Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Non-syndromic craniosynostosis

Abstract

Craniosynostosis is characterized by the premature fusion of one or more major cranial sutures at birth or soon after. Single-suture non-syndromic craniosynostosis (NSC) is the most common form of craniosynostosis and includes the sagittal, metopic, unicoronal and unilambdoid subtypes. Characterized by an abnormal head shape specific to the fused suture type, NSC can cause increased intracranial pressure. Cranial sutures either originate from the neural crest or arise from mesoderm-derived mesenchymal stem cells. A mixture of environmental and genetic factors contributes to NSC, with genetic causes following a largely polygenic model. Physical examination is used to identify the majority of patients, but accompanying radiographic imaging can be confirmatory. The three major surgical techniques in use to treat NSC are cranial vault remodelling, strip craniectomy and spring-assisted cranioplasty. Surgical intervention is ideally performed in the first year of life, with a mortality of <1%. Health-care disparities contribute to delayed initial presentation and timely repair. Optimal timing of surgery and comparative outcomes by surgical technique remain under active study. School-age children with treated NSC on average have subtle, but lower cognitive and behavioural performance. However, patient-reported quality of life outcomes are comparable to those in control individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cranial sutures and fontanelles of the human newborn skull.
Fig. 2: Cell lineage of cranial vault bones and sutures.
Fig. 3: CT 3D images of non-syndromic craniosynostosis.
Fig. 4: Measurements for assessment of metopic craniosynostosis severity.
Fig. 5: CR and CVAI for quantifying craniosynostosis severity.
Fig. 6: Characteristics of deformational plagiocephaly and unilateral lambdoid craniosynostosis.
Fig. 7: Main surgical procedures to correct non-syndromic craniosynostosis.

Similar content being viewed by others

References

  1. Doro, D., Liu, A., Grigoriadis, A. E. & Liu, K. J. The osteogenic potential of the neural crest lineage may contribute to craniosynostosis. Mol. Syndromol. 10, 48–57 (2019).

    Article  PubMed  Google Scholar 

  2. Shruthi, N. M. & Gulati, S. Craniosynostosis: a pediatric neurologist’s perspective. J. Pediatr. Neurosci. 17, S54–S60 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Maliepaard, M., Mathijssen, I. M., Oosterlaan, J. & Okkerse, J. M. Intellectual, behavioral, and emotional functioning in children with syndromic craniosynostosis. Pediatrics 133, e1608–e1615 (2014).

    Article  PubMed  Google Scholar 

  4. Dempsey, R. F. et al. Nonsyndromic craniosynostosis. Clin. Plast. Surg. 46, 123–139 (2019).

    Article  PubMed  Google Scholar 

  5. French, L. R., Jackson, I. T. & Melton, L. J. 3rd A population-based study of craniosynostosis. J. Clin. Epidemiol. 43, 69–73 (1990).

    Article  PubMed  CAS  Google Scholar 

  6. Shuper, A., Merlob, P., Grunebaum, M. & Reisner, S. H. The incidence of isolated craniosynostosis in the newborn infant. Am. J. Dis. Child. 139, 85–86 (1985).

    PubMed  CAS  Google Scholar 

  7. Lattanzi, W., Barba, M., Di Pietro, L. & Boyadjiev, S. A. Genetic advances in craniosynostosis. Am. J. Med. Genet. A 173, 1406–1429 (2017).

    Article  PubMed  Google Scholar 

  8. Kolar, J. C. An epidemiological study of nonsyndromal craniosynostoses. J. Craniofac Surg. 22, 47–49 (2011).

    Article  PubMed  Google Scholar 

  9. Ursitti, F. et al. Evaluation and management of nonsyndromic craniosynostosis. Acta Paediatr. 100, 1185–1194 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. Persing, J. A. MOC-PS(SM) CME article: management considerations in the treatment of craniosynostosis. Plast. Reconstr. Surg. 121, 1–11 (2008).

    Article  PubMed  Google Scholar 

  11. Ramsey, J. A. et al. Comprehensive craniometry for sagittal synostosis. Neurosurg. Focus. 58, E8 (2025).

    Article  PubMed  Google Scholar 

  12. Beckett, J. S., Chadha, P., Persing, J. A. & Steinbacher, D. M. Classification of trigonocephaly in metopic synostosis. Plast. Reconstr. Surg. 130, 442e–447e (2012).

    Article  PubMed  CAS  Google Scholar 

  13. Birgfeld, C. B. et al. Making the diagnosis: metopic ridge versus metopic craniosynostosis. J. Craniofac Surg. 24, 178–185 (2013).

    Article  PubMed  Google Scholar 

  14. van der Meulen, J. Metopic synostosis. Childs Nerv. Syst. 28, 1359–1367 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gabrick, K. S., Wu, R. T., Singh, A., Persing, J. A. & Alperovich, M. Radiographic severity of metopic craniosynostosis correlates with long-term neurocognitive outcomes. Plast. Reconstr. Surg. 145, 1241–1248 (2020).

    Article  PubMed  CAS  Google Scholar 

  16. Sakamoto, Y. et al. Geometric morphometric study on distinguishing metopic craniosynostosis from metopic ridging. Plast. Reconstr. Surg. Glob. Open. 12, e6034 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wu, R. T. et al. Comparison of neurocognitive outcomes in postoperative adolescents with unilateral coronal synostosis. Plast. Reconstr. Surg. 146, 614–619 (2020).

    Article  PubMed  CAS  Google Scholar 

  18. Beckett, J. S., Persing, J. A. & Steinbacher, D. M. Bilateral orbital dysmorphology in unicoronal synostosis. Plast. Reconstr. Surg. 131, 125–130 (2013).

    Article  PubMed  CAS  Google Scholar 

  19. Allam, O. et al. Distinguishing craniomorphometric characteristics of unilateral lambdoid craniosynostosis. J. Craniofac Surg. 32, 125–129 (2021).

    Article  PubMed  Google Scholar 

  20. Junn, A. H. et al. Long-term neurocognitive outcomes in 204 single-suture craniosynostosis patients. Childs Nerv. Syst. 39, 1921–1928 (2023).

    Article  PubMed  Google Scholar 

  21. Fearon, J. A. Evidence-based medicine: craniosynostosis. Plast. Reconstr. Surg. 133, 1261–1275 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. Shlobin, N. A. et al. Global epidemiology of craniosynostosis: a systematic review and meta-analysis. World Neurosurg. 164, 413–423.e3 (2022).

    Article  PubMed  Google Scholar 

  23. Gaillard, L. et al. Genetic diagnostic yield in an 11-year cohort of craniosynostosis patients. Eur. J. Med. Genet. 66, 104843 (2023).

    Article  PubMed  Google Scholar 

  24. Tonne, E. et al. Benefits of clinical criteria and high-throughput sequencing for diagnosing children with syndromic craniosynostosis. Eur. J. Hum. Genet. 29, 920–929 (2021).

    Article  PubMed  Google Scholar 

  25. Wang, J. C., Nagy, L. & Demke, J. C. Syndromic craniosynostosis. Facial Plast. Surg. Clin. North. Am. 24, 531–543 (2016).

    Article  PubMed  Google Scholar 

  26. Cornelissen, M. et al. Increase of prevalence of craniosynostosis. J. Craniomaxillofac Surg. 44, 1273–1279 (2016).

    Article  PubMed  Google Scholar 

  27. van der Meulen, J. et al. The increase of metopic synostosis: a pan-European observation. J. Craniofac Surg. 20, 283–286 (2009).

    Article  PubMed  Google Scholar 

  28. Di Rocco, F., Arnaud, E., Meyer, P., Sainte-Rose, C. & Renier, D. Focus session on the changing “epidemiology” of craniosynostosis (comparing two quinquennia: 1985-1989 and 2003-2007) and its impact on the daily clinical practice: a review from Necker Enfants Malades. Childs Nerv. Syst. 25, 807–811 (2009).

    Article  PubMed  Google Scholar 

  29. Gonzalez, S. R., Han, A. & Golinko, M. S. Shifting epidemiology of single-suture craniosynostosis and the need for a more granular ICD classification system: a national survey of members from the American Society of Pediatric Neurosurgeons (ASPN) and the American Society of Craniofacial Surgeons (ASCFS). Childs Nerv. Syst. 35, 1443–1444 (2019).

    Article  PubMed  Google Scholar 

  30. Calpena, E. et al. SMAD6 variants in craniosynostosis: genotype and phenotype evaluation. Genet. Med. 22, 1498–1506 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Timberlake, A. T. et al. De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis. Proc. Natl Acad. Sci. USA 114, E7341–E7347 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tooze, R. S. et al. Review of recurrently mutated genes in craniosynostosis supports expansion of diagnostic gene panels. Genes 14, 615 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Wilkie, A. O. M., Johnson, D. & Wall, S. A. Clinical genetics of craniosynostosis. Curr. Opin. Pediatr. 29, 622–628 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Kennedy, D., Novak, C. B., Phillips, J. H., Der, T. & Forrest, C. R. Catastrophic and critical intraoperative events during pediatric craniofacial surgery. Plast. Reconstr. Surg. Glob. Open. 11, e4784 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Garza, R. M. & Khosla, R. K. Nonsyndromic craniosynostosis. Semin. Plast. Surg. 26, 53–63 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lynn, J. V., Buchman, L. K., Breuler, C. J. & Buchman, S. R. Surgical timing and neurocognitive development among patients with craniosynostosis: analysis of confounders. Plast. Reconstr. Surg. 151, 821–829 (2023). This study highlights the increased proportion of socioeconomically at-risk individuals with craniosynostosis presenting late for craniosynostosis surgery.

    PubMed  CAS  Google Scholar 

  37. Valenti, A. B. et al. Healthcare disparities in the care of children with craniosynostosis in the United States: a systematic review. Cleft Palate Craniofac. J. https://doi.org/10.1177/10556656231222318 (2023).

  38. Wireko, A. A. et al. Insights into craniosynostosis management in low- and middle-income countries: a narrative review of outcomes, shortcomings and paediatric neurosurgery capacity. SAGE Open. Med. 12, 20503121241226891 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mozaffari, M. A. et al. Socioeconomic disparities in the surgical management of craniosynostosis. J. Craniofac Surg. 33, 294–297 (2022).

    Article  PubMed  Google Scholar 

  40. Lin, Y., Pan, I. W., Harris, D. A., Luerssen, T. G. & Lam, S. The impact of insurance, race, and ethnicity on age at surgical intervention among children with nonsyndromic craniosynostosis. J. Pediatr. 166, 1289–1296 (2015).

    Article  PubMed  Google Scholar 

  41. Couly, G. F., Coltey, P. M. & Le Douarin, N. M. The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117, 409–429 (1993).

    Article  PubMed  CAS  Google Scholar 

  42. Jiang, X., Iseki, S., Maxson, R. E., Sucov, H. M. & Morriss-Kay, G. M. Tissue origins and interactions in the mammalian skull vault. Dev. Biol. 241, 106–116 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. Lawson, K. A. & Pedersen, R. A. Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. Ciba Found. Symp. 165, 3–21 (1992). discussion 21-26.

    PubMed  CAS  Google Scholar 

  44. Morriss-Kay, G. M. & Wilkie, A. O. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J. Anat. 207, 637–653 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mathijssen, I. M. et al. Tracing craniosynostosis to its developmental stage through bone center displacement. J. Craniofac Genet. Dev. Biol. 19, 57–63 (1999).

    PubMed  CAS  Google Scholar 

  46. Twigg, S. R. & Wilkie, A. O. A genetic-pathophysiological framework for craniosynostosis. Am. J. Hum. Genet. 97, 359–377 (2015). This review discusses the pathways and processes that lead to cranial suture fusion as well as its genetic underpinnings.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bok, S. et al. A multi-stem cell basis for craniosynostosis and calvarial mineralization. Nature 621, 804–812 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Deckelbaum, R. A. et al. Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1. Development 139, 1346–1358 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ishii, M., Sun, J., Ting, M. C. & Maxson, R. E. The development of the calvarial bones and sutures and the pathophysiology of craniosynostosis. Curr. Top. Dev. Biol. 115, 131–156 (2015).

    Article  PubMed  Google Scholar 

  50. Ting, M. C. et al. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis. Development 136, 855–864 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yoshida, T., Vivatbutsiri, P., Morriss-Kay, G., Saga, Y. & Iseki, S. Cell lineage in mammalian craniofacial mesenchyme. Mech. Dev. 125, 797–808 (2008).

    Article  PubMed  CAS  Google Scholar 

  52. Taylor, J. C. et al. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders. Nat. Genet. 47, 717–726 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Twigg, S. R. et al. Gain-of-function mutations in ZIC1 are associated with coronal craniosynostosis and learning disability. Am. J. Hum. Genet. 97, 378–388 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Twigg, S. R. et al. Mutations of ephrin-B1 (EFNB1), a marker of tissue boundary formation, cause craniofrontonasal syndrome. Proc. Natl Acad. Sci. USA 101, 8652–8657 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wieland, I. et al. Mutations of the ephrin-B1 gene cause craniofrontonasal syndrome. Am. J. Hum. Genet. 74, 1209–1215 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Merrill, A. E. et al. Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis. Hum. Mol. Genet. 15, 1319–1328 (2006).

    Article  PubMed  CAS  Google Scholar 

  57. Yen, H. Y., Ting, M. C. & Maxson, R. E. Jagged1 functions downstream of Twist1 in the specification of the coronal suture and the formation of a boundary between osteogenic and non-osteogenic cells. Dev. Biol. 347, 258–270 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Carter, D. H., Sloan, P. & Aaron, J. E. Immunolocalization of collagen types I and III, tenascin, and fibronectin in intramembranous bone. J. Histochem. Cytochem. 39, 599–606 (1991).

    Article  PubMed  CAS  Google Scholar 

  59. Neve, A., Corrado, A. & Cantatore, F. P. Osteoblast physiology in normal and pathological conditions. Cell Tissue Res. 343, 289–302 (2011).

    Article  PubMed  CAS  Google Scholar 

  60. Ornitz, D. M. & Marie, P. J. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes. Dev. 16, 1446–1465 (2002).

    Article  PubMed  CAS  Google Scholar 

  61. Anderson, H. C. Matrix vesicles and calcification. Curr. Rheumatol. Rep. 5, 222–226 (2003).

    Article  PubMed  Google Scholar 

  62. Yoshiko, Y., Candeliere, G. A., Maeda, N. & Aubin, J. E. Osteoblast autonomous Pi regulation via Pit1 plays a role in bone mineralization. Mol. Cell Biol. 27, 4465–4474 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Zhao, H. et al. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat. Cell Biol. 17, 386–396 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Thomas, S. & Jaganathan, B. G. Signaling network regulating osteogenesis in mesenchymal stem cells. J. Cell Commun. Signal. 16, 47–61 (2022).

    Article  PubMed  CAS  Google Scholar 

  65. Wu, X. & Gu, Y. Signaling mechanisms underlying genetic pathophysiology of craniosynostosis. Int. J. Biol. Sci. 15, 298–311 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Holmes, G. et al. Single-cell analysis identifies a key role for Hhip in murine coronal suture development. Nat. Commun. 12, 7132 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Stanton, E., Urata, M., Chen, J. F. & Chai, Y. The clinical manifestations, molecular mechanisms and treatment of craniosynostosis. Dis. Model. Mech. 15, dmm049390 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Holmes, G. et al. Integrated transcriptome and network analysis reveals spatiotemporal dynamics of calvarial suturogenesis. Cell Rep. 32, 107871 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Farmer, D. T. et al. The developing mouse coronal suture at single-cell resolution. Nat. Commun. 12, 4797 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Iseki, S. et al. Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied FGF2. Development 124, 3375–3384 (1997).

    Article  PubMed  CAS  Google Scholar 

  71. Iseki, S., Wilkie, A. O. & Morriss-Kay, G. M. Fgfr1 and Fgfr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. Development 126, 5611–5620 (1999).

    Article  PubMed  CAS  Google Scholar 

  72. Lin, G. L. & Hankenson, K. D. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J. Cell Biochem. 112, 3491–3501 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Krakow, D. Skeletal dysplasias. Clin. Perinatol. 42, 301–319 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nieminen, P. et al. Inactivation of IL11 signaling causes craniosynostosis, delayed tooth eruption, and supernumerary teeth. Am. J. Hum. Genet. 89, 67–81 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Kido, S. et al. Mechanical stress induces interleukin-11 expression to stimulate osteoblast differentiation. Bone 45, 1125–1132 (2009).

    Article  PubMed  CAS  Google Scholar 

  76. Sims, N. A. et al. Interleukin-11 receptor signaling is required for normal bone remodeling. J. Bone Min. Res. 20, 1093–1102 (2005).

    Article  CAS  Google Scholar 

  77. Bille, A., Foss-Skiftesvik, J. & Juhler, M. The current understanding of germline predisposition in non-syndromic sagittal craniosynostosis: a systematic review. Childs Nerv. Syst. 39, 689–700 (2023).

    Article  PubMed  Google Scholar 

  78. Justice, C. M. et al. A genome-wide association study implicates the BMP7 locus as a risk factor for nonsyndromic metopic craniosynostosis. Hum. Genet. 139, 1077–1090 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Nicoletti, P. et al. Regulatory elements in SEM1-DLX5-DLX6 (7q21.3) locus contribute to genetic control of coronal nonsyndromic craniosynostosis and bone density-related traits. Genet. Med. Open. 2, 101851 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Goovaerts, S. et al. Joint multi-ancestry and admixed GWAS reveals the complex genetics behind human cranial vault shape. Nat. Commun. 14, 7436 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Timberlake, A. T. & Persing, J. A. Genetics of nonsyndromic craniosynostosis. Plast. Reconstr. Surg. 141, 1508–1516 (2018).

    Article  PubMed  CAS  Google Scholar 

  82. Kiziltug, E. et al. Concurrent impact of de novo mutations on cranial and cortical development in nonsyndromic craniosynostosis. J. Neurosurg. Pediatr. 33, 59–72 (2024).

    Article  PubMed  Google Scholar 

  83. Timberlake, A. T. et al. Mutations in TFAP2B and previously unimplicated genes of the BMP, Wnt, and Hedgehog pathways in syndromic craniosynostosis. Proc. Natl Acad. Sci. USA 116, 15116–15121 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Timberlake, A. T. et al. De novo mutations in the BMP signaling pathway in lambdoid craniosynostosis. Hum. Genet. 142, 21–32 (2023).

    Article  PubMed  CAS  Google Scholar 

  85. Timberlake, A. T. et al. De novo variants implicate chromatin modification, transcriptional regulation, and retinoic acid signaling in syndromic craniosynostosis. Am. J. Hum. Genet. 110, 846–862 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Blessing, M. & Gallagher, E. R. Epidemiology, genetics, and pathophysiology of craniosynostosis. Oral. Maxillofac. Surg. Clin. North. Am. 34, 341–352 (2022).

    Article  PubMed  Google Scholar 

  87. Justice, C. M. et al. A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9. Nat. Genet. 44, 1360–1364 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Komatsu, Y. & Mishina, Y. An epistatic explanation. eLife 5, e21162 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Timberlake, A. T. et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. eLife 5, e20125 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fuller, Z. L., Berg, J. J., Mostafavi, H., Sella, G. & Przeworski, M. Measuring intolerance to mutation in human genetics. Nat. Genet. 51, 772–776 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Timberlake, A. T. et al. Genetic influence on neurodevelopment in nonsyndromic craniosynostosis. Plast. Reconstr. Surg. 149, 1157–1165 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Sur, M. & Rubenstein, J. L. Patterning and plasticity of the cerebral cortex. Science 310, 805–810 (2005).

    Article  PubMed  CAS  Google Scholar 

  93. Richtsmeier, J. T. & Flaherty, K. Hand in glove: brain and skull in development and dysmorphogenesis. Acta Neuropathol. 125, 469–489 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Duy, P. Q., Timberlake, A. T., Lifton, R. P. & Kahle, K. T. Molecular genetics of human developmental neurocranial anomalies: towards “precision surgery”. Cereb. Cortex 33, 2912–2918 (2023).

    Article  PubMed  Google Scholar 

  95. Wu, R. T. et al. SMAD6 genotype predicts neurodevelopment in nonsyndromic craniosynostosis. Plast. Reconstr. Surg. 145, 117e–125e (2020). This study provides clinical evidence supporting the poor prognosis from identified genetic mutations on neurocognition in non-syndromic craniosynostosis.

    Article  PubMed  CAS  Google Scholar 

  96. Cohen, M. M. Jr. Sutural biology and the correlates of craniosynostosis. Am. J. Med. Genet. 47, 581–616 (1993).

    Article  PubMed  Google Scholar 

  97. Cohen, M. M. Jr. Etiopathogenesis of craniosynostosis. Neurosurg. Clin. N. Am. 2, 507–513 (1991).

    Article  PubMed  Google Scholar 

  98. Cinalli, G. et al. Hydrocephalus and craniosynostosis. J. Neurosurg. 88, 209–214 (1998).

    Article  PubMed  CAS  Google Scholar 

  99. Weinzweig, J. et al. Cranial vault expansion in the management of postshunt craniosynostosis and slit ventricle syndrome. Plast. Reconstr. Surg. 122, 1171–1180 (2008).

    Article  PubMed  CAS  Google Scholar 

  100. Albright, A. L. & Tyler-Kabara, E. Slit-ventricle syndrome secondary to shunt-induced suture ossification. Neurosurgery 48, 764–769 (2001); discussion 769–770.

    PubMed  CAS  Google Scholar 

  101. Bryant, J. R. et al. Craniosynostosis develops in half of infants treated for hydrocephalus with a ventriculoperitoneal shunt. Plast. Reconstr. Surg. 147, 1390–1399 (2021).

    Article  PubMed  CAS  Google Scholar 

  102. Al-Rekabi, Z., Cunningham, M. L. & Sniadecki, N. J. Cell mechanics of craniosynostosis. ACS Biomater. Sci. Eng. 3, 2733–2743 (2017).

    Article  PubMed  CAS  Google Scholar 

  103. Petrovic, V., Zivkovic, P., Petrovic, D. & Stefanovic, V. Craniofacial bone tissue engineering. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 114, e1–e9 (2012).

    Article  PubMed  Google Scholar 

  104. Jacob, S., Wu, C., Freeman, T. A., Koyama, E. & Kirschner, R. E. Expression of Indian Hedgehog, BMP-4 and Noggin in craniosynostosis induced by fetal constraint. Ann. Plast. Surg. 58, 215–221 (2007).

    Article  PubMed  CAS  Google Scholar 

  105. Sanchez-Lara, P. A. et al. Fetal constraint as a potential risk factor for craniosynostosis. Am. J. Med. Genet. A 152A, 394–400 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Heller, J. B. et al. Cranial suture response to stress: expression patterns of Noggin and Runx2. Plast. Reconstr. Surg. 119, 2037–2045 (2007).

    Article  PubMed  CAS  Google Scholar 

  107. Chawla, R. et al. Squamosal suture craniosynostosis due to hyperthyroidism caused by an activating thyrotropin receptor mutation (T632I). Thyroid 25, 1167–1172 (2015).

    Article  PubMed  CAS  Google Scholar 

  108. Higashino, T. & Hirabayashi, S. A secondary craniosynostosis associated with juvenile hyperthyroidism. J. Plast. Reconstr. Aesthet. Surg. 66, e284–e286 (2013).

    Article  PubMed  Google Scholar 

  109. Akita, S., Nakamura, T., Hirano, A., Fujii, T. & Yamashita, S. Thyroid hormone action on rat calvarial sutures. Thyroid 4, 99–106 (1994).

    Article  PubMed  CAS  Google Scholar 

  110. Jentink, J. et al. Valproic acid monotherapy in pregnancy and major congenital malformations. N. Engl. J. Med. 362, 2185–2193 (2010).

    Article  PubMed  CAS  Google Scholar 

  111. Lajeunie, E. et al. Craniosynostosis and fetal exposure to sodium valproate. J. Neurosurg. 95, 778–782 (2001).

    Article  PubMed  CAS  Google Scholar 

  112. Singh, R. P. et al. Role of parental risk factors in the aetiology of isolated non-syndromic metopic craniosynostosis. Br. J. Oral. Maxillofac. Surg. 48, 438–442 (2010).

    Article  PubMed  Google Scholar 

  113. Gardner, J. S. et al. Maternal exposure to prescription and non-prescription pharmaceuticals or drugs of abuse and risk of craniosynostosis. Int. J. Epidemiol. 27, 64–67 (1998).

    Article  PubMed  CAS  Google Scholar 

  114. Carmichael, S. L. et al. Craniosynostosis and maternal smoking. Birth Defects Res. A Clin. Mol. Teratol. 82, 78–85 (2008).

    Article  PubMed  CAS  Google Scholar 

  115. Carmichael, S. L. et al. Craniosynostosis and nutrient intake during pregnancy. Birth Defects Res. A Clin. Mol. Teratol. 88, 1032–1039 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Di Rocco, F. et al. Craniosynostosis and metabolic bone disorder. A review. Neurochirurgie 65, 258–263 (2019).

    Article  PubMed  Google Scholar 

  117. Vega, R. A. et al. Hypophosphatemic rickets and craniosynostosis: a multicenter case series. J. Neurosurg. Pediatr. 17, 694–700 (2016).

    Article  PubMed  Google Scholar 

  118. Sheth, R. D., Mullett, M. D., Bodensteiner, J. B. & Hobbs, G. R. Longitudinal head growth in developmentally normal preterm infants. Arch. Pediatr. Adolesc. Med. 149, 1358–1361 (1995).

    Article  PubMed  CAS  Google Scholar 

  119. Cacciaguerra, G. et al. The evolution of the role of imaging in the diagnosis of craniosynostosis: a narrative review. Children https://doi.org/10.3390/children8090727 (2021).

  120. Fahradyan, A., Daneshgaran, G., Hoffman, T. L., Wexler, A. & Francis, S. H. Challenging the norm: is routine use of cranial CT in evaluation of craniosynostosis necessary? J. Craniofac Surg. 32, 2496–2499 (2021).

    Article  PubMed  Google Scholar 

  121. Schweitzer, T. et al. Avoiding CT scans in children with single-suture craniosynostosis. Childs Nerv. Syst. 28, 1077–1082 (2012).

    Article  PubMed  CAS  Google Scholar 

  122. DeFreitas, C. A. et al. Prenatal diagnosis of craniosynostosis using ultrasound. Plast. Reconstr. Surg. 150, 1084–1089 (2022).

    PubMed  CAS  Google Scholar 

  123. Montoya, J. C. et al. Low-dose CT for craniosynostosis: preserving diagnostic benefit with substantial radiation dose reduction. AJNR Am. J. Neuroradiol. 38, 672–677 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Eley, K. A., Watt-Smith, S. R., Sheerin, F. & Golding, S. J. “Black bone” MRI: a potential alternative to CT with three-dimensional reconstruction of the craniofacial skeleton in the diagnosis of craniosynostosis. Eur. Radiol. 24, 2417–2426 (2014).

    Article  PubMed  Google Scholar 

  125. Delashaw, J. B., Persing, J. A. & Jane, J. A. Cranial deformation in craniosynostosis. A new explanation. Neurosurg. Clin. N. Am. 2, 611–620 (1991).

    Article  PubMed  CAS  Google Scholar 

  126. Spazzapan, P. & Velnar, T. Isolated sagittal craniosynostosis: a comprehensive review. Diagnostics https://doi.org/10.3390/diagnostics14040435 (2024).

  127. Mathijssen, I. M. J. Updated guideline on treatment and management of craniosynostosis. J. Craniofac Surg. 32, 371–450 (2021).

    Article  PubMed  Google Scholar 

  128. Chandler, L. et al. Distinguishing craniomorphometric characteristics and severity in metopic synostosis patients. Int. J. Oral. Maxillofac. Surg. 50, 1040–1046 (2021).

    Article  PubMed  CAS  Google Scholar 

  129. Junn, A. et al. Validation of artificial intelligence severity assessment in metopic craniosynostosis. Cleft Palate Craniofac J. 60, 274–279 (2023).

    Article  PubMed  Google Scholar 

  130. Di Rocco, C., Paternoster, G., Caldarelli, M., Massimi, L. & Tamburrini, G. Anterior plagiocephaly: epidemiology, clinical findings, diagnosis, and classification. A review. Childs Nerv. Syst. 28, 1413–1422 (2012).

    Article  PubMed  Google Scholar 

  131. Gabrick, K. S. et al. Assessing facial asymmetry in postoperative patients with unilateral coronal craniosynostosis. J. Craniofac Surg. 31, 1000–1005 (2020).

    Article  PubMed  Google Scholar 

  132. Hauc, S. C. et al. Orthotic helmet therapy for deformational plagiocephaly: stratifying outcomes by insurance. Cleft Palate Craniofac J. 61, 1027–1032 (2024).

    Article  PubMed  Google Scholar 

  133. Park, K. E. et al. Neurocognitive outcomes in deformational plagiocephaly: is there an association between morphologic severity and results? Plast. Reconstr. Surg. 152, 488e–498e (2023).

    PubMed  CAS  Google Scholar 

  134. Birgfeld, C. B. & Heike, C. Distinguishing between lambdoid craniosynostosis and deformational plagiocephaly: a review of this paradigm shift in clinical decision-making and lesson for the future. Craniomaxillofac Trauma. Reconstr. 13, 248–252 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bir, S. C., Ambekar, S., Notarianni, C. & Nanda, A. Odilon Marc Lannelongue (1840-1911) and strip craniectomy for craniosynostosis. Neurosurg. Focus. 36, E16 (2014).

    Article  PubMed  Google Scholar 

  136. Belza, C. C. et al. Perioperative comparison between open cranial vault remodeling and distraction osteogenesis for unilateral lambdoid craniosynostosis. J. Craniofac Surg. 34, 1222–1225 (2023).

    Article  PubMed  Google Scholar 

  137. Mundinger, G. S. et al. Distraction osteogenesis for surgical treatment of craniosynostosis: a systematic review. Plast. Reconstr. Surg. 138, 657–669 (2016).

    Article  PubMed  CAS  Google Scholar 

  138. Park, D. H. & Yoon, S. H. Transsutural distraction osteogenesis for 285 children with craniosynostosis: a single-institution experience. J. Neurosurg. Pediatr. 17, 230–239 (2016).

    Article  PubMed  Google Scholar 

  139. Elawadly, A. et al. 3-dimensional morphometric outcomes after endoscopic strip craniectomy for unicoronal synostosis. J. Craniofac Surg. 34, 322–331 (2023).

    Article  PubMed  Google Scholar 

  140. Ha, A. Y. et al. School-aged anthropometric outcomes after endoscopic or open repair of metopic synostosis. Pediatrics https://doi.org/10.1542/peds.2020-0238 (2020).

  141. Nguyen, D. C. et al. Are endoscopic and open treatments of metopic synostosis equivalent in treating trigonocephaly and hypotelorism. J. Craniofac Surg. 26, 129–134 (2015).

    Article  PubMed  Google Scholar 

  142. Tan, S. P., Proctor, M. R., Mulliken, J. B. & Rogers, G. F. Early frontofacial symmetry after correction of unilateral coronal synostosis: frontoorbital advancement vs endoscopic strip craniectomy and helmet therapy. J. Craniofac Surg. 24, 1190–1194 (2013).

    Article  PubMed  Google Scholar 

  143. Williams, C. T. et al. Evaluation of endoscopic strip craniectomy and orthotic therapy for bilateral coronal craniosynostosis. J. Craniofac Surg. 30, 453–457 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Barone, C. M. & Jimenez, D. F. Endoscopic craniectomy for early correction of craniosynostosis. Plast. Reconstr. Surg. 104, 1965–1973 (1999); discussion 1974–1965.

    Article  PubMed  CAS  Google Scholar 

  145. Nguyen, D. C. et al. One hundred consecutive endoscopic repairs of sagittal craniosynostosis: an evolution in care. J. Neurosurg. Pediatr. 20, 410–418 (2017).

    Article  PubMed  Google Scholar 

  146. Badiee, R. K. et al. Superior long-term appearance of strip craniectomy compared with cranial vault reconstruction in metopic craniosynostosis. Plast. Reconstr. Surg. Glob. Open. 10, e4097 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Proctor, M. R. & Meara, J. G. A review of the management of single-suture craniosynostosis, past, present, and future. J. Neurosurg. Pediatr. 24, 622–631 (2019).

    Article  PubMed  Google Scholar 

  148. Massenburg, B. B., Tolley, P. D., Lee, A. & Susarla, S. M. Fronto-orbital advancement for metopic and unilateral coronal craniosynostoses. Oral. Maxillofac. Surg. Clin. North. Am. 34, 367–380 (2022).

    Article  PubMed  Google Scholar 

  149. Lauritzen, C. G. K., Davis, C., Ivarsson, A., Sanger, C. & Hewitt, T. D. The evolving role of springs in craniofacial surgery: the first 100 clinical cases. Plast. Reconstr. Surg. 121, 545–554 (2008).

    Article  PubMed  CAS  Google Scholar 

  150. Persing, J. A., Babler, W. J., Nagorsky, M. J., Edgerton, M. T. & Jane, J. A. Skull expansion in experimental craniosynostosis. Plast. Reconstr. Surg. 78, 594–603 (1986).

    Article  PubMed  CAS  Google Scholar 

  151. Kalmar, C. L. et al. Spring-mediated cranioplasty for sagittal craniosynostosis. Neurosurg. Focus. Video 4, V6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Mellgren, J. et al. Spring-assisted surgery of unilambdoid craniosynostosis. J. Craniofac Surg. 35, 715–720 (2024).

    PubMed  PubMed Central  Google Scholar 

  153. Shen, W. et al. Correction of craniosynostosis using modified spring-assisted surgery. J. Craniofac Surg. 26, 522–525 (2015).

    Article  PubMed  Google Scholar 

  154. Duan, M., Skoch, J., Pan, B. S. & Shah, V. Neuro-ophthalmological manifestations of craniosynostosis: current perspectives. Eye Brain 13, 29–40 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Alperovich, M., Vyas, R. M. & Staffenberg, D. A. Is craniosynostosis repair keeping up with the times? Results from the largest national survey on craniosynostosis. J. Craniofac Surg. 26, 1909–1913 (2015).

    Article  PubMed  Google Scholar 

  156. Bonfield, C. M., Sharma, J., Cochrane, D. D., Singhal, A. & Steinbok, P. Minimizing blood transfusions in the surgical correction of craniosynostosis: a 10-year single-center experience. Childs Nerv. Syst. 32, 143–151 (2016).

    Article  PubMed  Google Scholar 

  157. Suarez, A. D. et al. Predictors of blood transfusion for endoscopic assisted craniosynostosis surgery. J. Craniofac Surg. 33, 1327–1330 (2022).

    Article  PubMed  Google Scholar 

  158. Belouaer, A. et al. The enhanced recovery after surgery protocol for the surgical management of craniosynostosis: Lausanne experience. Neurosurg. Focus. 55, E14 (2023).

    Article  PubMed  Google Scholar 

  159. Dadure, C. et al. Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized double-blind study. Anesthesiology 114, 856–861 (2011).

    Article  PubMed  CAS  Google Scholar 

  160. Fearon, J. A. Reducing allogenic blood transfusions during pediatric cranial vault surgical procedures: a prospective analysis of blood recycling. Plast. Reconstr. Surg. 113, 1126–1130 (2004).

    Article  PubMed  Google Scholar 

  161. Taylor, J. A. & Maugans, T. A. Comparison of spring-mediated cranioplasty to minimally invasive strip craniectomy and barrel staving for early treatment of sagittal craniosynostosis. J. Craniofac Surg. 22, 1225–1229 (2011).

    Article  PubMed  Google Scholar 

  162. Wolfswinkel, E. M. et al. Is postoperative intensive care unit care necessary following cranial vault remodeling for sagittal synostosis. Plast. Reconstr. Surg. 140, 1235–1239 (2017).

    Article  PubMed  CAS  Google Scholar 

  163. Seruya, M. et al. Analysis of routine intensive care unit admission following fronto-orbital advancement for craniosynostosis. Plast. Reconstr. Surg. 131, 582e–588e (2013).

    Article  PubMed  CAS  Google Scholar 

  164. Branch, L. G. et al. Long-term outcomes of pediatric cranial reconstruction using resorbable plating systems for the treatment of craniosynostosis. J. Craniofac Surg. 28, 26–29 (2017).

    Article  PubMed  Google Scholar 

  165. Greene, A. K., Mulliken, J. B., Proctor, M. R. & Rogers, G. F. Primary grafting with autologous cranial particulate bone prevents osseous defects following fronto-orbital advancement. Plast. Reconstr. Surg. 120, 1603–1611 (2007).

    Article  PubMed  CAS  Google Scholar 

  166. Jubbal, K. T., Agrawal, N. & Hollier, L. H. Jr. Analysis of morbidity, readmission, and reoperation after craniosynostosis repair in children. J. Craniofac Surg. 28, 401–405 (2017).

    Article  PubMed  Google Scholar 

  167. Nguyen, C., Hernandez-Boussard, T., Khosla, R. K. & Curtin, C. M. A national study on craniosynostosis surgical repair. Cleft Palate Craniofac J. 50, 555–560 (2013).

    Article  PubMed  Google Scholar 

  168. Massenburg, B. B., Nassar, A. H. & Hopper, R. A. National database reported outcomes following craniosynostosis reconstruction. J. Craniofac Surg. 31, 154–157 (2020).

    Article  PubMed  Google Scholar 

  169. Skolnick, G. B. et al. Long-term characterization of cranial defects after surgical correction for single-suture craniosynostosis. Ann. Plast. Surg. 82, 679–685 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Woerdeman, P. A. et al. Patient-reported outcome measures more than fifteen years after treatment of sagittal or metopic craniosynostosis: a prospective cohort study. Childs Nerv. Syst. 40, 769–777 (2024).

    Article  PubMed  Google Scholar 

  171. McClugage, S. G. 3rd et al. Incidence of delayed intracranial hypertension in children with isolated sagittal synostosis following open calvarial vault reconstruction. Childs Nerv. Syst. 36, 545–550 (2020).

    Article  PubMed  Google Scholar 

  172. Da Costa, A. C. et al. Longitudinal study of the neurodevelopmental characteristics of treated and untreated nonsyndromic craniosynostosis in infancy. Childs Nerv. Syst. 29, 985–995 (2013).

    Article  PubMed  Google Scholar 

  173. Patel, A. et al. The impact of age at surgery on long-term neuropsychological outcomes in sagittal craniosynostosis. Plast. Reconstr. Surg. 134, 608e–617e (2014). The study most commonly cited to demonstrate the clinical benefit of earlier surgery in infancy on neurocognitive outcomes in craniosynostosis.

    Article  PubMed  CAS  Google Scholar 

  174. Renier, D. & Marchac, D. Craniofacial surgery for craniosynostosis: functional and morphological results. Ann. Acad. Med. Singap. 17, 415–426 (1988).

    PubMed  CAS  Google Scholar 

  175. Hashim, P. W. et al. The effects of whole-vault cranioplasty versus strip craniectomy on long-term neuropsychological outcomes in sagittal craniosynostosis. Plast. Reconstr. Surg. 134, 491–501 (2014).

    Article  PubMed  CAS  Google Scholar 

  176. Alperovich, M. et al. Long-term neurocognitive outcomes of spring-assisted surgery versus cranial vault remodeling for sagittal synostosis. Plast. Reconstr. Surg. 147, 661–671 (2021).

    Article  PubMed  CAS  Google Scholar 

  177. Chandler, L. et al. Spring-assisted strip craniectomy versus cranial vault remodeling: long-term psychological, behavioral, and executive function outcomes. J. Craniofac Surg. 31, 2101–2105 (2020).

    Article  PubMed  Google Scholar 

  178. Magge, S. N. et al. Cognitive outcomes of children with sagittal craniosynostosis treated with either endoscopic or open calvarial vault surgery. JAMA Netw. Open. 7, e248762 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Junn, A. et al. Quantifying the impact of genetics on neurocognition in nonsyndromic sagittal craniosynostosis. Plast. Reconstr. Surg. 152, 300e–306e (2023).

    PubMed  CAS  Google Scholar 

  180. Duggan, C., Irvine, A. D., J, O. B. H., Kiely, M. E. & Murray, D. M. ASQ-3 and BSID-III’s concurrent validity and predictive ability of cognitive outcome at 5 years. Pediatr. Res. 94, 1465–1471 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Kapp-Simon, K. A., Figueroa, A., Jocher, C. A. & Schafer, M. Longitudinal assessment of mental development in infants with nonsyndromic craniosynostosis with and without cranial release and reconstruction. Plast. Reconstr. Surg. 92, 831–839 (1993); discussion 840–831.

    Article  PubMed  CAS  Google Scholar 

  182. Arnaud, E., Renier, D. & Marchac, D. Prognosis for mental function in scaphocephaly. J. Neurosurg. 83, 476–479 (1995).

    Article  PubMed  CAS  Google Scholar 

  183. Kapp-Simon, K. A. et al. Language, learning, and memory in children with and without single-suture craniosynostosis. J. Neurosurg. Pediatr. 17, 578–588 (2016).

    Article  PubMed  Google Scholar 

  184. Speltz, M. L., Endriga, M. C. & Mouradian, W. E. Presurgical and postsurgical mental and psychomotor development of infants with sagittal synostosis. Cleft Palate Craniofac J. 34, 374–379 (1997).

    Article  PubMed  CAS  Google Scholar 

  185. Virtanen, R., Korhonen, T., Fagerholm, J. & Viljanto, J. Neurocognitive sequelae of scaphocephaly. Pediatrics 103, 791–795 (1999).

    Article  PubMed  CAS  Google Scholar 

  186. Magge, S. N., Westerveld, M., Pruzinsky, T. & Persing, J. A. Long-term neuropsychological effects of sagittal craniosynostosis on child development. J. Craniofac Surg. 13, 99–104 (2002).

    Article  PubMed  Google Scholar 

  187. Speltz, M. L. et al. Intellectual and academic functioning of school-age children with single-suture craniosynostosis. Pediatrics 135, e615–e623 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Speltz, M. L., Collett, B. R., Wallace, E. R. & Kapp-Simon, K. Behavioral adjustment of school-age children with and without single-suture craniosynostosis. Plast. Reconstr. Surg. 138, 435–445 (2016).

    Article  PubMed  CAS  Google Scholar 

  189. Kelleher, M. O. et al. Behavioral, developmental, and educational problems in children with nonsyndromic trigonocephaly. J. Neurosurg. 105, 382–384 (2006).

    PubMed  Google Scholar 

  190. Edwards-Bailey, L. et al. The craniofacial collaboration UK: developmental outcomes in 7- and 10-year-old children with metopic synostosis. J. Craniofac Surg. 35, 96–103 (2024).

    PubMed  Google Scholar 

  191. Lloyd-White, S. et al. The craniofacial collaboration UK: developmental outcomes in 7- and 10-year-old children with sagittal synostosis. J. Craniofac. Surg. 35, 1707–1714 (2024).

    Article  Google Scholar 

  192. Collett, B. R. et al. Attention and executive function in children with and without single-suture craniosynostosis. Child. Neuropsychol. 23, 83–98 (2017).

    Article  PubMed  Google Scholar 

  193. Chieffo, D. et al. Long-term neuropsychological development in single-suture craniosynostosis treated early. J. Neurosurg. Pediatr. 5, 232–237 (2010).

    Article  PubMed  Google Scholar 

  194. Renier, D., Sainte-Rose, C., Marchac, D. & Hirsch, J. F. Intracranial pressure in craniostenosis. J. Neurosurg. 57, 370–377 (1982).

    Article  PubMed  CAS  Google Scholar 

  195. Kljajic, M., Maltese, G., Tarnow, P., Sand, P. & Kolby, L. Health-related quality of life of children treated for non-syndromic craniosynostosis. J. Plast. Surg. Hand Surg. 57, 408–414 (2023).

    Article  PubMed  Google Scholar 

  196. Shavlokhova, V., Gruninger, S., Hoffmann, J., Freudlsperger, C. & Engel, M. Health-related quality of life in children after surgical treatment of non-syndromal craniosynostosis. J. Craniomaxillofac Surg. 49, 655–658 (2021).

    Article  PubMed  Google Scholar 

  197. Mazzaferro, D. M. et al. Quality of life in adults with nonsyndromic craniosynostosis. Plast. Reconstr. Surg. 141, 1474–1482 (2018). This study includes the longest period of follow-up to assess quality of life in adulthood in individuals with non-syndromic craniosynostosis.

    Article  PubMed  CAS  Google Scholar 

  198. Junn, A. et al. Long-term follow-up of preoperative infant event-related potentials in school-age children with craniosynostosis. Plast. Reconstr. Surg. Glob. Open. 9, e3844 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Moscarelli, J. et al. A diffusion tensor imaging comparison of white matter development in nonsyndromic craniosynostosis to neurotypical infants. Childs Nerv. Syst. 40, 1477–1487 (2024).

    Article  PubMed  Google Scholar 

  200. Bruce, M. K. et al. 3D photography to quantify the severity of metopic craniosynostosis. Cleft Palate Craniofac J. 60, 971–979 (2023).

    Article  PubMed  Google Scholar 

  201. Porras, A. R. et al. Quantification of head shape from three-dimensional photography for presurgical and postsurgical evaluation of craniosynostosis. Plast. Reconstr. Surg. 144, 1051e–1060e (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Callejas Pastor, C. A. et al. Two-dimensional image-based screening tool for infants with positional cranial deformities: a machine learning approach. Diagnostics https://doi.org/10.3390/diagnostics10070495 (2020).

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.A. and C.T.); Epidemiology (M.A. and C.T.); Mechanisms/pathophysiology (M.A. and K.T.K.); Diagnosis, screening and prevention (M.A.); Management (M.A.); Quality of life (M.A. and L.C.M.); Outlook (all authors); overview of the Primer (M.A.).

Corresponding author

Correspondence to Michael Alperovich.

Ethics declarations

Competing interests

M.A. consults for Johnson & Johnson. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks K. B. Patel; S. P. Bartlett, who co-reviewed with P. Tolley; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alperovich, M., Tonello, C., Mayes, L.C. et al. Non-syndromic craniosynostosis. Nat Rev Dis Primers 11, 24 (2025). https://doi.org/10.1038/s41572-025-00607-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-025-00607-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing