Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Achilles tendinopathy

Abstract

Achilles tendon pathologies are prevalent, impacting ~6% of the general population and up to 50% of elite endurance runners over their lifetimes. These conditions substantially affect quality of life and work productivity, leading to substantial societal costs. Achilles tendinopathy (AT) is a condition marked by localized pain and functional impairment related to mechanical loading. AT can considerably impair participation and potentially also performance in sports and daily activities. The aetiology of AT is multifactorial and repetitive overloading of the tendon is often observed as the inciting factor by health professionals. However, AT can also be associated with adverse effects of certain medication, ageing and various comorbidities. Characteristic tendon changes include proteoglycan accumulation, fluid accumulation with swelling and hypervascularization. Tissue disorganization advances as pathological changes in matrix structure are driven by altered cellular function and makeup, often accompanied by persistent inflammation. Treatment strategies include various interventions, although these can be protracted and challenging for both patients and health-care providers, often with high failure rates. Current research focuses on understanding the pathological processes at the cellular and molecular levels to distinguish between disease categories and to investigate the role of inflammation, metabolic maladaptation and mechanical stress. Emerging therapeutic approaches need to be developed to address these underlying mechanisms. These approaches focus on optimizing rehabilitation protocols and advancing the development of adjunct therapies, such as advanced therapy medicinal products, alongside the integration of precision medicine to improve treatment outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Achilles tendon structure and tendinopathy.
Fig. 2: Multiscale interplay of structural organization and functional mechanics in tendon tissue.
Fig. 3: Pathological changes identified in diseased Achilles tendon and entheseal tissues.
Fig. 4: Pain location of AT and several differential diagnoses.
Fig. 5: First line of management in stages of an athlete with Achilles tendinopathy.
Fig. 6: Minimally invasive in-office needle Achilles tendoscopy.

Similar content being viewed by others

References

  1. Doral, M. N. et al. Functional anatomy of the Achilles tendon. Knee Surg. Sports Traumatol. Arthrosc. 18, 638–643 (2010).

    Article  PubMed  Google Scholar 

  2. de Jonge, S. et al. Incidence of midportion Achilles tendinopathy in the general population. Br. J. Sports Med. 45, 1026–1028 (2011).

    Article  PubMed  Google Scholar 

  3. Riel, H., Lindstrom, C. F., Rathleff, M. S., Jensen, M. B. & Olesen, J. L. Prevalence and incidence rate of lower-extremity tendinopathies in a Danish general practice: a registry-based study. BMC Musculoskelet. Disord. 20, 239 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cassel, M. et al. Incidence of Achilles and patellar tendinopathy in adolescent elite athletes. Int. J. Sports Med. 39, 726–732 (2018).

    Article  PubMed  Google Scholar 

  5. Janssen, I., van der Worp, H., Hensing, S. & Zwerver, J. Investigating Achilles and patellar tendinopathy prevalence in elite athletics. Res. Sports Med. 26, 1–12 (2018).

    Article  PubMed  Google Scholar 

  6. Sobhani, S., Dekker, R., Postema, K. & Dijkstra, P. U. Epidemiology of ankle and foot overuse injuries in sports: a systematic review. Scand. J. Med. Sci. Sports 23, 669–686 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Paavola, M., Kannus, P., Paakkala, T., Pasanen, M. & Jarvinen, M. Long-term prognosis of 879 patients with achilles tendinopathy. An observational 8-year follow-up study. Am. J. Sports Med. 28, 634–642 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Silbernagel, K. G., Brorsson, A. & Lundberg, M. The majority of patients with Achilles tendinopathy recover fully when treated with exercise alone: a 5-year follow-up. Am. J. Sports Med. 39, 607–613 (2011).

    Article  PubMed  Google Scholar 

  9. van der Plas, A. et al. A 5-year follow-up study of Alfredson’s heel-drop exercise programme in chronic midportion Achilles tendinopathy. Br. J. Sports Med. 46, 214–218 (2012).

    Article  PubMed  Google Scholar 

  10. Wetke, E., Johannsen, F. & Langberg, H. Achilles tendinopathy: a prospective study on the effect of active rehabilitation and steroid injections in a clinical setting. Scand. J. Med. Sci. Sports 25, e392–e399 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Winnicki, K., Ochala-Klos, A., Rutowicz, B., Pekala, P. A. & Tomaszewski, K. A. Functional anatomy, histology and biomechanics of the human Achilles tendon – a comprehensive review. Ann. Anat. Ges. 229, 151461 (2020).

    Article  Google Scholar 

  12. Kannus, P. Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 10, 312–320 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Carr, A. J. & Norris, S. H. The blood supply of the calcaneal tendon. J. Bone Jt. Surg. Br. 71, 100–101 (1989).

    Article  CAS  Google Scholar 

  14. Zhang, J. et al. Characterization of the structure, vascularity, and stem/progenitor cell populations in porcine Achilles tendon (PAT). Cell Tissue Res. 384, 367–387 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Theobald, P. et al. The functional anatomy of Kager’s fat pad in relation to retrocalcaneal problems and other hindfoot disorders. J. Anat. 208, 91–97 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Micheli, A. J. et al. Single-cell transcriptomic analysis identifies extensive heterogeneity in the cellular composition of mouse Achilles tendons. Am. J. Physiol. Cell Physiol 319, C885–C894 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kendal, A. R. et al. Multi-omic single cell analysis resolves novel stromal cell populations in healthy and diseased human tendon. Sci. Rep. 10, 13939 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mimpen, J. Y. et al. Single nucleus and spatial transcriptomic profiling of healthy human hamstring tendon. FASEB J. 38, e23629 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Lui, P. P. Y. & Wong, C. M. Biology of tendon stem cells and tendon in aging. Front. Genet. 10, 1338 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Maffulli, N., Longo, U. G., Kadakia, A. & Spiezia, F. Achilles tendinopathy. Foot Ankle Surg. 26, 240–249 (2020).

    Article  PubMed  Google Scholar 

  21. Scott, A. et al. ICON 2019: International Scientific Tendinopathy Symposium Consensus: clinical terminology. Br. J. Sports Med. 54, 260–262 (2020).

    Article  PubMed  Google Scholar 

  22. van der Vlist, A. C., Breda, S. J., Oei, E. H. G., Verhaar, J. A. N. & de Vos, R. J. Clinical risk factors for Achilles tendinopathy: a systematic review. Br. J. Sports Med. 53, 1352–1361 (2019).

    Article  PubMed  Google Scholar 

  23. Khan, K. M., Cook, J. L., Kannus, P., Maffulli, N. & Bonar, S. F. Time to abandon the “tendinitis” myth. BMJ 324, 626–627 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maffulli, N., Khan, K. M. & Puddu, G. Overuse tendon conditions: time to change a confusing terminology. Arthroscopy 14, 840–843 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Kvist, M. Achilles tendon injuries in athletes. Sports Med. 18, 173–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. de Vos, R. J. et al. Dutch multidisciplinary guideline on Achilles tendinopathy. Br. J. Sports Med. 55, 1125–1134 (2021).

    Article  PubMed  Google Scholar 

  27. Maetz, R. et al. Systematic review and meta-analyses of randomized controlled trials comparing exercise loading protocols with passive treatment modalities or other loading protocols for the management of midportion achilles tendinopathy. Orthop. J. Sports Med. 11, 23259671231171178 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. van der Vlist, A. C. et al. Which treatment is most effective for patients with Achilles tendinopathy? A living systematic review with network meta-analysis of 29 randomised controlled trials. Br. J. Sports Med. 55, 249–256 (2021).

    Article  PubMed  Google Scholar 

  29. Challoumas, D., Clifford, C., Kirwan, P. & Millar, N. L. How does surgery compare to sham surgery or physiotherapy as a treatment for tendinopathy? A systematic review of randomised trials. BMJ Open. Sport. Exerc. Med. 5, e000528 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lohrer, H., David, S. & Nauck, T. Surgical treatment for achilles tendinopathy – a systematic review. BMC Musculoskelet. Disord. 17, 207 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kujala, U. M., Sarna, S. & Kaprio, J. Cumulative incidence of achilles tendon rupture and tendinopathy in male former elite athletes. Clin. J. Sport. Med. 15, 133–135 (2005).

    Article  PubMed  Google Scholar 

  32. Kelly, S., Pollock, N., Polglass, G. & Clarsen, B. Injury and illness in elite athletics: a prospective cohort study over three seasons. Int. J. Sports Phys. Ther. 17, 420–433 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Albers, I. S., Zwerver, J., Diercks, R. L., Dekker, J. H. & Van den Akker-Scheek, I. Incidence and prevalence of lower extremity tendinopathy in a Dutch general practice population: a cross sectional study. BMC Musculoskelet. Disord. 17, 16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sullivan, C. K., Janney, C. F. & Fraser, J. J. Burden and risk factors for Achilles tendinopathy in the military population from 2006 to 2015. A retrospective cohort study. J. Athl. Train. 59, 655–660 (2024).

    Article  PubMed  Google Scholar 

  35. Chen, W., Cloosterman, K. L. A., Bierma-Zeinstra, S. M. A., van Middelkoop, M. & de Vos, R. J. Epidemiology of insertional and midportion Achilles tendinopathy in runners: a prospective cohort study. J. Sport. Health Sci. 13, 256–263 (2024).

    Article  PubMed  Google Scholar 

  36. Martin, R. L. et al. Achilles pain, stiffness, and muscle power deficits: midportion achilles tendinopathy revision 2018. J. Orthop. Sports Phys. Ther. 48, A1–A38 (2018).

    Article  PubMed  Google Scholar 

  37. Hasani, F., Vallance, P., Haines, T., Munteanu, S. E. & Malliaras, P. Are plantarflexor muscle impairments present among individuals with achilles tendinopathy and do they change with exercise? A systematic review with meta-analysis. Sports Med. Open. 7, 18 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Macchi, M., Spezia, M., Elli, S., Schiaffini, G. & Chisari, E. Obesity increases the risk of tendinopathy, tendon tear and rupture, and postoperative complications: a systematic review of clinical studies. Clin. Orthop. Relat. Res. 478, 1839–1847 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mallows, A., Debenham, J., Walker, T. & Littlewood, C. Association of psychological variables and outcome in tendinopathy: a systematic review. Br. J. Sports Med. 51, 743–748 (2017).

    Article  PubMed  Google Scholar 

  40. McAuliffe, S. et al. Altered strength profile in Achilles tendinopathy: a systematic review and meta-analysis. J. Athl. Train. 54, 889–900 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Svensson, R. B., Heinemeier, K. M., Couppe, C., Kjaer, M. & Magnusson, S. P. Effect of aging and exercise on the tendon. J. Appl. Physiol. 121, 1237–1246 (2016).

    Article  PubMed  Google Scholar 

  42. Lagas, I. F. et al. Incidence of Achilles tendinopathy and associated risk factors in recreational runners: a large prospective cohort study. J. Sci. Med. Sport 23, 448–452 (2020).

    Article  PubMed  Google Scholar 

  43. Bittencourt, N. F. N., Oliveira, R. R., Vaz, R. P. M., Silva, R. S. & Mendonça, L. M. Preventive effect of tailored exercises on patellar tendinopathy in elite youth athletes: a cohort study. Phys. Ther. Sport 53, 60–66 (2022).

    Article  PubMed  Google Scholar 

  44. Mahieu, N. N., Witvrouw, E., Stevens, V., Van Tiggelen, D. & Roget, P. Intrinsic risk factors for the development of achilles tendon overuse injury: a prospective study. Am. J. Sports Med. 34, 226–235 (2006).

    Article  PubMed  Google Scholar 

  45. Rabin, A., Kozol, Z. & Finestone, A. S. Limited ankle dorsiflexion increases the risk for mid-portion Achilles tendinopathy in infantry recruits: a prospective cohort study. J. Foot Ankle Res. 7, 48 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Hein, T., Janssen, P., Wagner-Fritz, U., Haupt, G. & Grau, S. Prospective analysis of intrinsic and extrinsic risk factors on the development of Achilles tendon pain in runners. Scand. J. Med. Sci. Sports 24, e201–e212 (2014).

    Article  Google Scholar 

  47. Scott, A., Backman, L. J. & Speed, C. Tendinopathy: update on pathophysiology. J. Orthop. Sports Phys. Ther. 45, 833–841 (2015).

    Article  PubMed  Google Scholar 

  48. Millar, N. L. et al. Tendinopathy. Nat. Rev. Dis. Primers 7, 1 (2021).

    Article  PubMed  Google Scholar 

  49. O’Neill, S., Barry, S. & Watson, P. Plantarflexor strength and endurance deficits associated with mid-portion Achilles tendinopathy: the role of soleus. Phys. Ther. Sport 37, 69–76 (2019).

    Article  PubMed  Google Scholar 

  50. Sancho, I. et al. Recreational runners with Achilles tendinopathy have clinically detectable impairments: a case-control study. Phys. Ther. Sport 55, 241–247 (2022).

    Article  PubMed  Google Scholar 

  51. Habets, B., Smits, H. W., Backx, F. J. G., van Cingel, R. E. H. & Huisstede, B. M. A. Hip muscle strength is decreased in middle-aged recreational male athletes with midportion Achilles tendinopathy: a cross-sectional study. Phys. Ther. Sport 25, 55–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Franettovich Smith, M. M., Honeywill, C., Wyndow, N., Crossley, K. M. & Creaby, M. W. Neuromotor control of gluteal muscles in runners with achilles tendinopathy. Med. Sci. Sports Exerc. 46, 594–599 (2014).

    Article  PubMed  Google Scholar 

  53. Chimenti, R. L. et al. Kinesiophobia severity categories and clinically meaningful symptom change in persons with achilles tendinopathy in a cross-sectional study: implications for assessment and willingness to exercise. Front. Pain. Res. 2, 739051 (2021).

    Article  Google Scholar 

  54. Mc Auliffe, S. et al. ICON 2020 – International Scientific Tendinopathy Symposium Consensus: a scoping review of psychological and psychosocial constructs and outcome measures reported in tendinopathy clinical trials. J. Orthop. Sports Phys. Ther. 52, 375–388 (2022).

    Article  Google Scholar 

  55. Brown, K. L. et al. Polymorphisms within the COL5A1 gene and regulators of the extracellular matrix modify the risk of Achilles tendon pathology in a British case-control study. J. Sports Sci. 35, 1475–1483 (2017).

    Article  PubMed  Google Scholar 

  56. Mokone, G. G., Schwellnus, M. P., Noakes, T. D. & Collins, M. The COL5A1 gene and Achilles tendon pathology. Scand. J. Med. Sci. Sports 16, 19–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Nielsen, R. H. et al. Low tendon stiffness and abnormal ultrastructure distinguish classic Ehlers–Danlos syndrome from benign joint hypermobility syndrome in patients. FASEB J. 28, 4668–4676 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Kim, S. K. et al. Genome-wide association screens for Achilles tendon and ACL tears and tendinopathy. PLoS ONE 12, e0170422 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kang, X. et al. Relationship of common variants in MPP7, TIMP2 and CASP8 genes with the risk of chronic achilles tendinopathy. Sci. Rep. 9, 17627 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Skovgaard, D. et al. Chronic hyperglycemia, hypercholesterolemia, and metabolic syndrome are associated with risk of tendon injury. Scand. J. Med. Sci. Sports 31, 1822–1831 (2021).

    Article  PubMed  Google Scholar 

  61. Seymore, K. D. et al. Metabolic risk factors relate to worse tendon health in individuals with achilles tendinopathy. J. Orthop. Res. https://doi.org/10.1002/jor.26038 (2025).

  62. Stausholm, M. B. et al. Increased risk of tendon injury following structured care in patients with type 2 diabetes: post hoc analysis of a large randomized controlled trial with 19 years of follow-up. Diabetes Care 47, e57–e58 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ames, P. R. J., Longo, U. G., Denaro, V. & Maffulli, N. Achilles tendon problems: not just an orthopaedic issue. Disabil. Rehabil. 30, 1646–1650 (2008).

    Article  PubMed  Google Scholar 

  64. Krishna Sayana, M. & Maffulli, N. Insertional Achilles tendinopathy. Foot Ankle Clin. 10, 309–320 (2005).

    Article  PubMed  Google Scholar 

  65. López-Medina, C. et al. Achilles enthesitis on physical examination leads to worse outcomes after 2 years of follow up in patients with ankylosing spondylitis from REGISPONSER-AS registry. Arthritis Res. Ther. 25, 8 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Almekinders, L. C. & Temple, J. D. Etiology, diagnosis, and treatment of tendonitis: an analysis of the literature. Med. Sci. Sports Exerc. 30, 1183–1190 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Dudhia, J. et al. Aging enhances a mechanically-induced reduction in tendon strength by an active process involving matrix metalloproteinase activity. Aging Cell 6, 547–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Collins, M. & Raleigh, S. M. Genetic risk factors for musculoskeletal soft tissue injuries. Med. Sport Sci. 54, 136–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Patel, D. et al. Structure-function specialisation of the interfascicular matrix in the human achilles tendon. Acta Biomater. 131, 381–390 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Rossetti, L. et al. The microstructure and micromechanics of the tendon-bone insertion. Nat. Mater. 16, 664–670 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Benjamin, M. et al. The “enthesis organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum. 50, 3306–3313 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Demangeot, Y., Whiteley, R., Gremeaux, V. & Degache, F. The load borne by the Achilles tendon during exercise: a systematic review of normative values. Scand. J. Med. Sci. Sports 33, 110–126 (2023).

    Article  PubMed  Google Scholar 

  73. Snedeker, J. G. & Foolen, J. Tendon injury and repair – a perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater. 63, 18–36 (2017).

    Article  PubMed  Google Scholar 

  74. Matsushima, T. & Hiroshi, A. Molecular mechanisms of mechanosensing and plasticity of tendons and ligaments. J. Biochem. 176, 263–269 (2024).

    Article  CAS  PubMed  Google Scholar 

  75. Passini, F. S. et al. Shear-stress sensing by PIEZO1 regulates tendon stiffness in rodents and influences jumping performance in humans. Nat. Biomed. Eng. 5, 1457–1471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schoenenberger, A. D. et al. Macromechanics and polycaprolactone fiber organization drive macrophage polarization and regulate inflammatory activation of tendon in vitro and in vivo. Biomaterials 249, 120034 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Li, Y., Fessel, G., Georgiadis, M. & Snedeker, J. G. Advanced glycation end-products diminish tendon collagen fiber sliding. Matrix Biol. 32, 169–177 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Lavagnino, M., Arnoczky, S. P., Egerbacher, M., Gardner, K. L. & Burns, M. E. Isolated fibrillar damage in tendons stimulates local collagenase mRNA expression and protein synthesis. J. Biomech. 39, 2355–2362 (2006).

    Article  PubMed  Google Scholar 

  79. Kubo, Y. et al. Different frequency of cyclic tensile strain relates to anabolic/catabolic conditions consistent with immunohistochemical staining intensity in tenocytes. Int. J. Mol. Sci. 21, 1082 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pentzold, S. & Wildemann, B. Mechanical overload decreases tenogenic differentiation compared to physiological load in bioartificial tendons. J. Biol. Eng. 16, 5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang, T. et al. Load-induced regulation of tendon homeostasis by SPARC, a genetic predisposition factor for tendon and ligament injuries. Sci. Transl. Med. 13, eabe5738 (2021).

    Article  PubMed  Google Scholar 

  82. Klatte-Schulz, F. et al. Different Achilles tendon pathologies show distinct histological and molecular characteristics. Int. J. Mol. Sci. 19, 404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wunderli, S. L. et al. Tendon response to matrix unloading is determined by the patho-physiological niche. Matrix Biol. 89, 11–26 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. Millar, N. L., Murrell, G. A. & McInnes, I. B. Alarmins in tendinopathy: unravelling new mechanisms in a common disease. Rheumatology 52, 769–779 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Zhao, G. et al. HMGB1 mediates the development of tendinopathy due to mechanical overloading. PLoS ONE 14, e0222369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pingel, J. et al. 3-D ultrastructure and collagen composition of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling. J. Anat. 224, 548–555 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cook, J. L. & Purdam, C. R. The challenge of managing tendinopathy in competing athletes. Br. J. Sports Med. 48, 506–509 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Mosca, M. J. et al. Differential expression of alarmins-S100A9, IL-33, HMGB1 and HIF-1α in supraspinatus tendinopathy before and after treatment. BMJ Open. Sport Exerc. Med. 3, e000225 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tallon, C., Maffulli, N. & Ewen, S. W. Ruptured Achilles tendons are significantly more degenerated than tendinopathic tendons. Med. Sci. Sports Exerc. 33, 1983–1990 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Kannus, P. & Jozsa, L. Histopathological changes preceding spontaneous rupture of a tendon. A controlled study of 891 patients. J. Bone Jt. Surg. Am. 73, 1507–1525 (1991).

    Article  CAS  Google Scholar 

  91. Dakin, S. G. et al. 15-epi-LXA4 and MaR1 counter inflammation in stromal cells from patients with Achilles tendinopathy and rupture. FASEB J. 33, 8043–8054 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bi, Y. et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat. Med. 13, 1219–1227 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Walia, B. & Huang, A. H. Tendon stem progenitor cells: understanding the biology to inform therapeutic strategies for tendon repair. J. Orthop. Res. 37, 1270–1280 (2019).

    Article  PubMed  Google Scholar 

  94. Dakin, S. G. et al. Chronic inflammation is a feature of Achilles tendinopathy and rupture. Br. J. Sports Med. 52, 359–367 (2018).

    Article  PubMed  Google Scholar 

  95. Liu, Z. et al. Fibroblast activation protein-targeted PET/CT with Al18F-NODA-FAPI-04 for in vivo imaging of tendon healing in rat Achilles tendon injury models. Am. J. Sports Med. 51, 3790–3801 (2023).

    Article  PubMed  Google Scholar 

  96. Spielman, A. F. et al. Reduction of tendon fibrosis using galectin-3 inhibitors. Plast. Reconstr. Surg. 154, 113–121 (2023).

    Article  PubMed  Google Scholar 

  97. Kragsnaes, M. S. et al. Stereological quantification of immune-competent cells in baseline biopsy specimens from achilles tendons: results from patients with chronic tendinopathy followed for more than 4 years. Am. J. Sports Med. 42, 2435–2445 (2014).

    Article  PubMed  Google Scholar 

  98. Riley, G. The pathogenesis of tendinopathy. A molecular perspective. Rheumatology 43, 131–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Sardone, F. et al. Collagen VI-NG2 axis in human tendon fibroblasts under conditions mimicking injury response. Matrix Biol. 55, 90–105 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Akbar, M. et al. Targeting danger molecules in tendinopathy: the HMGB1/TLR4 axis. RMD Open. 3, e000456 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Muljadi, P. M. & Andarawis-Puri, N. Glycosaminoglycans modulate microscale mechanics and viscoelasticity in fatigue injured tendons. J. Biomech. 152, 111584 (2023).

    Article  PubMed  Google Scholar 

  102. Newton, J. B., Nuss, C. A., Weiss, S. N., Betts, R. L. & Soslowsky, L. J. Novel application of in vivo microdialysis in a rat Achilles tendon acute injury model. J. Appl. Physiol. 136, 43–52 (2024).

    Article  CAS  PubMed  Google Scholar 

  103. Little, D. et al. Preclinical tendon and ligament models: beyond the 3Rs (replacement, reduction, and refinement) to 5W1H (why, who, what, where, when, how). J. Orthop. Res. 41, 2133–2162 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Best, K. T. et al. NF-κB activation persists into the remodeling phase of tendon healing and promotes myofibroblast survival. Sci. Signal. 13, eabb7209 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ackerman, J. E. et al. Defining the spatial-molecular map of fibrotic tendon healing and the drivers of Scleraxis-lineage cell fate and function. Cell Rep. 41, 111706 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang, J. & Wang, J. H. The effects of mechanical loading on tendons – an in vivo and in vitro model study. PLoS ONE 8, e71740 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Smith, R. K. et al. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy. PLoS ONE 8, e75697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zamboulis, D. E. et al. The interfascicular matrix of energy storing tendons houses heterogenous cell populations disproportionately affected by aging. Aging Dis. 15, 295–310 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Hussien, A. A., Niederoest, B., Bollhalder, M., Goedecke, N. & Snedeker, J. G. The stiffness-sensitive transcriptome of human tendon stromal cells. Adv. Healthc. Mater. 12, e2101216 (2023).

    Article  PubMed  Google Scholar 

  110. Gomez-Florit, M., Labrador-Rached, C. J., Domingues, R. M. A. & Gomes, M. E. The tendon microenvironment: engineered in vitro models to study cellular crosstalk. Adv. Drug. Deliv. Rev. 185, 114299 (2022).

    Article  CAS  PubMed  Google Scholar 

  111. Johnson, P. A. et al. Three-dimensional, in-vitro approaches for modelling soft-tissue joint diseases. Lancet Rheumatol. 5, e553–e563 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Stauber, T., Wolleb, M. & Snedeker, J. G. Engineering tendon assembloids to probe cellular crosstalk in disease and repair. J. Vis. Exp. 205, e65987 (2024).

    Google Scholar 

  113. Saito, T. et al. The effect of mechanical stress on enthesis homeostasis in a rat Achilles enthesis organ culture model. J. Orthop. Res. 40, 1872–1882 (2022).

    Article  PubMed  Google Scholar 

  114. Knapik, J. J. & Pope, R. Achilles tendinopathy: pathophysiology, epidemiology, diagnosis, treatment, prevention, and screening. J. Spec. Oper. Med. 20, 125–140 (2020).

    Article  PubMed  Google Scholar 

  115. Chimenti, R. L. et al. Achilles pain, stiffness, and muscle power deficits: midportion achilles tendinopathy revision – 2024. J. Orthop. Sports Phys. Ther. 54, CPG1–CPG32 (2024).

    Article  PubMed  Google Scholar 

  116. von Rickenbach, K. J., Borgstrom, H., Tenforde, A., Borg-Stein, J. & McInnis, K. C. Achilles tendinopathy: evaluation, rehabilitation, and prevention. Curr. Sports Med. Rep. 20, 327–334 (2021).

    Article  Google Scholar 

  117. Hanlon, S. L., Scattone Silva, R., Honick, B. J. & Silbernagel, K. G. Effect of symptom duration on injury severity and recovery in patients with achilles tendinopathy. Orthop. J. Sports Med. 11, 23259671231164956 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Malliaras P. et al. Diagnostic domains, differential conditions and conditions requiring medical attention that are considered important in the diagnosis of Achilles tendinopathy: a Delphi consensus study Br. J. Sports Med. https://doi.org/10.1136/bjsports-2024-109185 (2025).

  119. van Dijk, C. N., van Sterkenburg, M. N., Wiegerinck, J. I., Karlsson, J. & Maffulli, N. Terminology for Achilles tendon related disorders. Knee Surg. Sports Traumatol. Arthrosc. 19, 835–841 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hutchison, A. M. et al. What is the best clinical test for Achilles tendinopathy? Foot Ankle Surg. 19, 112–117 (2013).

    Article  PubMed  Google Scholar 

  121. Rio, E. K. et al. Where is your pain? Achilles tendinopathy pain location on loading is different to palpation, imaging and recall location. J. Orthop. Sports Phys. Ther. 54, 86–94 (2024).

    Article  PubMed  Google Scholar 

  122. Malliaras, P. Physiotherapy management of Achilles tendinopathy. J. Physiother. 68, 221–237 (2022).

    Article  PubMed  Google Scholar 

  123. Matthews, W., Ellis, R., Furness, J. & Hing, W. A. The clinical diagnosis of Achilles tendinopathy: a scoping review. PeerJ 9, e12166 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Gatz, M. et al. Multimodal ultrasound versus MRI for the diagnosis and monitoring of achilles tendinopathy: a prospective longitudinal study. Orthop. J. Sports Med. 9, 23259671211006826 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Grävare Silbernagel, K. et al. ICON 2020 – International Scientific Tendinopathy Symposium Consensus: a systematic review of outcome measures reported in clinical trials of achilles tendinopathy. Sports Med. 52, 613–641 (2022).

    Article  PubMed  Google Scholar 

  126. de Vos, R. J. et al. ICON 2023: International Scientific Tendinopathy Symposium Consensus – the core outcome set for achilles tendinopathy (COS-AT) using a systematic review and a Delphi study of professional participants and patients. Br. J. Sports Med. 58, 1175–1186 (2024).

    Article  PubMed  Google Scholar 

  127. Silbernagel, K. G., Hanlon, S. & Sprague, A. Current clinical concepts: conservative management of achilles tendinopathy. J. Athl. Train. 55, 438–447 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Fleagle, T. R. et al. Minimal clinically important change of movement pain in musculoskeletal pain conditions. J. Pain. 25, 104507 (2024).

    Article  PubMed  Google Scholar 

  129. Robinson, J. M. et al. The VISA-A questionnaire. A valid and reliable index of the clinical severity of Achilles tendinopathy. Br. J. Sports Med. 35, 335–341 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Norris, R. et al. The VISA-A (sedentary) should be used for sedentary patients with Achilles tendinopathy: a modified version of the VISA-A developed and evaluated in accordance with the COSMIN checklist. Br. J. Sports Med. 57, 1311–1316 (2023).

    Article  PubMed  Google Scholar 

  131. Murphy, M. C. et al. TENDINopathy severity assessment – Achilles (TENDINS-A): development and content validity assessment of a new patient-reported outcome measure for achilles tendinopathy. J. Orthop. Sports Phys. Ther. 54, 70–85 (2024).

    Article  PubMed  Google Scholar 

  132. Bernstein, D. N. et al. A comparative analysis of clinical outcomes in noninsertional versus insertional tendinopathy using PROMIS. Foot Ankle Spec. 12, 350–356 (2019).

    Article  PubMed  Google Scholar 

  133. Silfee, V. J. et al. Objective measurement of physical activity outcomes in lifestyle interventions among adults: a systematic review. Prev. Med. Rep. 11, 74–80 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Silbernagel, K. G., Gustavsson, A., Thomee, R. & Karlsson, J. Evaluation of lower leg function in patients with Achilles tendinopathy. Knee Surg. Sports Traumatol. Arthrosc. 14, 1207–1217 (2006).

    Article  PubMed  Google Scholar 

  135. Bleakney, R. R. & White, L. M. Imaging of the Achilles tendon. Foot Ankle Clin. 10, 239–254 (2005).

    Article  PubMed  Google Scholar 

  136. Sleeswijk Visser, T. S. O., O’Neill, S., Colaris, J. W., Eygendaal, D. & de Vos, R. J. Normative ultrasound values for Achilles tendon thickness in the general population and patients with Achilles tendinopathy: a large international cross-sectional study. Scand. J. Med. Sci. Sports 34, e14665 (2024).

    Article  PubMed  Google Scholar 

  137. French, D. J., France, C. R., Vigneau, F., French, J. A. & Evans, R. T. Fear of movement/(re)injury in chronic pain: a psychometric assessment of the original English version of the Tampa scale for kinesiophobia (TSK). Pain 127, 42–51 (2007).

    Article  PubMed  Google Scholar 

  138. Sullivan, M. J., Bishop, S. R. & Pivik, J. The pain catastrophizing scale: development and validation. Psychol. Assess. 7, 524–532 (1995).

    Article  Google Scholar 

  139. Hanlon, S. L., Pohlig, R. T. & Silbernagel, K. G. Beyond the diagnosis: using patient characteristics and domains of tendon health to identify latent subgroups of achilles tendinopathy. J. Orthop. Sports Phys. Ther. 51, 440–448 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kraemer, R. & Knobloch, K. A soccer-specific balance training program for hamstring muscle and patellar and achilles tendon injuries: an intervention study in premier league female soccer. Am. J. Sports Med. 37, 1384–1393 (2009).

    Article  PubMed  Google Scholar 

  141. House, C., Reece, A. & Roiz de Sa, D. Shock-absorbing insoles reduce the incidence of lower limb overuse injuries sustained during Royal Marine training. Mil. Med. 178, 683–689 (2013).

    Article  PubMed  Google Scholar 

  142. Steinberg, N. et al. Achilles tendon and patellar tendon structure in combat soldiers following prevention exercises. Mil. Med. 188, 678–688 (2023).

    Article  PubMed  Google Scholar 

  143. Fredberg, U., Bolvig, L. & Andersen, N. T. Prophylactic training in asymptomatic soccer players with ultrasonographic abnormalities in Achilles and patellar tendons: the Danish Super League Study. Am. J. Sports Med. 36, 451–460 (2008).

    Article  PubMed  Google Scholar 

  144. Alfredson, H., Pietila, T., Jonsson, P. & Lorentzon, R. Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am. J. Sports Med. 26, 360–366 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Murphy, M. C. et al. Efficacy of heavy eccentric calf training for treating mid-portion Achilles tendinopathy: a systematic review and meta-analysis. Br. J. Sports Med. 53, 1070–1077 (2019).

    Article  PubMed  Google Scholar 

  146. Beyer, R. et al. Heavy slow resistance versus eccentric training as treatment for Achilles tendinopathy: a randomized controlled trial. Am. J. Sports Med. 43, 1704–1711 (2015).

    Article  PubMed  Google Scholar 

  147. Silbernagel, K. G. & Crossley, K. M. A proposed return-to-sport program for patients with midportion Achilles tendinopathy: rationale and implementation. J. Orthop. Sports Phys. Ther. 45, 876–886 (2015).

    Article  PubMed  Google Scholar 

  148. Habets, B. et al. No difference in clinical effects when comparing Alfredson eccentric and Silbernagel combined concentric–eccentric loading in Achilles tendinopathy: a randomized controlled trial. Orthop. J. Sports Med. 9, 23259671211031254 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Merry, K. et al. Identifying characteristics of resistance-based therapeutic exercise interventions for Achilles tendinopathy: a scoping review. Phys. Ther. Sport 63, 73–94 (2023).

    Article  PubMed  Google Scholar 

  150. Chimenti, R. L. et al. The effects of pain science education plus exercise on pain and function in chronic Achilles tendinopathy: a blinded, placebo-controlled, explanatory, randomized trial. Pain 164, e47–e65 (2023).

    Article  PubMed  Google Scholar 

  151. Sancho, I., Morrissey, D., Willy, R. W., Barton, C. & Malliaras, P. Education and exercise supplemented by a pain-guided hopping intervention for male recreational runners with midportion Achilles tendinopathy: a single cohort feasibility study. Phys. Ther. Sport 40, 107–116 (2019).

    Article  PubMed  Google Scholar 

  152. van der Vlist, A. C. et al. Effectiveness of a high volume injection as treatment for chronic Achilles tendinopathy: randomised controlled trial. BMJ 370, m3027 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sancho, I., Willy, R. W., Morrissey, D., Malliaras, P. & Lascurain-Aguirrebeña, I. Achilles tendon forces and pain during common rehabilitation exercises in male runners with Achilles tendinopathy. A laboratory study. Phys. Ther. Sport. 60, 26–33 (2023).

    Article  PubMed  Google Scholar 

  154. Rabusin, C. L. et al. Efficacy of heel lifts versus calf muscle eccentric exercise for mid-portion Achilles tendinopathy (HEALTHY): a randomised trial. Br. J. Sports Med. 55, 486–492 (2021).

    Article  PubMed  Google Scholar 

  155. Lyght, M., Nockerts, M., Kernozek, T. W. & Ragan, R. Effects of foot strike and step frequency on achilles tendon stress during running. J. Appl. Biomech. 32, 365–372 (2016).

    Article  PubMed  Google Scholar 

  156. Maestroni, L., Read, P., Bishop, C. & Turner, A. Strength and power training in rehabilitation: underpinning principles and practical strategies to return athletes to high performance. Sports Med. 50, 239–252 (2020).

    Article  PubMed  Google Scholar 

  157. Magnusson, S. P., Langberg, H. & Kjaer, M. The pathogenesis of tendinopathy: balancing the response to loading. Nat. Rev. Rheumatol. 6, 262–268 (2010).

    Article  PubMed  Google Scholar 

  158. Habets, B., van den Broek, A. G., Huisstede, B. M. A., Backx, F. J. G. & van Cingel, R. E. H. Return to sport in athletes with midportion achilles tendinopathy: a qualitative systematic review regarding definitions and criteria. Sports Med. 48, 705–723 (2018).

    Article  PubMed  Google Scholar 

  159. Lagas, I. F. et al. One fifth of patients with Achilles tendinopathy have symptoms after 10 years: a prospective cohort study. J. Sports Sci. 40, 2475–2483 (2022).

    Article  PubMed  Google Scholar 

  160. Alghamdi, N. H. et al. Immediate and short-term effects of in-shoe heel-lift orthoses on clinical and biomechanical outcomes in patients with insertional achilles tendinopathy. Orthop. J. Sports Med. 12, 23259671231221583 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Fahlström, M., Jonsson, P., Lorentzon, R. & Alfredson, H. Chronic Achilles tendon pain treated with eccentric calf-muscle training. Knee Surg. Sports Traumatol. Arthrosc. 11, 327–333 (2003).

    Article  PubMed  Google Scholar 

  162. Rees, J. et al. Rehabilitation of tendon problems in patients with diabetes mellitus. Adv. Exp. Med. Biol. 920, 199–208 (2016).

    Article  CAS  PubMed  Google Scholar 

  163. Abate, M., Salini, V. & Schiavone, C. Achilles tendinopathy in elderly subjects with type II diabetes: the role of sport activities. Aging Clin. Exp. Res. 28, 355–358 (2016).

    Article  PubMed  Google Scholar 

  164. Zahradnik, T. M. et al. Can Achilles tendon xanthoma be distinguished from Achilles tendinopathy using Dixon method MRI? A cross-sectional exploratory study. BMC Musculoskelet. Disord. 22, 627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Merry, K. et al. Current practice, guideline adherence, and barriers to implementation for Achilles tendinopathy rehabilitation: a survey of physical therapists and people with Achilles tendinopathy. BMJ Open. Sport Exerc. Med. 10, e001678 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Pearce, C. J. & Tan, A. Non-insertional Achilles tendinopathy. EFORT Open. Rev. 1, 383–390 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Hahn, F., Meyer, P., Maiwald, C., Zanetti, M. & Vienne, P. Treatment of chronic achilles tendinopathy and ruptures with flexor hallucis tendon transfer: clinical outcome and MRI findings. Foot Ankle Int. 29, 794–802 (2008).

    Article  PubMed  Google Scholar 

  168. Paavola, M., Orava, S., Leppilahti, J., Kannus, P. & Järvinen, M. Chronic Achilles tendon overuse injury: complications after surgical treatment: an analysis of 432 consecutive patients. Am. J. Sports Med. 28, 77–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Steenstra, F. & van Dijk, C. N. Achilles tendoscopy. Foot Ankle Clin. 11, 429–438 (2006).

    Article  PubMed  Google Scholar 

  170. Wagner, P. et al. Achilles tendoscopy for non insertional Achilles tendinopathy. A case series study. Foot Ankle Surg. 26, 421–424 (2020).

    Article  PubMed  Google Scholar 

  171. Opdam, K. T. M., Baltes, T. P. A., Zwiers, R., Wiegerinck, J. I. & van Dijk, C. N. Endoscopic treatment of mid-portion achilles tendinopathy: a retrospective case series of patient satisfaction and functional outcome at a 2- to 8-year follow-up. Arthroscopy 34, 264–269 (2018).

    Article  PubMed  Google Scholar 

  172. Butler, J. J. et al. Excellent clinical outcomes and rapid return to activity following in-office needle tendoscopy for chronic Achilles tendinopathy. Arthrosc. Sports Med. Rehabil. 6, 100937 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Mercer, N. P. et al. Achilles paratenon needle tendoscopy in the office setting. Arthrosc. Tech. 11, e315–e320 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Thiounn, A. et al. Comparison of open and endoscopic techniques of isolated calcaneoplasty in the surgical treatment of insertional tendinopathy of the Achilles tendon. Orthop. Traumatol. Surg. Res. https://doi.org/10.1016/j.otsr.2024.104003 (2024).

  175. Ramelli, L., Docter, S., Kim, C., Sheth, U. & Park, S. S. Single-row repair versus double-row repair in the surgical management of achilles insertional tendinopathy: a systematic review. Orthop. J. Sports Med. 12, 23259671241262772 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Black, A. T., So, E., Combs, A. & Logan, D. The Zadek osteotomy for surgical management of insertional achilles tendinopathy: a systematic review. Foot Ankle Spec. 16, 437–445 (2023).

    Article  PubMed  Google Scholar 

  177. Peters, M. J. et al. Level of evidence for the treatment of chronic noninsertional Achilles tendinopathy. Foot Ankle Spec. 16, 406–426 (2023).

    Article  PubMed  Google Scholar 

  178. Jarin, I., Bäcker, H. C. & Vosseller, J. T. Meta-analysis of noninsertional Achilles tendinopathy. Foot Ankle Int. 41, 744–754 (2020).

    Article  PubMed  Google Scholar 

  179. Frisch, M. B. Quality of life therapy and assessment in health care. Clin. Psychol. Sci. Pract. 5, 19–40 (1998).

    Article  Google Scholar 

  180. Sleeswijk Visser, T. S. O. et al. Impact of chronic Achilles tendinopathy on health-related quality of life, work performance, healthcare utilisation and costs. BMJ Open. Sport Exerc. Med. 7, e001023 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Vicenzino, B. et al. ICON 2019 – International Scientific Tendinopathy Symposium Consensus: there are nine core health-related domains for tendinopathy (CORE DOMAINS): Delphi study of healthcare professionals and patients. Br. J. Sports Med. 54, 444–451 (2020).

    Article  PubMed  Google Scholar 

  182. Lause, G. E., Egbert, R. A. & Ryan, P. M. Insertional Achilles tendinopathy: occupational outcomes in the military. Foot Ankle Spec. 16, 342–348 (2023).

    Article  PubMed  Google Scholar 

  183. Mc Auliffe, S. et al. Beyond the tendon: experiences and perceptions of people with persistent Achilles tendinopathy. Musculoskelet. Sci. Pract. 29, 108–114 (2017).

    Article  Google Scholar 

  184. Mkumbuzi, N. S. et al. Characterisation of Achilles tendon pain in recreational runners using multidimensional pain scales. J. Sci. Med. Sport 23, 258–263 (2020).

    Article  PubMed  Google Scholar 

  185. Murakawa, Y. A. B. et al. Psychological factors show limited association with the severity of Achilles tendinopathy. Phys. Ther. Sport 67, 118–124 (2024).

    Article  PubMed  Google Scholar 

  186. Verges, J. et al. Psychosocial and individual factors affecting quality of life (QoL) in patients suffering from Achilles tendinopathy: a systematic review. BMC Musculoskelet. Disord. 23, 1114 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Lewis, T. L. et al. Health-related quality of life in patients with Achilles tendinopathy: comparison to the general population of the United Kingdom. Foot Ankle Surg. 28, 1064–1068 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Ceravolo, M. L., Gaida, J. E. & Keegan, R. J. Quality-of-life in Achilles tendinopathy: an exploratory study. Clin. J. Sport Med. 30, 495–502 (2020).

    Article  PubMed  Google Scholar 

  189. Florit, D. et al. Incidence of tendinopathy in team sports in a multidisciplinary sports club over 8 seasons. J. Sports Sci. Med. 18, 780–788 (2019).

    PubMed  PubMed Central  Google Scholar 

  190. Stenson, J. F., Reb, C. W., Daniel, J. N., Saini, S. S. & Albana, M. F. Predicting failure of nonoperative treatment for insertional achilles tendinosis. Foot Ankle Spec. 11, 252–255 (2018).

    Article  PubMed  Google Scholar 

  191. Freedman, B. R., Mooney, D. J. & Weber, E. Advances toward transformative therapies for tendon diseases. Sci. Transl. Med. 14, eabl8814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Koob, T. J., Lim, J. J., Massee, M., Zabek, N. & Denozière, G. Properties of dehydrated human amnion/chorion composite grafts: implications for wound repair and soft tissue regeneration. J. Biomed. Mater. Res. B Appl. BioMater. 102, 1353–1362 (2014).

    Article  PubMed  Google Scholar 

  193. Foretz, M., Guigas, B. & Viollet, B. Metformin: update on mechanisms of action and repurposing potential. Nat. Rev. Endocrinol. 19, 460–476 (2023).

    Article  CAS  PubMed  Google Scholar 

  194. Chen, Y. et al. Targeted pathological collagen delivery of sustained-release rapamycin to prevent heterotopic ossification. Sci. Adv. 6, eaay9526 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Ning, C. et al. Dual-phase aligned composite scaffolds loaded with tendon-derived stem cells for Achilles tendon repair. Adv. Ther. 5, 2200081 (2022).

    Article  CAS  Google Scholar 

  196. Kasula, V. et al. The use of extracellular vesicles in achilles tendon repair: a systematic review. Biomedicines 12, 942 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Jenner, F. et al. Evaluation of the potential of umbilical cord mesenchymal stromal cell-derived small extracellular vesicles to improve rotator cuff healing: a pilot ovine study. Am. J. Sports Med. 51, 331–342 (2023).

    Article  PubMed  Google Scholar 

  198. Zhang, M. et al. Tendon stem cell-derived exosomes regulate inflammation and promote the high-quality healing of injured tendon. Stem Cell Res. Ther. 11, 402 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Monteiro, R. F. et al. Writing 3D in vitro models of human tendon within a biomimetic fibrillar support platform. ACS Appl. Mater. Interfaces 15, 50598–50611 (2023).

    Article  CAS  Google Scholar 

  200. Bakht, S. M. et al. Human tendon-on-chip: unveiling the effect of core compartment-T cell spatiotemporal crosstalk at the onset of tendon inflammation. Adv. Sci. 11, e2401170 (2024).

    Article  Google Scholar 

  201. Giacomini, F. et al. Enthesitis on chip – a model for studying acute and chronic inflammation of the enthesis and its pharmacological treatment. Adv. Healthc. Mater. 13, 2401815 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ajalik, R. E. et al. Human tendon-on-a-chip for modeling the myofibroblast microenvironment in peritendinous fibrosis. Adv. Healthc. Mater. 14, e2403116 (2024).

  203. Sarmiento, P. & Little, D. Tendon and multiomics: advantages, advances, and opportunities. NPJ Regen. Med. 6, 61 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Sigurethsson, H. B., Couppe, C. & Silbernagel, K. G. Data driven model of midportion achilles tendinopathy health created with factor analysis. BMC Musculoskelet. Disord. 23, 744 (2022).

    Article  PubMed Central  Google Scholar 

  205. Escriche-Escuder, A., Casaña, J. & Cuesta-Vargas, A. I. Load progression criteria in exercise programmes in lower limb tendinopathy: a systematic review. BMJ Open 10, e041433 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Oskouei, S. T., Malliaras, P., Hill, K. D., Clark, R. & Perraton, L. Monitoring physical activity using wearable technology in people with Achilles tendinopathy undergoing physiotherapy treatment: a feasibility prospective cohort study. Physiotherapy 120, 38–46 (2023).

    Article  PubMed  Google Scholar 

  207. Rajpurkar, P., Chen, E., Banerjee, O. & Topol, E. J. AI in health and medicine. Nat. Med. 28, 31–38 (2022).

    Article  CAS  PubMed  Google Scholar 

  208. de Palma, L., Marinelli, M., Meme, L. & Pavan, M. Immunohistochemistry of the enthesis organ of the human Achilles tendon. Foot Ankle Int. 25, 414–418 (2004).

    Article  PubMed  Google Scholar 

  209. Zhao, B. A. et al. Role of the alarmin S100A9 protein in inducing Achilles tendinopathy in rats. Ann. Transl. Med. 9, 1698 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Moqbel, S. A. A. et al. Tectorigenin alleviates inflammation, apoptosis, and ossification in rat tendon-derived stem cells via modulating NF-kappa B and MAPK pathways. Front. Cell Dev. Biol. 8, 568894 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Legerlotz, K., Jones, E. R., Screen, H. R. & Riley, G. P. Increased expression of IL-6 family members in tendon pathology. Rheumatology 51, 1161–1165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bergqvist, F. et al. Divergent roles of prostacyclin and PGE2 in human tendinopathy. Arthritis Res. Ther. 21, 74 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Cetik, R. M. et al. Evaluation of the effects of transforming growth factor-beta 3 (TGF-β3) loaded nanoparticles on healing in a rat achilles tendon injury model. Am. J. Sports Med. 50, 1066–1077 (2022).

    Article  PubMed  Google Scholar 

  214. Lu, K. et al. N-Acetyl-L-cysteine facilitates tendon repair and promotes the tenogenic differentiation of tendon stem/progenitor cells by enhancing the integrin α5/β1/PI3K/AKT signaling. BMC Mol. Cell Biol. 24, 1 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Zhang, K. et al. Tendon mineralization is progressive and associated with deterioration of tendon biomechanical properties, and requires BMP-Smad signaling in the mouse Achilles tendon injury model. Matrix Biol. 52-54, 315–324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Tempfer, H. et al. Presence of lymphatics in a rat tendon lesion model. Histochem. Cell Biol. 143, 411–419 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Shahid, H., Morya, V. K., Oh, J. U., Kim, J. H. & Noh, K. C. Hypoxia-inducible factor and oxidative stress in tendon degeneration: a molecular perspective. Antioxidants 13, 86 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Costa, M. L., Shepstone, L., Donell, S. T. & Thomas, T. L. Shock wave therapy for chronic Achilles tendon pain: a randomized placebo-controlled trial. Clin. Orthop. Relat. Res. 440, 199–204 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Mansur, N. S. B. et al. Shockwave therapy plus eccentric exercises versus isolated eccentric exercises for achilles insertional tendinopathy: a double-blinded randomized clinical trial. J. Bone Jt. Surg. Am. 103, 1295–1302 (2021).

    Article  Google Scholar 

  220. Alsulaimani, B., Perraton, L., Vallance, P., Powers, T. & Malliaras, P. Does shockwave therapy lead to better pain and function than sham over 12 weeks in people with insertional Achilles tendinopathy? A randomised controlled trial. Clin. Rehabil. 39, 174–186 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Rasmussen, S., Christensen, M., Mathiesen, I. & Simonson, O. Shockwave therapy for chronic Achilles tendinopathy: a double-blind, randomized clinical trial of efficacy. Acta Orthop. 79, 249–256 (2008).

    Article  PubMed  Google Scholar 

  222. Bjordal, J. M., Lopes-Martins, R. A. & Iversen, V. V. A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br. J. Sports Med. 40, 76–80 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Tumilty, S., McDonough, S., Hurley, D. A. & Baxter, G. D. Clinical effectiveness of low-level laser therapy as an adjunct to eccentric exercise for the treatment of Achilles’ tendinopathy: a randomized controlled trial. Arch. Phys. Med. Rehabil. 93, 733–739 (2012).

    Article  PubMed  Google Scholar 

  224. Stergioulas, A., Stergioula, M., Aarskog, R., Lopes-Martins, R. A. & Bjordal, J. M. Effects of low-level laser therapy and eccentric exercises in the treatment of recreational athletes with chronic achilles tendinopathy. Am. J. Sports Med. 36, 881–887 (2008).

    Article  PubMed  Google Scholar 

  225. Mårdh, A. & Lund, I. High power laser for treatment of achilles tendinosis – a single blind randomized placebo controlled clinical study. J. Lasers Med. Sci. 7, 92–98 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Tumilty, S., Mani, R. & Baxter, G. D. Photobiomodulation and eccentric exercise for Achilles tendinopathy: a randomized controlled trial. Lasers Med. Sci. 31, 127–135 (2016).

    Article  PubMed  Google Scholar 

  227. Kearney, R. S. et al. Effect of platelet-rich plasma injection vs sham injection on tendon dysfunction in patients with chronic midportion achilles tendinopathy: a randomized clinical trial. JAMA 326, 137–144 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Boesen, A. P., Hansen, R., Boesen, M. I., Malliaras, P. & Langberg, H. Effect of high-volume injection, platelet-rich plasma, and sham treatment in chronic midportion achilles tendinopathy: a randomized double-blinded prospective study. Am. J. Sports Med. 45, 2034–2043 (2017).

    Article  PubMed  Google Scholar 

  229. Krogh, T. P., Ellingsen, T., Christensen, R., Jensen, P. & Fredberg, U. Ultrasound-guided injection therapy of achilles tendinopathy with platelet-rich plasma or saline: a randomized, blinded, placebo-controlled trial. Am. J. Sports Med. 44, 1990–1997 (2016).

    Article  PubMed  Google Scholar 

  230. de Jonge, S. et al. One-year follow-up of platelet-rich plasma treatment in chronic Achilles tendinopathy: a double-blind randomized placebo-controlled trial. Am. J. Sports Med. 39, 1623–1629 (2011).

    Article  PubMed  Google Scholar 

  231. de Vos, R. J. et al. Platelet-rich plasma injection for chronic achilles tendinopathy; a randomized controlled trial. JAMA 303, 144–149 (2010).

    Article  PubMed  Google Scholar 

  232. Ebbesen, B. H., Mølgaard, C. M., Olesen, J. L., Gregersen, H. E. & Simonsen, O. No beneficial effect of Polidocanol treatment in Achilles tendinopathy: a randomised controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 26, 2038–2044 (2018).

    Article  CAS  PubMed  Google Scholar 

  233. Alfredson, H. & Ohberg, L. Sclerosing injections to areas of neo-vascularisation reduce pain in chronic Achilles tendinopathy: a double-blind randomised controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 13, 338–344 (2005).

    Article  PubMed  Google Scholar 

  234. Johannsen, F. et al. Effect of ultrasonography-guided corticosteroid injection vs placebo added to exercise therapy for achilles tendinopathy: a randomized clinical trial. JAMA Netw. Open 5, e2219661 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Fredberg, U. et al. Ultrasonography as a tool for diagnosis, guidance of local steroid injection and, together with pressure algometry, monitoring of the treatment of athletes with chronic jumper’s knee and Achilles tendinitis: a randomized, double-blind, placebo-controlled study. Scand. J. Rheumatol. 33, 94–101 (2004).

    Article  CAS  PubMed  Google Scholar 

  236. Paoloni, J. A., Appleyard, R. C., Nelson, J. & Murrell, G. A. Topical glyceryl trinitrate treatment of chronic noninsertional achilles tendinopathy. A randomized, double-blind, placebo-controlled trial. J. Bone Jt. Surg. Am. 86, 916–922 (2004).

    Article  Google Scholar 

  237. Kirwan, P. D., Duffy, T. & French, H. P. Topical glyceryl trinitrate (GTN) and eccentric exercises in the treatment of mid-portion achilles tendinopathy (the NEAT trial): a randomised double-blind placebo-controlled trial. Br. J. Sports Med. 58, 1035–1043 (2024).

    Article  PubMed  Google Scholar 

  238. Malmgaard-Clausen, N. M. et al. No additive clinical or physiological effects of short-term anti-inflammatory treatment to physical rehabilitation in the early phase of human achilles tendinopathy: a randomized controlled trial. Am. J. Sports Med. 49, 1711–1720 (2021).

    Article  PubMed  Google Scholar 

  239. Astrom, M. & Westlin, N. No effect of piroxicam on achilles tendinopathy. A randomized study of 70 patients. Acta Orthop. Scand. 63, 631–634 (1992).

    CAS  PubMed  Google Scholar 

  240. Australian New Zealand Clinical Trials Registry. ANZCTR www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=384343 (2023).

  241. Sri Lanka Clinical Trials Registry. Sri Lanka Clinical Trials Registry slctr.lk/trials/slctr-2023-016 (2025).

  242. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT05592990 (2024).

  243. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT06100822 (2024).

  244. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT05561959 (2023).

  245. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT06172218 (2023).

  246. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT05464498 (2024).

  247. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT06384859 (2024).

  248. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT05301959 (2023).

  249. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT03167554 (2023).

  250. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT05316961 (2023).

  251. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT06322381 (2025).

  252. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT05179551 (2024).

  253. The UK’s Clinical Study Registry. ISCRTN https://doi.org/10.1186/ISRCTN57756415 (2024).

  254. Brazilian Registry of Clinical Trials. ReBEC ensaiosclinicos.gov.br/rg/RBR-4vwy5xj (2024).

  255. Australian New Zealand Clinical Trials Registry. ANZCTR anzctr.org.au/Trial/Registration/TrialReview.aspx?id=386004&isReview=true (2024).

  256. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03968614 (2024).

  257. Cook, J. et al. Tendon Injuries in Football Players: FC Barcelona 2021 Tendon Guide. The Diagnosis and Management of Lower Limb Tendinopathy (Barça Innovation Hub, 2021).

Download references

Acknowledgements

The authors acknowledge support from TENET COST Action CA22170 for fostering collaboration and networking opportunities. The authors thank all researchers, clinicians and physiotherapists working on Achilles tendinopathy. The authors have made every effort to cite the relevant and current literature but apologise if they have overlooked anyone or any relevant publications.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.T. and B.W.); Epidemiology (M.K. and A.S.); Mechanisms/pathophysiology (S.G.D. and J.G.S.); Diagnosis, screening and prevention (E.W. and R.S.S.), Management (R.S.S., J.G.K., J.J.B. and A.S.); Quality of life (A.S., M.K. and E.W.); Outlook (M.G.-F., M.E.G., A.T. and B.W.); overview of Primer (A.T. and B.W.).

Corresponding authors

Correspondence to Andreas Traweger or Britt Wildemann.

Ethics declarations

Competing interests

J.G.K. is a consultant for Arthrex and In2Bones. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks S. Rodeo, P. Kirwan, R. de Vos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Arc sign

A clinical test used to diagnose Achilles tendinopathy. It involves identifying a tender area of intra-tendinous swelling that moves with the tendon.

Dynamometry

A method for measuring muscle strength using specialized instruments.

Enthesis

The specialized interface where the Achilles tendon attaches to bone, transitioning from soft to hard tissue to efficiently transmit mechanical loads and reduce stress concentration.

Enthesophytes

Abnormal bony outgrowths that develop at the enthesis, typically in response to chronic mechanical stress, inflammation or degenerative conditions.

Exostosis

A bony outgrowth that forms on the calcaneus (heel bone).

Function of the kinetic chain

Different body segments (that is, the ankle, knee and hip) work together to produce movement, with each segment contributing to the overall motion. In optimal circumstances, the different body segments work synergically, as links in a chain, for force transmission and energy dissipation.

Heavy-load Alfredson eccentric protocol

One of the first exercise protocols described for the exercise-based management of Achilles tendinopathy, involving 180 daily repetitions of single-leg eccentric exercises on a step with external load for the calf muscles.

Minimum clinically important difference

Smallest improvement considered worthwhile by a patient.

Plyometric exercises

Exercises involving repeated rapid eccentric and concentric contractions, optimizing movement via the stretch–shortening cycle.

Royal London Hospital test

A diagnostic test for Achilles tendinopathy, involving palpation and assessment of pain in the tendon when it is under tension.

Sever disease

A condition in children that causes heel pain due to stress on the growth plate in the heel (calcaneus), typically during periods of rapid growth.

Silbernagel protocol

Exercise-based intervention composed of various heel rise concentric–eccentric exercises that progress from double-leg to single-leg and finally to plyometric exercises, using the pain monitoring model as a guide for progression.

Stretch–shortening cycle

The process where a muscle rapidly stretches (eccentric contraction) before shortening (concentric contraction) to enhance performance, as in jumping or running.

Tendon xanthoma

A subcutaneous deposit containing lipid and cholesterol presenting as free mobile papules or as nodules on the tendon.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Traweger, A., Scott, A., Kjaer, M. et al. Achilles tendinopathy. Nat Rev Dis Primers 11, 20 (2025). https://doi.org/10.1038/s41572-025-00602-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-025-00602-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing