penetrating keratoplasty: a randomized multicenter clinical trial. Ophthalmology 118, 302–309 (2011).

    Article  PubMed  Google Scholar 

  308. Chamberlain, W. D., Rush, S. W., Mathers, W. D., Cabezas, M. & Fraunfelder, F. W. Comparison of femtosecond laser-assisted keratoplasty versus conventional penetrating keratoplasty. Ophthalmology 118, 486–491 (2011).

    Article  PubMed  Google Scholar 

  309. Kelly, T. L., Williams, K. A. & Coster, D. J. Corneal transplantation for keratoconus: a registry study. Arch. Ophthalmol. 129, 691–697 (2011).

    Article  PubMed  Google Scholar 

  310. Anshu, A. et al. Long-term review of penetrating keratoplasty: a 20-year review in Asian eyes. Am. J. Ophthalmol. 129, 254–266 (2021).

    Article  Google Scholar 

  311. Barnett, M., Lien, V., Li, J. Y., Durbin-Johnson, B. & Mannis, M. J. Use of scleral lenses and miniscleral lenses after penetrating keratoplasty. Eye Contact Lens 42, 185–189 (2016).

    Article  PubMed  Google Scholar 

  312. Yoshida, J. et al. Characteristics and risk factors of recurrent keratoconus over the long term after penetrating keratoplasty. Graefe’s Archive Clin. Exp. Ophthalmol. 256, 2377–2383 (2018).

    Article  Google Scholar 

  313. Moramarco, A., Gardini, L., Iannetta, D., Versura, P. & Fontana, L. Post penetrating keratoplasty ectasia: incidence, risk factors, clinical features, and treatment options. J. Clin. Med. 11, 2678 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Gadhvi, K. A. et al. Deep anterior lamellar keratoplasty for keratoconus: multisurgeon results. Am. J. Ophthalmol. 201, 54–62 (2019).

    Article  PubMed  Google Scholar 

  315. Borderie, V. M., Georgeon, C., Sandali, O. & Bouheraoua, N. Long-term outcomes of deep anterior lamellar versus penetrating keratoplasty for keratoconus. Br. J. Ophthalmol. 108, 10–16 (2024).

    Article  Google Scholar 

  316. Macintyre, R., Chow, S. P., Chan, E. & Poon, A. Long-term outcomes of deep anterior lamellar keratoplasty versus penetrating keratoplasty in Australian keratoconus patients. Cornea 33, 6–9 (2014).

    Article  PubMed  Google Scholar 

  317. Yüksel, B., Küsbeci, T., Gümüş, F. & Kocakaya, A. E. Long-term endothelial cell viability after deep anterior lamellar versus penetrating keratoplasty for keratoconus. Exp. Clin. Transplant. 21, 599–606 (2023).

    PubMed  Google Scholar 

  318. Coster, D. J., Lowe, M. T., Keane, M. C. & Williams, K. A. A comparison of lamellar and penetrating keratoplasty outcomes: a registry study. Ophthalmology 121, 979–987 (2014).

    Article  PubMed  Google Scholar 

  319. Jones, M. N. A., Armitage, W. J., Ayliffe, W., Larkin, D. F. & Kaye, S. B. Penetrating and deep anterior lamellar keratoplasty for keratoconus: a comparison of graft outcomes in the United Kingdom. Invest. Ophthalmol. Vis. Sci. 50, 5625–5629 (2009).

    Article  PubMed  Google Scholar 

  320. Blériot, A. et al. Comparison of 12-month anatomic and functional results between Z6 femtosecond laser-assisted and manual trephination in deep anterior lamellar keratoplasty for advanced keratoconus. J. Fr. Ophtalmol. 40, e193–e200 (2017).

    Article  PubMed  Google Scholar 

  321. Alio, J. L., Abdelghany, A. A., Barraquer, R., Hammouda, L. M. & Sabry, A. M. Femtosecond laser assisted deep anterior lamellar keratoplasty outcomes and healing patterns compared to manual technique. Biomed. Res. Int. 2015, 397891 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  322. Fung, S. S. M., Aiello, F. & Maurino, V. Outcomes of femtosecond laser-assisted mushroom-configuration keratoplasty in advanced keratoconus. Eye 30, 553–561 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Montolío-Marzo, E., Díaz-Valle, D., Burgos-Blasco, B., Etxabe, H. & Gegúndez-Fernández, J. A. Spontaneous descemet layer dissection without pneumodissection in femtosecond laser-assisted mushroom-type deep anterior lamellar keratoplasty. Cornea 42, 1045–1048 (2023).

    Article  PubMed  Google Scholar 

  324. Shehadeh-Mashor, R. et al. Comparison between femtosecond laser mushroom configuration and manual trephine straight-edge configuration deep anterior lamellar keratoplasty. Br. J. Ophthalmol. 98, 35–39 (2014).

    Article  PubMed  Google Scholar 

  325. Buzzonetti, L. et al. Refractive outcome of keratoconus treated by big-bubble deep anterior lamellar keratoplasty in pediatric patients: two-year follow-up comparison between mechanical trephine and femtosecond laser assisted techniques. Eye Vis. 6, 1 (2019).

    Article  Google Scholar 

  326. van Dijk, K. et al. Bowman layer transplantation: 5-year results. Graefes Arch. Clin. Exp. Ophthalmol. 256, 1151–1158 (2018).

    Article  PubMed  Google Scholar 

  327. Zygoura, V. et al. Validity of Bowman layer transplantation for keratoconus: visual performance at 5–7 years. Acta Ophthalmol. 96, e901–e902 (2018).

    Article  PubMed  Google Scholar 

  328. Fan Gaskin, J. C., Good, W. R., Jordan, C. A., Patel, D. V. & Mcghee, C. N. The Auckland Keratoconus Study: identifying predictors of acute corneal hydrops in keratoconus. Clin. Exp. Optom. 96, 208–213 (2013).

    Article  PubMed  Google Scholar 

  329. Vohra, V., Shetty, R., James, E., Kundu, G. & D’Souza, S. Evaluating the safety and efficacy of compression sutures with intracameral perfluoropropane (C3F8) in the management of acute corneal hydrops. Int. Ophthalmol. 41, 2027–2031 (2021).

    Article  PubMed  Google Scholar 

  330. Sharma, N., Maharana, P. K., Jhanji, V. & Vajpayee, R. B. Management of acute corneal hydrops in ectatic corneal disorders. Curr. Opin. Ophthalmol. 23, 317–323 (2012).

    Article  CAS  PubMed  Google Scholar 

  331. Hesse, M. et al. The effect of air, SF6 and C3F8 on immortalized human corneal endothelial cells. Acta Ophthalmol. 95, e284–e290 (2017).

    Article  CAS  PubMed  Google Scholar 

  332. Basu, S. et al. Intracameral perfluoropropane gas in the treatment of acute corneal hydrops. Ophthalmology 118, 934–939 (2011).

    Article  PubMed  Google Scholar 

  333. Mohebbi, M., Pilafkan, H., Nabavi, A., Mirghorbani, M. & Naderan, M. Treatment of acute corneal hydrops with combined intracameral gas and approximation sutures in patients with corneal ectasia. Cornea 39, 258–262 (2020).

    Article  PubMed  Google Scholar 

  334. Rajaraman, R., Singh, S., Raghavan, A. & Karkhanis, A. Efficacy and safety of intracameral perfluoropropane (C3F 8) tamponade and compression sutures for the management of acute corneal hydrops. Cornea 28, 317–320 (2009).

    Article  PubMed  Google Scholar 

  335. Aydin Kurna, S., Altun, A., Gencaga, T., Akkaya, S. & Sengor, T. Vision related quality of life in patients with keratoconus. J. Ophthalmol. 2014, 190–194 (2014).

    Google Scholar 

  336. Mahdaviazad, H., Bamdad, S., Roustaei, N. & Mohaghegh, S. Vision-related quality of life in iranian patients with keratoconus: National Eye Institute vision function questionnaire-25. Eye Contact Lens 2, S350–S354 (2018).

    Article  Google Scholar 

  337. Kymes, S. M., Walline, J. J., Zadnik, K., Sterling, J. & Gordon, M. O. Changes in the quality-of-life of people with keratoconus. Am. J. Ophthalmol. 145, 611–617 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  338. Saunier, V. et al. Vision-related quality of life and dependency in French keratoconus patients: impact study. J. Cataract Refract. Surg. 43, 1582–1590 (2017).

    Article  PubMed  Google Scholar 

  339. Rebenitsch, R. L., Kymes, S. M., Walline, J. J. & Gordon, M. O. The lifetime economic burden of keratoconus: a decision analysis using a Markov model. Am. J. Ophthalmol. 151, 768–773.e2 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  340. Malyugin, B. et al. Keratoconus diagnostic and treatment algorithms based on machine-learning methods. Diagnostics 11, 1933 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  341. Ghaderi, M., Sharifi, A. & Jafarzadeh Pour, E. Proposing an ensemble learning model based on neural network and fuzzy system for keratoconus diagnosis based on Pentacam measurements. Int. Ophthalmol. 41, 3935–3948 (2021).

    Article  PubMed  Google Scholar 

  342. Lavric, A., Popa, V., David, C. & Paval, C. C. Keratoconus detection algorithm using convolutional neural networks: challenges. Proceedings of the 11th International Conference on Electronics, Computers and Artificial Intelligence, ECAI 2019 https://doi.org/10.1109/ECAI46879.2019.9042100 (IEEE, 2019).

  343. Kamiya, K. et al. Prediction of keratoconus progression using deep learning of anterior segment optical coherence tomography maps. Ann. Transl. Med. 9, 1287 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  344. Yousefi, S. et al. Predicting the likelihood of need for future keratoplasty intervention using artificial intelligence. Ocul. Surface. 320–325 (2020).

  345. Karolak, J. A. & Gajecka, M. Genomic strategies to understand causes of keratoconus. Mol. Genet. Genomics. 292, 251–269 (2017).

    Article  CAS  PubMed  Google Scholar 

  346. Sarkar, S. et al. Corneal regeneration using gene therapy approaches. Cells 12, 1280 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  347. Sun, M. G. et al. Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea. J. Mech. Behav. Biomed. Mater 128, 105100 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  348. Alió del Barrio, J. L. & Alió, J. L. Cellular therapy of the corneal stroma: a new type of corneal surgery for keratoconus and corneal dystrophies. Eye Vis. 5, 28 (2018).

    Article  Google Scholar 

  349. Sun, Z. et al. Low-intensity low-frequency ultrasound mediates riboflavin delivery during corneal crosslinking. Bioeng. Transl. Med. 8, e10442 (2023).

    Article  CAS  PubMed  Google Scholar 

  350. Ting, D. S. J. et al. Deep anterior lamellar keratoplasty: challenges in histopathological examination. Br. J. Ophthalmol. 96, 1510–1512 (2012).

    Article  PubMed  Google Scholar 

  351. Alio, J. L. et al. Corneal graft failure: an update. Br. J. Ophthalmol. 105, 1049–1058 (2021).

    Article  PubMed  Google Scholar 

  352. Alio, J., El Zarif, M. & del Barrio, J. A. Corneal stroma densitometry evolution in a clinical model of cellular therapy for advanced keratoconus. Acta Ophthalmol. 100, 952–960 (2022).

    Article  Google Scholar 

  353. El Zarif, M., Alió Del Barrio, J. L., Mingo, D., Jawad, K. A. & Alió, J. L. Corneal stromal densitometry evolution in a clinical model of cellular therapy for advanced keratoconus. Cornea 42, 53–68 (2023).

    Article  Google Scholar 

  354. Alió Del Barrio, J. L. et al. Cellular therapy with human autologous adipose-derived adult stem cells for advanced keratoconus. Cornea 36, 91–100 (2017).

    Article  Google Scholar 

  355. Alió, J. L. et al. Regenerative surgery of the corneal stroma for advanced keratoconus: 1-year outcomes. Am. J. Ophthalmol. 203, 53–68 (2019).

    Article  PubMed  Google Scholar 

  356. Alio del Barrio, J. L. et al. Acellular human corneal matrix sheets seeded with human adipose-derived mesenchymal stem cells integrate functionally in an experimental animal model. Exp. Eye Res. 132, (2015).

  357. El Zarif, M. et al. Corneal stroma cell density evolution in keratoconus corneas following the implantation of adipose mesenchymal stem cells and corneal laminas: an in vivo confocal microscopy study. Invest. Ophthalmol. Vis. Sci. 61, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  358. Alió del Barrio, J. L., Arnalich-Montiel, F., De Miguel, M. P., El Zarif, M. & Alió, J. L. Corneal stroma regeneration: preclinical studies. Exp. Eye Res. 202, 108314 (2021).

    Article  PubMed  Google Scholar 

  359. Jonas, J. B. Intrastromal lamellar femtosecond laser keratoplasty with superficial flap. Br. J. Ophthalmol. 87, 1195 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Swinger, C. A. & Barraquer, J. I. Keratophakia and keratomileusis – clinical results. Ophthalmology 88, 709–715 (1981).

    Article  CAS  PubMed  Google Scholar 

  361. Riau, A. K., Liu, Y. C., Yam, G. H. F. & Mehta, J. S. Stromal keratophakia: corneal inlay implantation. Prog. Retin. Eye Res. 75, 100780 (2020).

    Article  PubMed  Google Scholar 

  362. Rafat, M. et al. Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts. Nat. Biotechnol. 41, 70–81 (2023). A pivotal study that describes the use of cell-free engineered corneal tissue in patients with advanced keratoconus.

    Article  CAS  PubMed  Google Scholar 

  363. Kobia-Acquah, E. et al. Prevalence of keratoconus in Ghana: a hospital-based study of tertiary eye care facilities. Eur. J. Ophthalmol. 32, 3185–3194 (2022).

    Article  PubMed  Google Scholar 

  364. Elbedewy, H. A. et al. Prevalence and topographical characteristics of keratoconus in patients with refractive errors in the Egyptian delta. Int. Ophthalmol. 39, 1459–1465 (2019).

    Article  PubMed  Google Scholar 

  365. Hashemi, H. et al. The prevalence of keratoconus in a young population in Mashhad, Iran. Ophthalmic Physiol. Opt. 34, 519–527 (2014).

    Article  PubMed  Google Scholar 

  366. Hashemi, H. et al. High prevalence and familial aggregation of keratoconus in an Iranian rural population: a population-based study. Ophthalmic Physiological Opt. 38, 447–455 (2018).

    Article  Google Scholar 

  367. Hashemi, H. et al. Prevalence of keratoconus in a population-based study in Shahroud. Cornea 32, 1441–1445 (2013).

    Article  PubMed  Google Scholar 

  368. Mohaghegh, S. et al. Prevalence and risk factors of keratoconus (including oxidative stress biomarkers) in a cohort study of Shiraz University of Medical Science employees in Iran. BMC Ophthalmol. 23, 188 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Shneor, E. et al. Prevalence of keratoconus among young arab students in Israel. Int. J. Keratoconus Ectatic Corneal Dis. 3, 9–14 (2014).

    Article  Google Scholar 

  370. Tanabe, U., Fujiki, K., Ogawa, A., Ueda, S. & Kanai, A. Prevalence of keratoconus patients in Japan. J. Jpn. Ophthalmol. Soc. 89, 407–411 (1985).

    CAS  Google Scholar 

  371. Mohd-Ali, B., Abdu, M., Yaw, C. Y. & Mohidin, N. Clinical characteristics of keratoconus patients in Malaysia: a review from a cornea specialist centre. J. Optom. 5, 38–42 (2012).

    Article  PubMed Central  Google Scholar 

  372. Shehadeh, M. M. et al. Prevalence of keratoconus among a Palestinian tertiary student population. Open. Ophthalmol. J. 9, 172–176 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Bikbov, M. M. et al. Prevalence and associations of keratoconus among children, adults, and elderly in the population-based Ural eye studies. Asia-Pac. J. Ophthalmol. 12, 591–603 (2023).

    Article  CAS  Google Scholar 

  374. Alzahrani, K. et al. Keratoconus epidemiology presentations at Najran province, Saudi Arabia. Clin. Optom. 13, 175–179 (2021).

    Article  Google Scholar 

  375. Hwang, S., Lim, D. H. & Chung, T. Y. Prevalence and incidence of keratoconus in South Korea: a nationwide population-based study. Am. J. Ophthalmol. 192, 56–64 (2018).

    Article  PubMed  Google Scholar 

  376. Salman, A. et al. Prevalence of keratoconus in a population-based study in Syria. J. Ophthalmol. 2022, 6064533 (2022).

    PubMed  PubMed Central  Google Scholar 

  377. Ng, J. M. et al. Incidence and prevalence of keratoconus in Taiwan during 2000–2018 and their association with the use of corneal topography and tomography. Eye 38, 745–751 (2023).

    Article  PubMed  Google Scholar 

  378. Piyacomn, Y. et al. Keratoconus in Thai population – a cross-sectional hospital-based study. Asian. Biomedicine 16, 316–321 (2022).

    Google Scholar 

  379. Özalp, O., Atalay, E. & Yildirim, N. Prevalence and risk factors for keratoconus in a university-based population in Turkey. J. Cataract Refract. Surg. 47, 1524–1529 (2021).

    Article  PubMed  Google Scholar 

  380. Armstrong, B. K. et al. Screening for keratoconus in a high-risk adolescent population. Ophthalmic Epidemiol. 28, 191–197 (2021).

    Article  PubMed  Google Scholar 

  381. Marx-Gross, S. et al. Much higher prevalence of keratoconus than announced results of the Gutenberg Health Study (GHS). Graefes Arch. Clin. Exp. Ophthalmol. 261, 3241–3247 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  382. Lombardo, M., Alunni Fegatelli, D., Serrao, S., Vestri, A. & Lombardo, G. Estimated prevalence of keratoconus in the largest metropolitan area of Italy. Eur. J. Ophthalmol. 34, 649–655 (2024).

    Article  PubMed  Google Scholar 

  383. Ljubic, A. D. Keratoconus and its prevalence in Macedonia. Macedonian J. Med. Sci 42, 3191–3198 (2009).

    Google Scholar 

  384. Gilevska, F. et al. Prevalence of keratoconus in refractive surgery practice population in North Macedonia. Int. Ophthalmol. 42, 3191–3198 (2022).

    Article  PubMed  Google Scholar 

  385. Kristianslund, O., Hagem, A. M., Thorsrud, A. & Drolsum, L. Prevalence and incidence of keratoconus in Norway: a nationwide register study. Acta Ophthalmol. 99, e694–e699 (2021).

    Article  PubMed  Google Scholar 

  386. Godefrooij, D. A., de Wit, G. A., Uiterwaal, C. S., Imhof, S. M. & Wisse, R. P. L. Age-specific incidence and prevalence of keratoconus: a nationwide registration study. Am. J. Ophthalmol. 175, 169–172 (2017).

    Article  PubMed  Google Scholar 

  387. Kanclerz, P., Przewłócka, K., Toprak, I. & Alio, J. The prevalence of keratoconus in northern Poland: a cross-sectional study of patients from a primary healthcare practice. Contact Lens Anterior Eye 46, 101846 (2023).

    Article  PubMed  Google Scholar 

  388. Reeves, S. W., Ellwein, L. B., Kim, T., Constantine, R. & Lee, P. P. Keratoconus in the Medicare population. Cornea 28, 40–42 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  389. de Azevedo Magalhães, O., Pagano, B. N., Grellmann, L. V., Zago, V. S. & Kronbauer, C. L. Prevalence of keratoconus among high school students in southern Brazil: a community-based study. Eye Contact Lens 50, 117–120 (2024).

    PubMed  Google Scholar 

  390. Chan, E. et al. Prevalence of keratoconus based on scheimpflug imaging: the Raine study. Ophthalmology 128, 515–521 (2021).

    Article  PubMed  Google Scholar 

  391. Papali’i-Curtin, A. T. et al. Keratoconus prevalence among high school students in New Zealand. Cornea 38, 1382–1389 (2019).

    Article  Google Scholar 

  392. Vanathi, M. & Sidhu, N. in Keratoconus: Diagnosis and Treatment (ed Das, S.) 59–67 (Springer, 2022).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (V.J., R.B.S. and F.A.W.); Epidemiology (V.J., R.B.S., S.K., N.S. and F.A.W.); Mechanisms/pathophysiology (V.J., R.B.S., S.K., F.H. and H.S.D.); Diagnosis, screening and prevention (V.J., R.B.S., N.S., F.A.W., F.H. and H.S.D.); Management (V.J., R.B.S., S.K., N.S., F.H. and H.S.D.); Quality of life (V.J., R.B.S. and F.A.W.); Outlook (V.J., R.B.S. and H.S.D.); overview of the Primer (V.J.).

Corresponding author

Correspondence to Vishal Jhanji.

Ethics declarations

Competing interests

F.H. is the chief scientific officer and an equity holder of EMAGine AG (Zug, Switzerland) and co-inventor of the Patent Cooperation Treaty (PCT) applications CH2012/0000090 (granted on 21 November 2018) and CH2014/000075 (granted on 20 November 2019) regarding corneal cross-linking technology. There are no direct or indirect references pertaining to the commercial entity’s work or the intellectual properties in this work that could directly undermine the objectivity, integrity and value of this work, through a potential influence on the judgements and actions of the authors regarding objective data presentation, analysis and interpretation. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks V. Romano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.B., Koh, S., Sharma, N. et al. Keratoconus. Nat Rev Dis Primers 10, 81 (2024). https://doi.org/10.1038/s41572-024-00565-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-024-00565-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing