Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Osteoarthritis

Abstract

Osteoarthritis is a heterogeneous whole-joint disease that can cause pain and is a leading cause of disability and premature work loss. The predominant disease risk factors — obesity and joint injury — are well recognized and modifiable. A greater understanding of the complex mechanisms, including inflammatory, metabolic and post-traumatic processes, that can lead to disease and of the pathophysiology of pain is helping to delineate mechanistic targets. Currently, management is primarily focused on alleviating the main symptoms of pain and obstructed function through lifestyle interventions such as self-management programmes, education, physical activity, exercise and weight management. However, lack of adherence to known effective osteoarthritis therapeutic strategies also contributes to the high global disease burden. For those who have persistent symptoms that are compromising quality of life and have not responded adequately to core treatments, joint replacement is an option to consider. The burden imparted by the disease causes a substantial impact on individuals affected in terms of quality of life. For society, this disease is a substantial driver of increased health-care costs and underemployment. This Primer highlights advances and controversies in osteoarthritis, drawing key insights from the current evidence base.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Healthy and osteoarthritic joint.
Fig. 2: Common osteoarthritis sites.
Fig. 3: Summary of osteoarthritis risk factors.
Fig. 4: Knee osteoarthritis phenotypes.
Fig. 5: Pathological changes in knee joint tissue.
Fig. 6: Neuroanatomy of the pain pathway in osteoarthritis.
Fig. 7: Imaging assistance when clinical findings of symptoms and signs suggest an alternative diagnosis.
Fig. 8: Effect sizes for core, adjunctive and pharmacological treatments for osteoarthritis.

Similar content being viewed by others

References

  1. Hunter, D. J., March, L. & Chew, M. Osteoarthritis in 2020 and beyond: a Lancet Commission. Lancet 396, 1711–1712 (2020).

    PubMed  Google Scholar 

  2. Wieland, H. A., Michaelis, M., Kirschbaum, B. J. & Rudolphi, K. A. Osteoarthritis — an untreatable disease? Nat. Rev. Drug Discov. 4, 331–344 (2005).

    CAS  PubMed  Google Scholar 

  3. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).

    CAS  PubMed  Google Scholar 

  4. Kraus, V. B., Blanco, F. J., Englund, M., Karsdal, M. A. & Lohmander, L. S. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr. Cartil. 23, 1233–1241 (2015).

    CAS  Google Scholar 

  5. Whittaker, J. L., Runhaar, J., Bierma-Zeinstra, S. & Roos, E. M. A lifespan approach to osteoarthritis prevention. Osteoarthr. Cartil. 29, 1638–1653 (2021).

    CAS  Google Scholar 

  6. Jinks, C. et al. Changing the narrative on osteoarthritis: a call for global action. Osteoarthr. Cartil. 32, 414–420 (2024).

    Google Scholar 

  7. Mahmoudian, A., Lohmander, L. S., Mobasheri, A., Englund, M. & Luyten, F. P. Early-stage symptomatic osteoarthritis of the knee — time for action. Nat. Rev. Rheumatol. 17, 621–632 (2021).

    PubMed  Google Scholar 

  8. Mahmoudian, A. et al. Timing is everything: towards classification criteria for early-stage symptomatic knee osteoarthritis. Osteoarthr. Cartil. 32, 649–653 (2024).

    Google Scholar 

  9. Hunter, D. J. & Bowden, J. L. Therapy: are you managing osteoarthritis appropriately? Nat. Rev. Rheumatol. 13, 703–704 (2017).

    PubMed  Google Scholar 

  10. Murphy, L. et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 59, 1207–1213 (2008). A longitudinal study of 3,068 participants in the Johnston County Osteoarthritis Project revealing the lifetime risk of symptomatic OA in at least one knee.

    PubMed  PubMed Central  Google Scholar 

  11. Arslan, I. G. et al. Estimating incidence and prevalence of hip osteoarthritis using electronic health records: a population-based cohort study. Osteoarthr. Cartil. 30, 843–851 (2022).

    CAS  Google Scholar 

  12. Haugen, I. K. et al. Prevalence, incidence and progression of hand osteoarthritis in the general population: the Framingham Osteoarthritis Study. Ann. Rheum. Dis. 70, 1581–1586 (2011).

    PubMed  Google Scholar 

  13. Marshall, M., Watt, F. E., Vincent, T. L. & Dziedzic, K. Hand osteoarthritis: clinical phenotypes, molecular mechanisms and disease management. Nat. Rev. Rheumatol. 14, 641–656 (2018). A comprehensive review on the clinical phenotypes, molecular mechanisms and management of hand OA.

    PubMed  Google Scholar 

  14. Gellhorn, A. C., Katz, J. N. & Suri, P. Osteoarthritis of the spine: the facet joints. Nat. Rev. Rheumatol. 9, 216–224 (2013).

    PubMed  Google Scholar 

  15. Herrera-Pérez, M. et al. Ankle osteoarthritis aetiology. J. Clin. Med. 10, 4489 (2021).

    PubMed  PubMed Central  Google Scholar 

  16. Stanley, D. Prevalence and etiology of symptomatic elbow osteoarthritis. J. Shoulder Elb. Surg. 3, 386–389 (1994).

    CAS  Google Scholar 

  17. Oo, W. M. & Linklater, J. Prevalence of osteoarthritis-related imaging abnormalities in asymptomatic healthy adults. Osteoarthr. Cartil. 32, 1181–1183 (2024).

    Google Scholar 

  18. Kitamura, Y. et al. Prevalence and associated factors for primary osteoarthritis of the scaphotrapeziotrapezoid, radiocarpal, and distal radioulnar joints in the Japanese general elderly population. J. Hand Surg. 50, 103.e1–103.e10 (2023).

    Google Scholar 

  19. Lu, K. et al. Molecular signaling in temporomandibular joint osteoarthritis. J. Orthop. Translat. 32, 21–27 (2022).

    PubMed  Google Scholar 

  20. GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990-2020 and projections to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 5, e508–e522 (2023).

    Google Scholar 

  21. Weng, Q. et al. Global burden of early-onset osteoarthritis, 1990-2019: results from the Global Burden of Disease Study 2019. Ann. Rheum. Dis. 83, 915–925 (2024). Data from the Global Burden of Diseases Study 2019 showed the numbers of incident cases, prevalent cases, YLDs and corresponding age-standardized rates for early-onset OA (diagnosis before age 55 years) from 1990 to 2019.

    PubMed  Google Scholar 

  22. Maerz, T. & Schiphof, D. From cartilage to culture: opportunities for unraveling the complexities of osteoarthritis through sex and gender. Osteoarthr. Cartil. 32, 1013–1015 (2024).

    Google Scholar 

  23. Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 412–420 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Park, D. et al. Association of general and central obesity, and their changes with risk of knee osteoarthritis: a nationwide population-based cohort study. Sci. Rep. 13, 3796 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Salis, Z., Gallego, B., Nguyen, T. V. & Sainsbury, A. Association of decrease in body mass index with reduced incidence and progression of the structural defects of knee osteoarthritis: a prospective multi-cohort study. Arthritis Rheumatol. 75, 533–543 (2023).

    PubMed  Google Scholar 

  26. Balogun, S., Scott, D. & Aitken, D. Association between sarcopenic obesity and knee osteoarthritis: a narrative review. Osteoarthr. Cartil. Open 6, 100489 (2024).

    PubMed  PubMed Central  Google Scholar 

  27. Yang, J. et al. Causal relationship between sarcopenia and osteoarthritis: a bi-directional two-sample Mendelian randomized study. Eur. J. Med. Res. 28, 327 (2023).

    PubMed  PubMed Central  Google Scholar 

  28. Szilagyi, I. A., Waarsing, J. H., Schiphof, D., van Meurs, J. B. J. & Bierma-Zeinstra, S. M. A. Towards sex-specific osteoarthritis risk models: evaluation of risk factors for knee osteoarthritis in males and females. Rheumatology 61, 648–657 (2022).

    PubMed  Google Scholar 

  29. Wang, X. et al. Occupational risk in knee osteoarthritis: a systematic review and meta-analysis of observational studies. Arthritis Care Res. 72, 1213–1223 (2020).

    Google Scholar 

  30. Felson, D. et al. New approach to testing treatments for osteoarthritis: FastOA. Ann. Rheum. Dis. 83, 274–276 (2024).

    PubMed  Google Scholar 

  31. Brouwer, G. M. et al. Association between valgus and varus alignment and the development and progression of radiographic osteoarthritis of the knee. Arthritis Rheum. 56, 1204–1211 (2007).

    CAS  PubMed  Google Scholar 

  32. Li, M. et al. Varus-valgus knee laxity is related to a higher risk of knee osteoarthritis incidence and structural progression: data from the osteoarthritis initiative. Clin. Rheumatol. 41, 1013–1021 (2022).

    PubMed  Google Scholar 

  33. Thirumaran, A. J., Murphy, N. J., Fu, K. & Hunter, D. J. Femoroacetabular impingement — what the rheumatologist needs to know. Best Pract. Res. Clin. Rheumatol. 38, 101932 (2024).

    PubMed  Google Scholar 

  34. Silverwood, V. et al. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthr. Cartil. 23, 507–515 (2015).

    CAS  Google Scholar 

  35. Wei, G. et al. Risk of metabolic abnormalities in osteoarthritis: a new perspective to understand its pathological mechanisms. Bone Res. 11, 63 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Boer, C. G. et al. Deciphering osteoarthritis genetics across 826,690 individuals from 9 populations. Cell 184, 4784–4818.e17 (2021). A genome-wide association study meta-analysis across 826,690 individuals identifying 100 independently associated risk variants across 11 OA phenotypes.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Waheed, A. & Rai, M. F. Osteoarthritis year in review 2023: genetics, genomics, and epigenetics. Osteoarthr. Cartil. 32, 128–137 (2024).

    Google Scholar 

  38. Kehayova, Y. S., Wilkinson, J. M., Rice, S. J. & Loughlin, J. Mediation of the same epigenetic and transcriptional effect by independent osteoarthritis risk-conferring alleles on a shared target gene, COLGALT2. Arthritis Rheumatol. 75, 910–922 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu, X. et al. Identification of KANSL1 as a novel pathogenic gene for developmental dysplasia of the hip. J. Mol. Med. 100, 1159–1168 (2022).

    CAS  PubMed  Google Scholar 

  40. Courties, A. et al. Human-specific duplicate CHRFAM7A gene is associated with more severe osteoarthritis and amplifies pain behaviours. Ann. Rheum. Dis. 82, 710–718 (2023).

    CAS  PubMed  Google Scholar 

  41. Xu, R. et al. Association between single nucleotide variants and severe chronic pain in older adult patients after lower extremity arthroplasty. J. Orthop. Surg. Res. 18, 184 (2023).

    PubMed  PubMed Central  Google Scholar 

  42. Kamps, A. et al. Occurrence of comorbidity following osteoarthritis diagnosis: a cohort study in the Netherlands. Osteoarthr. Cartil. 31, 519–528 (2023).

    CAS  Google Scholar 

  43. Dell’Isola, A. et al. Risk of comorbidities following physician-diagnosed knee or hip osteoarthritis: a register-based cohort study. Arthritis Care Res. 74, 1689–1695 (2022).

    Google Scholar 

  44. Swain, S., Sarmanova, A., Coupland, C., Doherty, M. & Zhang, W. Comorbidities in osteoarthritis: a systematic review and meta-analysis of observational studies. Arthritis Care Res. 72, 991–1000 (2020). A recent systematic review highlighted the importance and frequency with which persons with OA experience comorbidities.

    CAS  Google Scholar 

  45. Dell’Isola, A., Recenti, F., Englund, M. & Kiadaliri, A. Twenty-year trajectories of morbidity in individuals with and without osteoarthritis. RMD Open 10, e004164 (2024).

    PubMed  PubMed Central  Google Scholar 

  46. The Osteoarthritis Research Society International. Osteoarthritis: A Serious Disease, Submitted to the U.S. Food and Drug Administration December 1, 2016 (OARSI, 2016).

  47. Nüesch, E. et al. All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study. BMJ 342, d1165 (2011).

    PubMed  PubMed Central  Google Scholar 

  48. Wilkie, R. et al. Reasons why osteoarthritis predicts mortality: path analysis within a Cox proportional hazards model. RMD Open 5, e001048 (2019).

    PubMed  PubMed Central  Google Scholar 

  49. Hunter, D. J. & Deveza, L. A. Deconstructing the “types” of osteoarthritis. Osteoarthritis Imaging https://doi.org/10.1016/j.ostima.2024.100257 (2024).

    Article  Google Scholar 

  50. Dell’Isola, A. & Steultjens, M. Classification of patients with knee osteoarthritis in clinical phenotypes: data from the osteoarthritis initiative. PLoS ONE 13, e0191045 (2018).

    PubMed  PubMed Central  Google Scholar 

  51. Mobasheri, A. et al. The role of metabolism in the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 13, 302–311 (2017).

    CAS  PubMed  Google Scholar 

  52. Huang, C. et al. Development and formulation of the classification criteria for osteoarthritis. Ann. Transl. Med. 8, 1068 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Angelini, F. et al. Osteoarthritis endotype discovery via clustering of biochemical marker data. Ann. Rheum. Dis. 81, 666–675 (2022).

    PubMed  Google Scholar 

  54. Vincent, T. L. et al. Osteoarthritis pathophysiology: therapeutic target discovery may require a multifaceted approach. Clin. Geriatr. Med. 38, 193–219 (2022).

    PubMed  PubMed Central  Google Scholar 

  55. Grandi, F. C. et al. Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage. Sci. Adv. 6, eaay5352 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sahu, N., Grandi, F. C. & Bhutani, N. A single-cell mass cytometry platform to map the effects of preclinical drugs on cartilage homeostasis. JCI Insight 7, e160702 (2022).

    PubMed  PubMed Central  Google Scholar 

  57. Fan, Y. et al. Unveiling inflammatory and prehypertrophic cell populations as key contributors to knee cartilage degeneration in osteoarthritis using multi-omics data integration. Ann. Rheum. Dis. 83, 926–944 (2024). Multi-omics data revealing inflammatory and pre-hypertrophic cell populations in OA cartilage degeneration.

    CAS  PubMed  Google Scholar 

  58. Zheng, L., Zhang, Z., Sheng, P. & Mobasheri, A. The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res. Rev. 66, 101249 (2021).

    CAS  PubMed  Google Scholar 

  59. Santos, S., Emery, N., Neu, C. P. & Pierce, D. M. Propagation of microcracks in collagen networks of cartilage under mechanical loads. Osteoarthr. Cartil. 27, 1392–1402 (2019).

    CAS  Google Scholar 

  60. Rim, Y. A. & Ju, J. H. The role of fibrosis in osteoarthritis progression. Life 11, 3 (2020).

    PubMed  PubMed Central  Google Scholar 

  61. Deroyer, C. et al. CEMIP (KIAA1199) induces a fibrosis-like process in osteoarthritic chondrocytes. Cell Death Dis. 10, 103 (2019).

    PubMed  PubMed Central  Google Scholar 

  62. Miosge, N., Hartmann, M., Maelicke, C. & Herken, R. Expression of collagen type I and type II in consecutive stages of human osteoarthritis. Histochem. Cell Biol. 122, 229–236 (2004).

    CAS  PubMed  Google Scholar 

  63. Hodgkinson, T., Kelly, D. C., Curtin, C. M. & O’Brien, F. J. Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis. Nat. Rev. Rheumatol. 18, 67–84 (2022).

    PubMed  Google Scholar 

  64. Klose-Jensen, R. et al. Subchondral bone turnover, but not bone volume, is increased in early stage osteoarthritic lesions in the human hip joint. Osteoarthr. Cartil. 23, 2167–2173 (2015).

    CAS  Google Scholar 

  65. Bettica, P., Cline, G., Hart, D. J., Meyer, J. & Spector, T. D. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum. 46, 3178–3184 (2002).

    PubMed  Google Scholar 

  66. Botter, S. M. et al. Osteoarthritis induction leads to early and temporal subchondral plate porosity in the tibial plateau of mice: an in vivo microfocal computed tomography study. Arthritis Rheum. 63, 2690–2699 (2011).

    PubMed  Google Scholar 

  67. Neogi, T. et al. Magnetic resonance imaging-based three-dimensional bone shape of the knee predicts onset of knee osteoarthritis: data from the osteoarthritis initiative. Arthritis Rheum. 65, 2048–2058 (2013).

    PubMed  PubMed Central  Google Scholar 

  68. Burr, D. B. & Gallant, M. A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8, 665–673 (2012).

    CAS  PubMed  Google Scholar 

  69. Hügle, T. & Geurts, J. What drives osteoarthritis? — Synovial versus subchondral bone pathology. Rheumatology 56, 1461–1471 (2017).

    PubMed  Google Scholar 

  70. Day, J. S. et al. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J. Orthop. Res. 19, 914–918 (2001).

    CAS  PubMed  Google Scholar 

  71. Burr, D. B. Anatomy and physiology of the mineralized tissues: role in the pathogenesis of osteoarthrosis. Osteoarthr. Cartil. 12, S20–S30 (2004).

    Google Scholar 

  72. Sanchez-Lopez, E., Coras, R., Torres, A., Lane, N. E. & Guma, M. Synovial inflammation in osteoarthritis progression. Nat. Rev. Rheumatol. 18, 258–275 (2022). An up-to-date comprehensive review on synovitis in OA.

    PubMed  PubMed Central  Google Scholar 

  73. Macchi, V. et al. The infrapatellar fat pad and the synovial membrane: an anatomo-functional unit. J. Anat. 233, 146–154 (2018).

    PubMed  PubMed Central  Google Scholar 

  74. Tang, S. et al. Single-cell atlas of human infrapatellar fat pad and synovium implicates APOE signaling in osteoarthritis pathology. Sci. Transl. Med. 16, eadf4590 (2024). A single-cell study of IPFP and synovium from patients with OA.

    CAS  PubMed  Google Scholar 

  75. Li, J. et al. Synovium and infrapatellar fat pad share common mesenchymal progenitors and undergo coordinated changes in osteoarthritis. J. Bone Miner. Res. 39, 161–176 (2024).

    PubMed  PubMed Central  Google Scholar 

  76. Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. P. & Fahmi, H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7, 33–42 (2011).

    CAS  PubMed  Google Scholar 

  77. Coryell, P. R., Diekman, B. O. & Loeser, R. F. Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat. Rev. Rheumatol. 17, 47–57 (2021).

    PubMed  Google Scholar 

  78. Favero, M. et al. Infrapatellar fat pad features in osteoarthritis: a histopathological and molecular study. Rheumatology 56, 1784–1793 (2017).

    CAS  PubMed  Google Scholar 

  79. Berthiaume, M. J. et al. Meniscal tear and extrusion are strongly associated with progression of symptomatic knee osteoarthritis as assessed by quantitative magnetic resonance imaging. Ann. Rheum. Dis. 64, 556–563 (2005).

    PubMed  Google Scholar 

  80. Hunter, D. J. et al. The association of meniscal pathologic changes with cartilage loss in symptomatic knee osteoarthritis. Arthritis Rheum. 54, 795–801 (2006).

    CAS  PubMed  Google Scholar 

  81. Englund, M., Roemer, F. W., Hayashi, D., Crema, M. D. & Guermazi, A. Meniscus pathology, osteoarthritis and the treatment controversy. Nat. Rev. Rheumatol. 8, 412–419 (2012).

    CAS  PubMed  Google Scholar 

  82. Du, Y. et al. Effects of chronic ankle instability after grade I ankle sprain on the post-traumatic osteoarthritis. Arthritis Res. Ther. 26, 168 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mohajer, B. et al. Role of thigh muscle changes in knee osteoarthritis outcomes: osteoarthritis initiative data. Radiology 305, 169–178 (2022).

    PubMed  Google Scholar 

  84. Siqueira, M. S., Souto, L. R., Martinez, A. F., Serrão, F. V. & de Noronha, M. Muscle activation, strength, and volume in people with patellofemoral osteoarthritis: a systematic review and meta-analysis. Osteoarthr. Cartil. 30, 935–944 (2022).

    CAS  Google Scholar 

  85. Johnson, A. J., Barron, S. M., Nichols, J. A. & Cruz-Almeida, Y. Association of muscle quality and pain in adults with symptomatic knee osteoarthritis, independent of muscle strength: findings from a cross-sectional study. Arthritis Rheumatol. 76, 1062–1070 (2024).

    CAS  PubMed  Google Scholar 

  86. Hannan, M. T., Felson, D. T. & Pincus, T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheumatol. 27, 1513–1517 (2000).

    CAS  PubMed  Google Scholar 

  87. Neogi, T. et al. Association between radiographic features of knee osteoarthritis and pain: results from two cohort studies. BMJ 339, b2844 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Neogi, T. Structural correlates of pain in osteoarthritis. Clin. Exp. Rheumatol. 35, 75–78 (2017).

    PubMed  Google Scholar 

  89. da Costa, B. R. et al. Effectiveness and safety of non-steroidal anti-inflammatory drugs and opioid treatment for knee and hip osteoarthritis: network meta-analysis. BMJ 375, n2321 (2021).

    PubMed  PubMed Central  Google Scholar 

  90. Saltychev, M., Mattie, R., McCormick, Z. & Laimi, K. The magnitude and duration of the effect of intra-articular corticosteroid injections on pain severity in knee osteoarthritis: a systematic review and meta-analysis. Am. J. Phys. Med. Rehabil. 99, 617–625 (2020).

    PubMed  Google Scholar 

  91. Woller, S. A., Eddinger, K. A., Corr, M. & Yaksh, T. L. An overview of pathways encoding nociception. Clin. Exp. Rheumatol. 35, 40–46 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Akin-Akinyosoye, K. et al. Traits associated with central pain augmentation in the Knee Pain In the Community (KPIC) cohort. Pain 159, 1035–1044 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. Arant, K. R., Katz, J. N. & Neogi, T. Quantitative sensory testing: identifying pain characteristics in patients with osteoarthritis. Osteoarthr. Cartil. 30, 17–31 (2022).

    CAS  Google Scholar 

  94. Miller, R. E., Miller, R. J. & Malfait, A. M. Osteoarthritis joint pain: the cytokine connection. Cytokine 70, 185–193 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Miller, R. E. et al. An aggrecan fragment drives osteoarthritis pain through Toll-like receptor 2. JCI Insight 3, e95704 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Malfait, A. M., Miller, R. E. & Block, J. A. Targeting neurotrophic factors: novel approaches to musculoskeletal pain. Pharmacol. Ther. 211, 107553 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Denk, F., Bennett, D. L. & McMahon, S. B. Nerve growth factor and pain mechanisms. Annu. Rev. Neurosci. 40, 307–325 (2017).

    CAS  PubMed  Google Scholar 

  98. Schmelz, M. et al. Nerve growth factor antibody for the treatment of osteoarthritis pain and chronic low-back pain: mechanism of action in the context of efficacy and safety. Pain 160, 2210–2220 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Wise, B. L., Seidel, M. F. & Lane, N. E. The evolution of nerve growth factor inhibition in clinical medicine. Nat. Rev. Rheumatol. 17, 34–46 (2021). This review recaps the biology of NGF and the studies that have been performed to evaluate the efficacy of NGF inhibition for chronic musculoskeletal pain states.

    PubMed  Google Scholar 

  100. Heppelmann, B. Anatomy and histology of joint innervation. J. Peripher. Nerv. Syst. 2, 5–16 (1997).

    CAS  PubMed  Google Scholar 

  101. Skoglund, S. Anatomical and physiological studies of knee joint innervation in the cat. Acta Physiol. Scand. Suppl. 36, 1–101 (1956).

    CAS  PubMed  Google Scholar 

  102. Ashraf, S. et al. Increased vascular penetration and nerve growth in the meniscus: a potential source of pain in osteoarthritis. Ann. Rheum. Dis. 70, 523–529 (2011).

    PubMed  Google Scholar 

  103. Suri, S. et al. Neurovascular invasion at the osteochondral junction and in osteophytes in osteoarthritis. Ann. Rheum. Dis. 66, 1423–1428 (2007).

    PubMed  PubMed Central  Google Scholar 

  104. Aso, K. et al. Contribution of nerves within osteochondral channels to osteoarthritis knee pain in humans and rats. Osteoarthr. Cartil. 28, 1245–1254 (2020).

    CAS  Google Scholar 

  105. Obeidat, A. M. et al. Intra-articular sprouting of nociceptors accompanies progressive osteoarthritis: comparative evidence in four murine models. Front. Neuroanat. 18, 1429124 (2024).

    PubMed  PubMed Central  Google Scholar 

  106. Obeidat, A. M., Miller, R. E., Miller, R. J. & Malfait, A. M. The nociceptive innervation of the normal and osteoarthritic mouse knee. Osteoarthr. Cartil. 27, 1669–1679 (2019).

    CAS  Google Scholar 

  107. Aso, K. et al. Associations of symptomatic knee osteoarthritis with histopathologic features in subchondral bone. Arthritis Rheumatol. 71, 916–924 (2019).

    CAS  PubMed  Google Scholar 

  108. Kuttapitiya, A. et al. Microarray analysis of bone marrow lesions in osteoarthritis demonstrates upregulation of genes implicated in osteochondral turnover, neurogenesis and inflammation. Ann. Rheum. Dis. 76, 1764–1773 (2017).

    CAS  PubMed  Google Scholar 

  109. Nanus, D. E. et al. Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets. eBioMedicine 72, 103618 (2021).

    PubMed  PubMed Central  Google Scholar 

  110. Blackler, G. et al. Targeting STAT6-mediated synovial macrophage activation improves pain in experimental knee osteoarthritis. Arthritis Res. Ther. 26, 73 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kraus, V. B. et al. Direct in vivo evidence of activated macrophages in human osteoarthritis. Osteoarthr. Cartil. 24, 1613–1621 (2016).

    CAS  Google Scholar 

  112. Geraghty, T., Winter, D. R., Miller, R. J., Miller, R. E. & Malfait, A. M. Neuroimmune interactions and osteoarthritis pain: focus on macrophages. Pain Rep. 6, e892 (2021).

    PubMed  PubMed Central  Google Scholar 

  113. Raoof, R. et al. Dorsal root ganglia macrophages maintain osteoarthritis pain. J. Neurosci. 41, 8249–8261 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rankin, J. et al. Quantitative sensory testing protocols to evaluate central and peripheral sensitization in knee OA: a scoping review. Pain Med. 23, 526–557 (2022).

    PubMed  Google Scholar 

  115. Pedersini, P., Gobbo, M., Bishop, M. D., Arendt-Nielsen, L. & Villafañe, J. H. Functional and structural neuroplastic changes related to sensitization proxies in patients with osteoarthritis: a systematic review. Pain Med. 23, 488–498 (2022).

    PubMed  Google Scholar 

  116. Case, R., Thomas, E., Clarke, E. & Peat, G. Prodromal symptoms in knee osteoarthritis: a nested case–control study using data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 23, 1083–1089 (2015).

    CAS  Google Scholar 

  117. Altman, R. et al. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum. 29, 1039–1049 (1986).

    CAS  PubMed  Google Scholar 

  118. Altman, R. et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hip. Arthritis Rheum. 34, 505–514 (1991).

    CAS  PubMed  Google Scholar 

  119. Hunter, D. J., McDougall, J. J. & Keefe, F. J. The symptoms of osteoarthritis and the genesis of pain. Rheum. Dis. Clin. North Am. 34, 623–643 (2008).

    PubMed  PubMed Central  Google Scholar 

  120. Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr. Cartil. 21, 1145–1153 (2013).

    CAS  Google Scholar 

  121. De Baets, L. et al. The interplay between symptoms of insomnia and pain in people with osteoarthritis: a narrative review of the current evidence. Sleep Med. Rev. 70, 101793 (2023).

    PubMed  Google Scholar 

  122. van Berkel, A. C., Ringelenberg, R., Bindels, P. J. E., Bierma-Zeinstra, S. M. A. & Schiphof, D. Nocturnal pain, is the pain different compared with pain during the day? An exploratory cross-sectional study in patients with hip and knee osteoarthritis. Family Pract. 40, 75–82 (2023).

    Google Scholar 

  123. Woolhead, G., Gooberman‐Hill, R., Dieppe, P. & Hawker, G. Night pain in hip and knee osteoarthritis: a focus group study. Arthritis Care Res. 62, 944–949 (2010).

    Google Scholar 

  124. Hawker, G. A. et al. Understanding the pain experience in hip and knee osteoarthritis — an OARSI/OMERACT initiative. Osteoarthr. Cartil. 16, 415–422 (2008).

    CAS  Google Scholar 

  125. Kloppenburg, M. & Kwok, W.-Y. Hand osteoarthritis — a heterogeneous disorder. Nat. Rev. Rheumatol. 8, 22–31 (2012).

    CAS  Google Scholar 

  126. Maricar, N., Callaghan, M. J., Parkes, M. J., Felson, D. T. & O’Neill, T. W. Interobserver and intraobserver reliability of clinical assessments in knee osteoarthritis. J. Rheumatol. 43, 2171–2178 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Slemenda, C. et al. Quadriceps weakness and osteoarthritis of the knee. Ann. Intern. Med. 127, 97–104 (1997).

    CAS  PubMed  Google Scholar 

  128. Matullo, K. S., Ilyas, A. & Thoder, J. J. CMC arthroplasty of the thumb: a review. Hand 2, 232–239 (2007).

    PubMed  PubMed Central  Google Scholar 

  129. Metcalfe, D. et al. Does this patient have hip osteoarthritis?: the rational clinical examination systematic review. JAMA 322, 2323–2333 (2019).

    PubMed  PubMed Central  Google Scholar 

  130. Wang, X. et al. Associations between knee effusion-synovitis and joint structural changes in patients with knee osteoarthritis. J. Rheumatol. 44, 1644–1651 (2017).

    CAS  PubMed  Google Scholar 

  131. Bahl, J. S. et al. Biomechanical changes and recovery of gait function after total hip arthroplasty for osteoarthritis: a systematic review and meta-analysis. Osteoarthr. Cartil. 26, 847–863 (2018).

    CAS  Google Scholar 

  132. Sakellariou, G. et al. EULAR recommendations for the use of imaging in the clinical management of peripheral joint osteoarthritis. Ann. Rheum. Dis. 76, 1484–1494 (2017).

    PubMed  Google Scholar 

  133. Altman, R. et al. The American College of Rheumatology criteria for the classification and reporting of osteoarthritis of the hand. Arthritis Rheum. 33, 1601–1610 (1990).

    CAS  PubMed  Google Scholar 

  134. Haugen, I. K. et al. 2023 EULAR classification criteria for hand osteoarthritis. Ann. Rheum. Dis. 83, 1428–1435 (2024).

    PubMed  Google Scholar 

  135. Haugen, I. K. et al. Development of classification criteria for hand osteoarthritis: comparative analyses of persons with and without hand osteoarthritis. RMD Open 6, e001265 (2020).

    PubMed  PubMed Central  Google Scholar 

  136. Haugen, I. K. et al. Development of radiographic classification criteria for hand osteoarthritis: a methodological report (phase 2). RMD Open 8, e002024 (2022).

    PubMed  PubMed Central  Google Scholar 

  137. Zhang, W. et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann. Rheum. Dis. 69, 483–489 (2010).

    CAS  PubMed  Google Scholar 

  138. National Institute for Health and Care Excellence. Osteoarthritis in over 16s: diagnosis and management. NICE https://www.nice.org.uk/guidance/ng226 (2022).

  139. Runhaar, J. et al. Towards developing diagnostic criteria for early knee osteoarthritis: data from the CHECK study. Rheumatology 60, 2448–2455 (2021).

    CAS  PubMed  Google Scholar 

  140. Wang, Q. et al. Diagnosis for early stage knee osteoarthritis: probability stratification, internal and external validation; data from the CHECK and OAI cohorts. Semin. Arthritis Rheum. 55, 152007 (2022).

    PubMed  Google Scholar 

  141. Gaitonde, D. Y., Ericksen, A. & Robbins, R. C. Patellofemoral pain syndrome. Am. Fam. Physician 99, 88–94 (2019).

    PubMed  Google Scholar 

  142. Runhaar, J. & Bierma-Zeinstra, S. M. A. The challenges in the primary prevention of osteoarthritis. Clin. Geriatr. Med. 38, 259–271 (2022).

    PubMed  Google Scholar 

  143. Roos, E. M., Risberg, M. A. & Little, C. B. Prevention and early treatment, a future focus for OA research. Osteoarthr. Cartil. 29, 1627–1629 (2021).

    CAS  Google Scholar 

  144. Whittaker, J. L. et al. Risk factors for knee osteoarthritis after traumatic knee injury: a systematic review and meta-analysis of randomised controlled trials and cohort studies for the OPTIKNEE Consensus. Br. J. Sports Med. 56, 1406–1421 (2022).

    PubMed  Google Scholar 

  145. Huang, Y. L., Jung, J., Mulligan, C. M. S., Oh, J. & Norcross, M. F. A majority of anterior cruciate ligament injuries can be prevented by injury prevention programs: a systematic review of randomized controlled trials and cluster-randomized controlled trials with meta-analysis. Am. J. Sports Med. 48, 1505–1515 (2020).

    PubMed  Google Scholar 

  146. Øiestad, B. E., Juhl, C. B., Culvenor, A. G., Berg, B. & Thorlund, J. B. Knee extensor muscle weakness is a risk factor for the development of knee osteoarthritis: an updated systematic review and meta-analysis including 46 819 men and women. Br. J. Sports Med. 56, 349–355 (2022).

    PubMed  Google Scholar 

  147. Barrow, D. R. et al. Exercise prescription for weight management in obese adults at risk for osteoarthritis: synthesis from a systematic review. BMC Musculoskelet. Disord. 20, 610 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Halvorsen, K. C. et al. Higher adherence to anterior cruciate ligament injury prevention programs is associated with lower injury rates: a meta-analysis and meta-regression. HSS J. 19, 154–162 (2023).

    PubMed  Google Scholar 

  149. Hall, M. et al. How does hip osteoarthritis differ from knee osteoarthritis? Osteoarthr. Cartil. 30, 32–41 (2022).

    CAS  Google Scholar 

  150. Oppert, J. M. et al. Exercise training in the management of overweight and obesity in adults: synthesis of the evidence and recommendations from the European Association for the Study of Obesity Physical Activity Working Group. Obes. Rev. 22, e13273 (2021).

    PubMed  PubMed Central  Google Scholar 

  151. Muntefering, C., Fitzpatrick, M., Johnson, K. & Fields, B. Primary prevention interventions for adults at-risk of obesity: an international scoping review. Prev. Med. 171, 107498 (2023).

    PubMed  Google Scholar 

  152. Roos, E. M. & Arden, N. K. Strategies for the prevention of knee osteoarthritis. Nat. Rev. Rheumatol. 12, 92–101 (2016).

    CAS  PubMed  Google Scholar 

  153. Arundale, A. J. H., Silvers-Granelli, H. J. & Myklebust, G. ACL injury prevention: where have we come from and where are we going? J. Orthop. Res. 40, 43–54 (2021).

    PubMed  Google Scholar 

  154. Thompson-Kolesar, J. A. et al. Age influences biomechanical changes after participation in an anterior cruciate ligament injury prevention program. Am. J. Sports Med. 46, 598–606 (2018).

    PubMed  Google Scholar 

  155. Mohr, M. et al. An 8-week injury prevention exercise program combined with change-of-direction technique training limits movement patterns associated with anterior cruciate ligament injury risk. Sci. Rep. 14, 3115 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Andriacchi, T. P., Favre, J., Erhart-Hledik, J. C. & Chu, C. R. A systems view of risk factors for knee osteoarthritis reveals insights into the pathogenesis of the disease. Ann. Biomed. Eng. 43, 376–387 (2015).

    PubMed  Google Scholar 

  157. Gersing, A. S. et al. Weight loss regimen in obese and overweight individuals is associated with reduced cartilage degeneration: 96-month data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 27, 863–870 (2019).

    CAS  Google Scholar 

  158. Messier, S. P. et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA 310, 1263–1273 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Loeser, R. F. et al. Effects of dietary weight loss with and without exercise on interstitial matrix turnover and tissue inflammation biomarkers in adults with knee osteoarthritis: the Intensive Diet and Exercise for Arthritis trial (IDEA). Osteoarthr. Cartil. 25, 1822–1828 (2017).

    CAS  Google Scholar 

  160. Jurado-Castro, J. M., Muñoz-López, M., Ledesma, A. S.-T. & Ranchal-Sanchez, A. Effectiveness of exercise in patients with overweight or obesity suffering from knee osteoarthritis: a systematic review and meta-analysis. Int. J. Environ. Res. Public Health 19, 10510 (2022).

    PubMed  PubMed Central  Google Scholar 

  161. Misra, D. et al. Risk of knee osteoarthritis with obesity, sarcopenic obesity, and sarcopenia. Arthritis Rheumatol. 71, 232–237 (2019).

    PubMed  PubMed Central  Google Scholar 

  162. Godziuk, K., Woodhouse, L. J., Prado, C. M. & Forhan, M. Clinical screening and identification of sarcopenic obesity in adults with advanced knee osteoarthritis. Clin. Nutr. ESPEN 40, 340–348 (2020).

    PubMed  Google Scholar 

  163. Godziuk, K., Prado, C. M., Woodhouse, L. J. & Forhan, M. The impact of sarcopenic obesity on knee and hip osteoarthritis: a scoping review. BMC Musculoskelet. Disord. 19, 271 (2018).

    PubMed  PubMed Central  Google Scholar 

  164. Zhu, H. et al. Glucagon-like peptide-1 receptor agonists as a disease-modifying therapy for knee osteoarthritis mediated by weight loss: findings from the Shanghai Osteoarthritis Cohort. Ann. Rheum. Dis. 82, 1218–1226 (2023). A large observational cohort study highlighting the effect of GLP1 receptor agonists in reducing body weight and having fewer knee surgeries.

    CAS  PubMed  Google Scholar 

  165. Bliddal, H. et al. Once-weekly semaglutide in persons with obesity and knee osteoarthritis. N. Engl. J. Med. 391, 1573–1583 (2024). A multicentre, placebo-controlled trial confirming the role of GLP1 receptor agonist semaglutide in patients with knee OA obesity.

    CAS  PubMed  Google Scholar 

  166. Zmerly, H. et al. Personalized physical activity programs for the management of knee osteoarthritis in individuals with obesity: a patient-centered approach. Diseases 11, 182 (2023).

    PubMed  PubMed Central  Google Scholar 

  167. Lie, M. M., Risberg, M. A., Storheim, K., Engebretsen, L. & Øiestad, B. E. What’s the rate of knee osteoarthritis 10 years after anterior cruciate ligament injury? An updated systematic review. Br. J. Sports Med. 53, 1162–1167 (2019).

    PubMed  Google Scholar 

  168. Lien-Iversen, T. et al. Does surgery reduce knee osteoarthritis, meniscal injury and subsequent complications compared with non-surgery after ACL rupture with at least 10 years follow-up? A systematic review and meta-analysis. Br. J. Sports Med. 54, 592–598 (2020).

    PubMed  Google Scholar 

  169. Montalvo, A. M. et al. Anterior cruciate ligament injury risk in sport: a systematic review and meta-analysis of injury incidence by sex and sport classification. J. Athl. Train. 54, 472–482 (2019).

    PubMed  PubMed Central  Google Scholar 

  170. Poulsen, E. et al. Knee osteoarthritis risk is increased 4-6 fold after knee injury — a systematic review and meta-analysis. Br. J. Sports Med. 53, 1454–1463 (2019).

    PubMed  Google Scholar 

  171. Grindem, H., Snyder-Mackler, L., Moksnes, H., Engebretsen, L. & Risberg, M. A. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br. J. Sports Med. 50, 804–808 (2016).

    PubMed  Google Scholar 

  172. Pedersen, M. et al. Meniscus or cartilage injury at the time of anterior cruciate ligament tear is associated with worse prognosis for patient-reported outcome 2 to 10 years after anterior cruciate ligament injury: a systematic review. J. Orthop. Sports Phys. Ther. 50, 490–502 (2020).

    PubMed  PubMed Central  Google Scholar 

  173. Tayfur, B., Charuphongsa, C., Morrissey, D. & Miller, S. C. Neuromuscular function of the knee joint following knee injuries: does it ever get back to normal? A systematic review with meta-analyses. Sports Med. 51, 321–338 (2021).

    PubMed  Google Scholar 

  174. Garriga, C. et al. Clinical and molecular associations with outcomes at 2 years after acute knee injury: a longitudinal study in the Knee Injury Cohort at the Kennedy (KICK). Lancet Rheumatol. 3, e648–e658 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Grindem, H., Engebretsen, L., Axe, M., Snyder-Mackler, L. & Risberg, M. A. Activity and functional readiness, not age, are the critical factors for second anterior cruciate ligament injury — the Delaware-Oslo ACL cohort study. Br. J. Sports Med. 54, 1099–1102 (2020).

    PubMed  Google Scholar 

  176. Felson, D. T. Osteoarthritis as a disease of mechanics. Osteoarthr. Cartil. 21, 10–15 (2013).

    CAS  Google Scholar 

  177. Pietrosimone, B. et al. Gait biomechanics in individuals meeting sufficient quadriceps strength cutoffs after anterior cruciate ligament reconstruction. J. Athl. Train. 56, 960–966 (2021).

    PubMed  PubMed Central  Google Scholar 

  178. Buck, A. N. et al. Biomechanical threshold values for identifying clinically significant knee-related symptoms six months following anterior cruciate ligament reconstruction. J. Athl. Train. https://doi.org/10.4085/1062-6050-0562.23 (2024).

    Article  PubMed  Google Scholar 

  179. Risberg, M. A., Grindem, H. & Øiestad, B. E. We need to implement current evidence in early rehabilitation programs to improve long-term outcome after anterior cruciate ligament injury. J. Orthop. Sports Phys. Ther. 46, 710–713 (2016).

    PubMed  Google Scholar 

  180. Losciale, J. M. et al. Assessing the efficacy of the Stop OsteoARthritis (SOAR) program: a randomized delayed-controlled trial in persons at increased risk of early onset post-traumatic knee osteoarthritis. Osteoarthr. Cartil. 32, 1001–1012 (2024).

    Google Scholar 

  181. Bannuru, R. R. et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil. 27, 1578–1589 (2019).

    CAS  Google Scholar 

  182. Bowden, J. L. et al. Core and adjunctive interventions for osteoarthritis: efficacy and models for implementation. Nat. Rev. Rheumatol. 16, 434–447 (2020).

    PubMed  Google Scholar 

  183. Kolasinski, S. L. et al. 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 72, 149–162 (2020).

    Google Scholar 

  184. Brophy, R. H. & Fillingham, Y. A. AAOS clinical practice guideline summary: management of osteoarthritis of the knee (nonarthroplasty), third edition. J. Am. Acad. Orthopaedic Surg. 30, e721–e729 (2022).

    Google Scholar 

  185. Conley, B. et al. Core recommendations for osteoarthritis care: a systematic review of clinical practice guidelines. Arthritis Care Res. 75, 1897–1907 (2023).

    Google Scholar 

  186. Moseng, T. et al. EULAR recommendations for the non-pharmacological core management of hip and knee osteoarthritis: 2023 update. Ann. Rheum. Dis. 83, 730–740 (2024).

    PubMed  Google Scholar 

  187. Østerås, N. et al. Longer-term quality of care, effectiveness, and cost-effectiveness of implementing a model of care for osteoarthritis: a cluster-randomized controlled trial. Osteoarthritis Cartilage 32, 108–119 (2023).

    PubMed  Google Scholar 

  188. Mazzei, D. R. et al. Are education, exercise and diet interventions a cost-effective treatment to manage hip and knee osteoarthritis? A systematic review. Osteoarthr. Cartil. 29, 456–470 (2021).

    CAS  Google Scholar 

  189. Skou, S. T. et al. Cost-effectiveness of 12 weeks of supervised treatment compared to written advice in patients with knee osteoarthritis: a secondary analysis of the 2-year outcome from a randomized trial. Osteoarthr. Cartil. 28, 907–916 (2020).

    CAS  Google Scholar 

  190. Fransen, M. et al. Exercise for osteoarthritis of the knee: a Cochrane systematic review. Br. J. Sports Med. 49, 1554–1557 (2015).

    PubMed  Google Scholar 

  191. Long, H. et al. Prevalence trends of site-specific osteoarthritis from 1990 to 2019: findings from the Global Burden of Disease study 2019. Arthritis Rheumatol. 74, 1172–1183 (2022). Data from the Global Burden of Disease Study 2019 estimating site-specific age-standardized prevalence rates and analyzing the secular trends of OA at global, regional and national levels.

    PubMed  PubMed Central  Google Scholar 

  192. Mazzei, D. R. et al. Do people with knee osteoarthritis use guideline-consistent treatments after an orthopaedic surgeon recommends nonsurgical care? A cross-sectional survey with long-term follow-up. Osteoarthr. Cartil. Open 4, 100256 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Bartholdy, C. et al. Poor replicability of recommended exercise interventions for knee osteoarthritis: a descriptive analysis of evidence informing current guidelines and recommendations. Osteoarthr. Cartil. 27, 3–22 (2019).

    CAS  Google Scholar 

  194. Weng, Q. et al. Comparative efficacy of exercise therapy and oral non-steroidal anti-inflammatory drugs and paracetamol for knee or hip osteoarthritis: a network meta-analysis of randomised controlled trials. Br. J. Sports Med. 57, 990–996 (2023).

    PubMed  Google Scholar 

  195. Moseng, T., Dagfinrud, H. & Østerås, N. Implementing international osteoarthritis guidelines in primary care: uptake and fidelity among health professionals and patients. Osteoarthr. Cartil. 27, 1138–1147 (2019).

    CAS  Google Scholar 

  196. Bruhn, S. M. et al. Usage of guideline-adherent core treatments for knee osteoarthritis before and after consulting an orthopaedic surgeon: a prospective cohort study. Osteoarthr. Cartil. Open 5, 100411 (2023).

    PubMed  PubMed Central  Google Scholar 

  197. Hofstede, S. N. et al. Variation in use of non-surgical treatments among osteoarthritis patients in orthopaedic practice in the Netherlands. BMJ Open 5, e009117 (2015).

    PubMed  PubMed Central  Google Scholar 

  198. Østerås, N. et al. Improving osteoarthritis management in primary healthcare: results from a quasi-experimental study. BMC Musculoskelet. Disord. 22, 79 (2021).

    PubMed  PubMed Central  Google Scholar 

  199. Østerås, N. et al. Implementing a structured model for osteoarthritis care in primary healthcare: a stepped-wedge cluster-randomised trial. PLoS Med. 16, e1002949 (2019).

    PubMed  PubMed Central  Google Scholar 

  200. Hagen, K. B., Smedslund, G., Østerås, N. & Jamtvedt, G. Quality of community-based osteoarthritis care: a systematic review and meta-analysis. Arthritis Care Res. 68, 1443–1452 (2016).

    Google Scholar 

  201. Cronström, A., Nero, H., Lohmander, L. S. & Dahlberg, L. E. On the waiting list for joint replacement for knee osteoarthritis: are first-line treatment recommendations implemented? Osteoarthr. Cartil. Open 2, 100056 (2020).

    PubMed  PubMed Central  Google Scholar 

  202. King, L. K. et al. Use of recommended non-surgical knee osteoarthritis management in patients prior to total knee arthroplasty: a cross-sectional study. J. Rheumatol. 47, 1253–1260 (2020).

    PubMed  Google Scholar 

  203. Gibbs, A. J., Wallis, J. A., Taylor, N. F., Kemp, J. L. & Barton, C. J. Osteoarthritis management care pathways are complex and inefficient: a qualitative study of physiotherapist perspectives from specialised osteoarthritis services. Musculoskelet. Care 20, 860–872 (2022).

    Google Scholar 

  204. Cutolo, M., Berenbaum, F., Hochberg, M., Punzi, L. & Reginster, J. Y. Commentary on recent therapeutic guidelines for osteoarthritis. Semin. Arthritis Rheum. 44, 611–617 (2015).

    PubMed  Google Scholar 

  205. Smith, K. M., Massey, B. J., Young, J. L. & Rhon, D. I. What are the unsupervised exercise adherence rates in clinical trials for knee osteoarthritis? A systematic review. Braz. J. Phys. Ther. 27, 100533 (2023).

    PubMed  PubMed Central  Google Scholar 

  206. Cinthuja, P., Krishnamoorthy, N. & Shivapatham, G. Effective interventions to improve long-term physiotherapy exercise adherence among patients with lower limb osteoarthritis. A systematic review. BMC Musculoskelet. Disord. 23, 147 (2022).

    PubMed  PubMed Central  Google Scholar 

  207. Tan, B. Y. et al. Complex lifestyle and psychological intervention in knee osteoarthritis: scoping review of randomized controlled trials. Int. J. Environ. Res. Public Health 18, 12757 (2021).

    PubMed  PubMed Central  Google Scholar 

  208. Goff, A. J. et al. Patient education improves pain and function in people with knee osteoarthritis with better effects when combined with exercise therapy: a systematic review. J. Physiother. 67, 177–189 (2021).

    PubMed  Google Scholar 

  209. Wallis, J. A., Webster, K. E., Levinger, P. & Taylor, N. F. What proportion of people with hip and knee osteoarthritis meet physical activity guidelines? A systematic review and meta-analysis. Osteoarthr. Cartil. 21, 1648–1659 (2013).

    CAS  Google Scholar 

  210. Verhagen, A. P. et al. Do we need another trial on exercise in patients with knee osteoarthritis?: no new trials on exercise in knee OA. Osteoarthr. Cartil. 27, 1266–1269 (2019).

    CAS  Google Scholar 

  211. Skou, S. T. & Roos, E. M. Physical therapy for patients with knee and hip osteoarthritis: supervised, active treatment is current best practice. Clin. Exp. Rheumatol. 37, 112–117 (2019).

    PubMed  Google Scholar 

  212. Chu, I. J. H., Lim, A. Y. T. & Ng, C. L. W. Effects of meaningful weight loss beyond symptomatic relief in adults with knee osteoarthritis and obesity: a systematic review and meta-analysis. Obes. Rev. 19, 1597–1607 (2018).

    CAS  PubMed  Google Scholar 

  213. Oo, W. M., Mobasheri, A. & Hunter, D. J. A narrative review of anti-obesity medications for obese patients with osteoarthritis. Expert Opin. Pharmacother. 23, 1381–1395 (2022).

    CAS  PubMed  Google Scholar 

  214. Couldrick, J. M. et al. Evidence for key individual characteristics associated with outcomes following combined first-line interventions for knee osteoarthritis: a systematic review. PLoS ONE 18, e0284249 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Duong, V., Oo, W. M., Ding, C., Culvenor, A. G. & Hunter, D. J. Evaluation and treatment of knee pain: a review. JAMA 330, 1568–1580 (2023). An up-to-date comprehensive review on knee pain.

    CAS  PubMed  Google Scholar 

  216. Pitsillides, A., Stasinopoulos, D. & Giannakou, K. The effects of cognitive behavioural therapy delivered by physical therapists in knee osteoarthritis pain: a systematic review and meta-analysis of randomized controlled trials. J. Bodyw. Mov. Ther. 25, 157–164 (2021).

    PubMed  Google Scholar 

  217. Bennell, K. L. et al. Physical therapist-delivered pain coping skills training and exercise for knee osteoarthritis: randomized controlled trial. Arthritis Care Res. 68, 590–602 (2016).

    Google Scholar 

  218. Cudejko, T. et al. Effect of soft braces on pain and physical function in patients with knee osteoarthritis: systematic review with meta-analyses. Arch. Phys. Med. Rehabil. 99, 153–163 (2018).

    PubMed  Google Scholar 

  219. Zeng, C. et al. Comparative efficacy and safety of acetaminophen, topical and oral non-steroidal anti-inflammatory drugs for knee osteoarthritis: evidence from a network meta-analysis of randomized controlled trials and real-world data. Osteoarthr. Cartil. 29, 1242–1251 (2021).

    CAS  Google Scholar 

  220. Osani, M. C., Vaysbrot, E. E., Zhou, M., McAlindon, T. E. & Bannuru, R. R. Duration of symptom relief and early trajectory of adverse events for oral nonsteroidal antiinflammatory drugs in knee osteoarthritis: a systematic review and meta-analysis. Arthritis Care Res. 72, 641–651 (2020).

    Google Scholar 

  221. Najm, A., Alunno, A., Gwinnutt, J. M., Weill, C. & Berenbaum, F. Efficacy of intra-articular corticosteroid injections in knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Jt Bone Spine 88, 105198 (2021).

    CAS  Google Scholar 

  222. McAlindon, T. E. et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA 317, 1967–1975 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Concoff, A., Sancheti, P., Niazi, F., Shaw, P. & Rosen, J. The efficacy of multiple versus single hyaluronic acid injections: a systematic review and meta-analysis. BMC Musculoskelet. Disord. 18, 542 (2017).

    PubMed  PubMed Central  Google Scholar 

  224. Oo, W. M. & Hunter, J. Intra-articular therapies for knee osteoarthritis: current update. Curr. Treat. Options Rheumatol. 9, 99–119 (2023).

    Google Scholar 

  225. Machado, G. C. et al. Efficacy and safety of paracetamol for spinal pain and osteoarthritis: systematic review and meta-analysis of randomised placebo controlled trials. BMJ 350, h1225 (2015).

    PubMed  PubMed Central  Google Scholar 

  226. Sveaas, S. H., Smedslund, G., Walsh, D. A. & Dagfinrud, H. Effects of analgesics on self-reported physical function and walking ability in people with hip or knee osteoarthritis: a systematic review and meta-analysis. Phys. Ther. 104, pzad160 (2024).

    PubMed  Google Scholar 

  227. Chen, B. et al. An updated systematic review and meta-analysis of duloxetine for knee osteoarthritis pain. Clin. J. Pain 37, 852–862 (2021).

    PubMed  PubMed Central  Google Scholar 

  228. Zhang, X. et al. Efficacy and safety of tramadol for knee or hip osteoarthritis: a systematic review and network meta-analysis of randomized controlled trials. Arthritis Care Res. 75, 158–165 (2023).

    Google Scholar 

  229. Jin, X. et al. Effect of vitamin D supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis: a randomized clinical trial. JAMA 315, 1005–1013 (2016).

    CAS  PubMed  Google Scholar 

  230. Beswick, A. D., Wylde, V., Gooberman-Hill, R., Blom, A. & Dieppe, P. What proportion of patients report long-term pain after total hip or knee replacement for osteoarthritis? A systematic review of prospective studies in unselected patients. BMJ Open 2, e000435 (2012).

    PubMed  PubMed Central  Google Scholar 

  231. Wylde, V. et al. Chronic pain after total knee arthroplasty. EFORT Open Rev. 3, 461–470 (2018).

    PubMed  PubMed Central  Google Scholar 

  232. Sayah, S. M. et al. Clinical course of pain and function following total knee arthroplasty: a systematic review and meta-regression. J. Arthroplasty 36, 3993–4002 (2021).

    PubMed  Google Scholar 

  233. Young, J. J. et al. Total hip arthroplasty versus education and exercise: a propensity-matched analysis of 266 patients who have hip osteoarthritis. J. Arthroplasty 39, S261–S269 (2024).

    PubMed  Google Scholar 

  234. Leifer, V. P., Katz, J. N. & Losina, E. The burden of OA-health services and economics. Osteoarthr. Cartil. 30, 10–16 (2022).

    CAS  Google Scholar 

  235. Sethi, V., Anand, C. & Della Pasqua, O. Clinical assessment of osteoarthritis pain: contemporary scenario, challenges, and future perspectives. Pain Ther. 13, 391–408 (2024).

    PubMed  PubMed Central  Google Scholar 

  236. Guccione, A. A. et al. The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am. J. Public Health 84, 351–358 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Gikaro, J. M., Xiong, H. & Lin, F. Activity limitation and participation restriction in Osteoarthritis and Rheumatoid arthritis: findings based on the National Health and Nutritional Examination Survey. BMC Musculoskelet. Disord. 23, 647 (2022).

    PubMed  PubMed Central  Google Scholar 

  238. Perruccio, A. V., Yip, C., Power, J. D., Canizares, M. & Badley, E. M. Examining the longitudinal associations between activity limitations, instrumental supports and social participation in osteoarthritis: a CLSA population-based study. PLoS ONE 19, e0299894 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Yan, H., Guo, J., Zhou, W., Dong, C. & Liu, J. Health-related quality of life in osteoarthritis patients: a systematic review and meta-analysis. Psychol. Health Med. 27, 1859–1874 (2022).

    PubMed  Google Scholar 

  240. Hawker, G. A. & King, L. K. The burden of osteoarthritis in older adults. Clin. Geriatr. Med. 38, 181–192 (2022).

    PubMed  Google Scholar 

  241. Losina, E. et al. Lifetime medical costs of knee osteoarthritis management in the United States: impact of extending indications for total knee arthroplasty. Arthritis Care Res. 67, 203–215 (2015).

    Google Scholar 

  242. Swain, S. et al. Healthcare utilisation and mortality in people with osteoarthritis in the UK: findings from a national primary care database. Br. J. Gen. Pract. 73, e615–e622 (2023).

    PubMed  PubMed Central  Google Scholar 

  243. Kiadaliri, A. & Englund, M. Osteoarthritis and risk of hospitalization for ambulatory care-sensitive conditions: a general population-based cohort study. Rheumatology 60, 4340–4347 (2021).

    PubMed  PubMed Central  Google Scholar 

  244. Wise, A. et al. Racial and ethnic differences in the prevalence of patients with arthritis and severe joint pain and who received provider counseling about physical activity for arthritis among adults aged 18 years or older — United States 2019. Arthritis Care Res. 76, 1028–1036 (2024).

    Google Scholar 

  245. March, L. M. & Bachmeier, C. J. Economics of osteoarthritis: a global perspective. Baillieres Clin. Rheumatol. 11, 817–834 (1997).

    CAS  PubMed  Google Scholar 

  246. Ackerman, I. N., Pratt, C., Gorelik, A. & Liew, D. Projected burden of osteoarthritis and rheumatoid arthritis in Australia: a population-level analysis. Arthritis Care Res. 70, 877–883 (2018).

    Google Scholar 

  247. Cost of osteoarthritis. Osteoarthritis Action Alliance https://oaaction.unc.edu/policy/cost-of-osteoarthritis/ (2025).

  248. Gandhi, N. et al. Costs and models used in the economic analysis of total knee replacement (TKR): a systematic review. PLoS ONE 18, e0280371 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Ching, A., Prior, Y., Parker, J. & Hammond, A. Biopsychosocial, work-related, and environmental factors affecting work participation in people with osteoarthritis: a systematic review. BMC Musculoskelet. Disord. 24, 485 (2023).

    PubMed  PubMed Central  Google Scholar 

  250. Thomas, M. J., Guillemin, F., & Neogi, T. Osteoarthritis flares. Clin. Geriatr. Med. 38, 239–257 (2022).

    PubMed  PubMed Central  Google Scholar 

  251. Lo, G. H. et al. Symptom assessment in knee osteoarthritis needs to account for physical activity level. Arthritis Rheumatol. 67, 2897–2904 (2015).

    PubMed  PubMed Central  Google Scholar 

  252. Collins, J. E., Katz, J. N., Dervan, E. E. & Losina, E. Trajectories and risk profiles of pain in persons with radiographic, symptomatic knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthr. Cartil. 22, 622–630 (2014).

    CAS  Google Scholar 

  253. Wieczorek, M. et al. Trajectory analysis combining pain and physical function in individuals with knee and hip osteoarthritis: results from the French KHOALA cohort. Rheumatology 59, 3488–3498 (2020).

    PubMed  Google Scholar 

  254. Wieczorek, M., Rotonda, C., Guillemin, F. & Rat, A. C. What have we learned from trajectory analysis of clinical outcomes in knee and hip osteoarthritis before surgery? Arthritis Care Res. 72, 1693–1702 (2020).

    Google Scholar 

  255. Weinstein, A. M. et al. Estimating the burden of total knee replacement in the United States. J. Bone Jt Surg. Am. 95, 385–392 (2013).

    Google Scholar 

  256. Culliford, D. J. et al. The lifetime risk of total hip and knee arthroplasty: results from the UK general practice research database. Osteoarthr. Cartil. 20, 519–524 (2012).

    CAS  Google Scholar 

  257. Ackerman, I. N. et al. Substantial rise in the lifetime risk of primary total knee replacement surgery for osteoarthritis from 2003 to 2013: an international, population-level analysis. Osteoarthr. Cartil. 25, 455–461 (2017).

    CAS  Google Scholar 

  258. Burn, E., Murray, D. W., Hawker, G. A., Pinedo-Villanueva, R. & Prieto-Alhambra, D. Lifetime risk of knee and hip replacement following a GP diagnosis of osteoarthritis: a real-world cohort study. Osteoarthr. Cartil. 27, 1627–1635 (2019).

    CAS  Google Scholar 

  259. Mobasheri, A. & Loeser, R. Clinical phenotypes, molecular endotypes and theratypes in OA therapeutic development. Nature Rev. Rheumatol. 20, 525–526 (2024).

    Google Scholar 

  260. Ahmed, U., Anwar, A., Savage, R. S., Thornalley, P. J. & Rabbani, N. Protein oxidation, nitration and glycation biomarkers for early-stage diagnosis of osteoarthritis of the knee and typing and progression of arthritic disease. Arthritis Res. Ther. 18, 250 (2016).

    PubMed  PubMed Central  Google Scholar 

  261. Latourte, A., Kloppenburg, M. & Richette, P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol. 16, 673–688 (2020). An up-to-date comprehensive review of drug therapy for OA.

    PubMed  Google Scholar 

  262. Zhang, Y., Yang, H., He, F. & Zhu, X. Intra-articular injection choice for osteoarthritis: making sense of cell source — an updated systematic review and dual network meta-analysis. Arthritis Res. Ther. 24, 260 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Xiang, X. N. et al. Mesenchymal stromal cell-based therapy for cartilage regeneration in knee osteoarthritis. Stem Cell Res. Ther. 13, 14 (2022).

    PubMed  PubMed Central  Google Scholar 

  264. Maheshwer, B. et al. Regenerative potential of mesenchymal stem cells for the treatment of knee osteoarthritis and chondral defects: a systematic review and meta-analysis. Arthroscopy 37, 362–378 (2021).

    PubMed  Google Scholar 

  265. Chen, M. et al. Injectable microgels with hybrid exosomes of chondrocyte-targeted FGF18 gene-editing and self-renewable lubrication for osteoarthritis therapy. Adv. Mater. 36, e2312559 (2024).

    PubMed  Google Scholar 

  266. Varela-Eirín, M. et al. Targeting of chondrocyte plasticity via connexin43 modulation attenuates cellular senescence and fosters a pro-regenerative environment in osteoarthritis. Cell Death Dis. 9, 1166 (2018).

    PubMed  PubMed Central  Google Scholar 

  267. Fu, L. et al. Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biol. 17, e3000201 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Ren, X. et al. Maintenance of nucleolar homeostasis by CBX4 alleviates senescence and osteoarthritis. Cell Rep. 26, 3643–3656.e7 (2019).

    CAS  PubMed  Google Scholar 

  269. Li, J. et al. Metformin limits osteoarthritis development and progression through activation of AMPK signalling. Ann. Rheum. Dis. 79, 635–645 (2020).

    CAS  PubMed  Google Scholar 

  270. Zhu, Z. et al. Metformin use and associated risk of total joint replacement in patients with type 2 diabetes: a population-based matched cohort study. CMAJ 194, E1672–E1684 (2022). A population-based matched cohort study demonstrating that metformin use in patients with type 2 diabetes mellitus was associated with a significantly reduced risk of total joint replacement.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Ruan, G. et al. Can metformin relieve tibiofemoral cartilage volume loss and knee symptoms in overweight knee osteoarthritis patients? Study protocol for a randomized, double-blind, and placebo-controlled trial. BMC Musculoskelet. Disord. 23, 486 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Lim, Y. Z. et al. Metformin for knee osteoarthritis with obesity: study protocol for a randomised, double-blind, placebo-controlled trial. BMJ Open 13, e079489 (2023).

    PubMed  PubMed Central  Google Scholar 

  273. Boer, C. G. et al. Intestinal microbiome composition and its relation to joint pain and inflammation. Nat. Commun. 10, 4881 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  274. Wei, J. et al. Association between gut microbiota and symptomatic hand osteoarthritis: data from the Xiangya Osteoarthritis Study. Arthritis Rheumatol. 73, 1656–1662 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  275. Chen, J., Wang, A. & Wang, Q. Dysbiosis of the gut microbiome is a risk factor for osteoarthritis in older female adults: a case control study. BMC Bioinformatics 22, 299 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Dunn, C. M. & Jeffries, M. A. The microbiome in osteoarthritis: a narrative review of recent human and animal model literature. Curr. Rheumatol. Rep. 24, 139–148 (2022).

    PubMed  PubMed Central  Google Scholar 

  277. Mendez, M. E. et al. LPS-induced inflammation prior to injury exacerbates the development of post-traumatic osteoarthritis in mice. J. Bone Miner. Res. 35, 2229–2241 (2020).

    CAS  PubMed  Google Scholar 

  278. Prinz, E. et al. OA susceptibility in mice is partially mediated by the gut microbiome, is transferrable via microbiome transplantation and is associated with immunophenotype changes. Ann. Rheum. Dis. 83, 382–393 (2024).

    CAS  PubMed  Google Scholar 

  279. Fortuna, R. et al. Effect of prebiotic fiber on physical function and gut microbiota in adults, mostly women, with knee osteoarthritis and obesity: a randomized controlled trial. Eur. J. Nutr. 63, 2149–2161 (2024).

    CAS  PubMed  Google Scholar 

  280. Fu, W. et al. Nav1.7 as a chondrocyte regulator and therapeutic target for osteoarthritis. Nature 625, 557–565 (2024). A basic study demonstrating Nav1.7 as a novel chondrocyte-expressed, OA-associated channel.

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Jansen, M. P. & Mastbergen, S. C. Joint distraction for osteoarthritis: clinical evidence and molecular mechanisms. Nat. Rev. Rheumatol. 18, 35–46 (2022).

    CAS  PubMed  Google Scholar 

  282. DeJulius, C. R. et al. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat. Rev. Rheumatol. 20, 81–100 (2024). This Review highlights emerging classes of RNA-based technologies that hold potential for OA therapies.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.J.H. is supported by an NHMRC Investigator Grant Leadership 2. C.D. is supported by the National Key Research and Development Program of China. S.T. is supported by the National Natural Science Foundation of China. A.-M.M. is supported by the National Institutes of Health (NIH)/National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS). T.N. is supported by the NIH.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (all authors); Epidemiology (all authors); Mechanisms/pathophysiology (all authors); Diagnosis, screening and prevention (all authors); Management (all authors); Quality of life (all authors); Outlook (all authors); overview of the Primer (D.J.H.).

Corresponding authors

Correspondence to Changhai Ding or David J. Hunter.

Ethics declarations

Competing interests

D.J.H. is the editor of the osteoarthritis section for UpToDate and co-Editor in Chief of Osteoarthritis and Cartilage. D.J.H. provides consulting advice on scientific advisory boards for Haleon, TLCBio, Novartis, Tissuegene, Sanofi and Enlivex. A.-M.M. is co-Editor in Chief of Osteoarthritis and Cartilage. A.-M.M. provides consulting services or serves on advisory boards for Averitas, Orion, LG, Novartis and Eli Lilly. T.N. is a deputy editor of Osteoarthritis and Cartilage and provides consulting services for Novartis and Eli Lilly. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks L. Macfarlane, L. Mandl, H. Gudbergsen, M. Goldring and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Zhang, C., Oo, W.M. et al. Osteoarthritis. Nat Rev Dis Primers 11, 10 (2025). https://doi.org/10.1038/s41572-025-00594-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-025-00594-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing