Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Pleural mesothelioma

Abstract

Mesothelioma is a lethal cancer caused by exposure to asbestos, which arises predominantly in the pleural lining of the thoracic cavity or, less commonly, in the peritoneum, pericardium or tunica vaginalis. The incidence of mesothelioma increased globally during the late twentieth century, correlating with the use of asbestos, and it continues to rise in some regions. Asbestos tumorigenesis involves fibre persistence that leads to DNA damage mediated by chronic inflammation. The genomic landscape of mesothelioma is predominantly characterized by tumour suppressor alterations, most frequently occurring in BAP1, CDKN2A, CDKN2B, MTAP, NF2 and TP53. Patients with mesothelioma commonly present with fatigue, dyspnoea and/or cough caused by pleural effusion, pain and reduced appetite with weight loss. Imaging, cytology, histology and immunohistochemistry are used in diagnosis and support tumour staging. Genetic tests are relevant to reveal disease predispositions. Mesotheliomas are classified on the basis of histology into three distinct subtypes: epithelioid (the most common subtype with the best prognosis), biphasic and sarcomatoid (worst prognosis). Chemotherapy has been the standard of care for the past two decades but immune checkpoint inhibition targeting PD1 and CTLA4 is now considered to be the first-line treatment, showing improvement compared with chemotherapy. Few randomized trials have investigated the role of surgery and radiotherapy and none has found a clear benefit over systemic therapies. Mesothelioma is associated with considerable negative effects on quality of life in physical and emotional domains and also substantially affects patients’ families and caregivers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common mesothelioma sites.
Fig. 2: Global incidence of mesothelioma.
Fig. 3: Key pathways affected in mesothelioma cells.
Fig. 4: Pathological features of mesothelioma.
Fig. 5: Diagnostic pathway for mesothelioma.

Similar content being viewed by others

References

  1. Plas, E., Riedl, C. R. & Pfluger, H. Malignant mesothelioma of the tunica vaginalis testis: review of the literature and assessment of prognostic parameters. Cancer 83, 2437–2446 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Hassan, R. et al. Current treatment options and biology of peritoneal mesothelioma: meeting summary of the first NIH peritoneal mesothelioma conference. Ann. Oncol. 17, 1615–1619 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Sauter, J. L. et al. The 2021 WHO classification of tumors of the pleura: advances since the 2015 classification. J. Thorac. Oncol. 17, 608–622 (2022).

    Article  PubMed  Google Scholar 

  4. Alpert, N., van Gerwen, M. & Taioli, E. Epidemiology of mesothelioma in the 21(st) century in Europe and the United States, 40 years after restricted/banned asbestos use. Transl. Lung Cancer Res. 9, S28–S38 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Henley, S. J. et al. Mesothelioma incidence in 50 states and the District of Columbia, United States, 2003–2008. Int. J. Occup. Env. Health 19, 1–10 (2013).

    Article  Google Scholar 

  6. LaDou, J. et al. The case for a global ban on asbestos. Env. Health Perspect. 118, 897–901 (2010).

    Article  Google Scholar 

  7. Baumann, F., Ambrosi, J. P. & Carbone, M. Asbestos is not just asbestos: an unrecognised health hazard. Lancet Oncol. 14, 576–578 (2013).

    Article  PubMed  Google Scholar 

  8. Ferlay, J. et al. Global Cancer Observatory: Cancer Today (IARC, accessed 23 July 2025); https://gco.iarc.who.int/today.

  9. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

    PubMed  Google Scholar 

  10. Ferlay, J. et al. Mesothelioma. IARC https://gco.iarc.who.int/media/globocan/factsheets/cancers/18-mesothelioma-fact-sheet.pdf (2024).

  11. Huang, J. et al. Global incidence, risk factors, and temporal trends of mesothelioma: a population-based study. J. Thorac. Oncol. 18, 792–802 (2023).

    Article  PubMed  Google Scholar 

  12. Panou, V. et al. Gender differences in asbestos exposure and disease location in 327 patients with mesothelioma. Eur. Respir. J. 50, PA4294 (2017).

    Google Scholar 

  13. Lin, R. T., Chien, L. C., Jimba, M., Furuya, S. & Takahashi, K. Implementation of national policies for a total asbestos ban: a global comparison. Lancet Planet. Health 3, e341–e348 (2019).

    Article  PubMed  Google Scholar 

  14. Zhu, W., Liu, J., Li, Y., Shi, Z. & Wei, S. Global, regional, and national trends in mesothelioma burden from 1990 to 2019 and the predictions for the next two decades. SSM Popul. Health 23, 101441 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mazurek, J. M., Blackley, D. J. & Weissman, D. N. Malignant mesothelioma mortality in women – United States, 1999–2020. MMWR Morb. Mortal. Wkly Rep. 71, 645–649 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wagner, J. C., Sleggs, C. A. & Marchand, P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br. J. Ind. Med. 17, 260–271 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Selikoff, I. J., Churg, J. & Hammond, E. C. Asbestos exposure and neoplasia. JAMA 252, 91–95 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Bourdes, V., Boffetta, P. & Pisani, P. Environmental exposure to asbestos and risk of pleural mesothelioma: review and meta-analysis. Eur. J. Epidemiol. 16, 411–417 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Boffetta, P., Donato, F., Pira, E., Luu, H. N. & La Vecchia, C. Risk of mesothelioma after cessation of asbestos exposure: a systematic review and meta-regression. Int. Arch. Occup. Env. Health 92, 949–957 (2019).

    Article  Google Scholar 

  20. Lacourt, A. et al. Co-exposure to refractory ceramic fibres and asbestos and risk of pleural mesothelioma. Eur. Respir. J. 44, 725–733 (2014).

    Article  PubMed  Google Scholar 

  21. Visci, G., Rizzello, E., Zunarelli, C., Violante, F. S. & Boffetta, P. Relationship between exposure to ionizing radiation and mesothelioma risk: a systematic review of the scientific literature and meta-analysis. Cancer Med. 11, 778–789 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhai, Z. et al. Assessment of global trends in the diagnosis of mesothelioma from 1990 to 2017. JAMA Netw. Open 4, e2120360 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Carbone, M. et al. Medical and surgical care of patients with mesothelioma and their relatives carrying germline BAP1 mutations. J. Thorac. Oncol. 17, 873–889 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bueno, R. et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat. Genet. 48, 407–416 (2016). 

    Article  CAS  PubMed  Google Scholar 

  25. Carbone, M. et al. Eighth international mesothelioma interest group. Oncogene 26, 6959–6967 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Mutsaers, S. E. et al. Mesothelial cells in tissue repair and fibrosis. Front. Pharmacol. 6, 113 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Suarez, J. S. et al. HMGB1 released by mesothelial cells drives the development of asbestos-induced mesothelioma. Proc. Natl Acad. Sci. USA 120, e2307999120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jube, S. et al. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 72, 3290–3301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang, L. et al. Iron overload signature in chrysotile-induced malignant mesothelioma. J. Pathol. 228, 366–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Hu, Q. et al. Homozygous deletion of CDKN2A/2B is a hallmark of iron-induced high-grade rat mesothelioma. Lab. Invest. 90, 360–373 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Hmeljak, J. et al. Integrative molecular characterization of malignant pleural mesothelioma. Cancer Discov. 8, 1548–1565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mangiante, L. et al. Multiomic analysis of malignant pleural mesothelioma identifies molecular axes and specialized tumor profiles driving intertumor heterogeneity. Nat. Genet. 55, 607–618 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hiltbrunner, S. et al. Genomic landscape of pleural and peritoneal mesothelioma tumours. Br. J. Cancer 127, 1997–2005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quetel, L. et al. Genetic alterations of malignant pleural mesothelioma: association with tumor heterogeneity and overall survival. Mol. Oncol. 14, 1207–1223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meiller, C. et al. Multi-site tumor sampling highlights molecular intra-tumor heterogeneity in malignant pleural mesothelioma. Genome Med. 13, 113 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, M. et al. Clonal architecture in mesothelioma is prognostic and shapes the tumour microenvironment. Nat. Commun. 12, 1751 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kukuyan, A. M. et al. Inactivation of Bap1 cooperates with losses of Nf2 and Cdkn2a to drive the development of pleural malignant mesothelioma in conditional mouse models. Cancer Res. 79, 4113–4123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Badhai, J. et al. Combined deletion of Bap1, Nf2, and Cdkn2ab causes rapid onset of malignant mesothelioma in mice. J. Exp. Med. 217, e20191257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Testa, J. R. & Berns, A. Preclinical models of malignant mesothelioma. Front. Oncol. 10, 101 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Blum, Y. et al. Dissecting heterogeneity in malignant pleural mesothelioma through histo-molecular gradients for clinical applications. Nat. Commun. 10, 1333 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Szczepanski, A. P. & Wang, L. Emerging multifaceted roles of BAP1 complexes in biological processes. Cell Death Discov. 7, 20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mo, J. et al. DDX3X: structure, physiologic functions and cancer. Mol. Cancer 20, 38 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carbone, M. et al. Biological mechanisms and clinical significance of BAP1 mutations in human cancer. Cancer Discov. 10, 1103–1120 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Masclef, L. et al. Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ. 28, 606–625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ismail, I. H. et al. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res. 74, 4282–4294 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Lee, H. S., Lee, S. A., Hur, S. K., Seo, J. W. & Kwon, J. Stabilization and targeting of INO80 to replication forks by BAP1 during normal DNA synthesis. Nat. Commun. 5, 5128 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Singh, A. et al. BAP1 loss induces mitotic defects in mesothelioma cells through BRCA1-dependent and independent mechanisms. Oncogene 42, 572–585 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Bononi, A. et al. BAP1 is a novel regulator of HIF-1α. Proc. Natl Acad. Sci. USA 120, e2217840120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Galani, V. et al. The role of apoptosis defects in malignant mesothelioma pathogenesis with an impact on prognosis and treatment. Cancer Chemother. Pharmacol. 84, 241–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Bononi, A. et al. BAP1 regulates IP3R3-mediated Ca2+ flux to mitochondria suppressing cell transformation. Nature 546, 549–553 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y. et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 20, 1181–1192 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang, L. et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520, 57–62 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fassl, A., Geng, Y. & Sicinski, P. CDK4 and CDK6 kinases: from basic science to cancer therapy. Science 375, eabc1495 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levine, A. J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 20, 471–480 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Sekido, Y. & Sato, T. NF2 alteration in mesothelioma. Front. Toxicol. 5, 1161995 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wu, J. et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 572, 402–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brevet, M. et al. Coactivation of receptor tyrosine kinases in malignant mesothelioma as a rationale for combination targeted therapy. J. Thorac. Oncol. 6, 864–874 (2011).

    Article  PubMed  Google Scholar 

  58. Bhadresha, K., Mirza, S., Penny, C. & Mughal, M. J. Targeting AXL in mesothelioma: from functional characterization to clinical implication. Crit. Rev. Oncol. Hematol. 188, 104043 (2023).

    Article  PubMed  Google Scholar 

  59. Quispel-Janssen, J. M. et al. Comprehensive pharmacogenomic profiling of malignant pleural mesothelioma identifies a subgroup sensitive to FGFR inhibition. Clin. Cancer Res. 24, 84–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  60. Offin, M. et al. Genomic and transcriptomic analysis of a diffuse pleural mesothelioma patient-derived xenograft library. Genome Med. 14, 127 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kryukov, G. V. et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 351, 1214–1218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Engstrom, L. D. et al. MRTX1719 is an MTA-cooperative PRMT5 inhibitor that exhibits synthetic lethality in preclinical models and patients with MTAP-deleted cancer. Cancer Discov. 13, 2412–2431 (2023). This phase I clinical trial shows early, promising signal of activity in patients with MTAP-deleted mesothelioma, highlighting the potential for emerging precision therapeutics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Delage, B. et al. Arginine deprivation and argininosuccinate synthetase expression in the treatment of cancer. Int. J. Cancer 126, 2762–2772 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Bononi, A. et al. Germline BAP1 mutations induce a Warburg effect. Cell Death Differ. 24, 1694–1704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fan, J. et al. Clinical significance of FBXW7 loss of function in human cancers. Mol. Cancer 21, 87 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ramundo, V., Zanirato, G. & Aldieri, E. The epithelial-to-mesenchymal transition (EMT) in the development and metastasis of malignant pleural mesothelioma. Int. J. Mol. Sci. 22, 12216 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yang, J. et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 21, 341–352 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zolondick, A. A. et al. Asbestos-induced chronic inflammation in malignant pleural mesothelioma and related therapeutic approaches-a narrative review. Precis. Cancer Med. 4, 27 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xu, A., Wu, L. J., Santella, R. M. & Hei, T. K. Role of oxyradicals in mutagenicity and DNA damage induced by crocidolite asbestos in mammalian cells. Cancer Res. 59, 5922–5926 (1999).

    CAS  PubMed  Google Scholar 

  70. Harber, J., Kamata, T., Pritchard, C. & Fennell, D. Matter of TIME: the tumor-immune microenvironment of mesothelioma and implications for checkpoint blockade efficacy. J. Immunother. Cancer 9, e003032 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Chéné, A. L. et al. Pleural effusions from patients with mesothelioma induce recruitment of monocytes and their differentiation into M2 macrophages. J. Thorac. Oncol. 11, 1765–1773 (2016).

    Article  PubMed  Google Scholar 

  72. Zhang, F. et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype. Oncotarget 7, 52294–52306 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gratchev, A. TGF-β signalling in tumour associated macrophages. Immunobiology 222, 75–81 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Gschwandtner, M., Derler, R. & Midwood, K. S. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front. Immunol. 10, 2759 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Horio, D. et al. Tumor-associated macrophage-derived inflammatory cytokine enhances malignant potential of malignant pleural mesothelioma. Cancer Sci. 111, 2895–2906 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ohara, Y. et al. Connective tissue growth factor produced by cancer-associated fibroblasts correlates with poor prognosis in epithelioid malignant pleural mesothelioma. Oncol. Rep. 44, 838–848 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335–348 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Li, Q. et al. Pleural mesothelioma instigates tumor-associated fibroblasts to promote progression via a malignant cytokine network. Am. J. Pathol. 179, 1483–1493 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bianco, A., Valente, T., De Rimini, M. L., Sica, G. & Fiorelli, A. Clinical diagnosis of malignant pleural mesothelioma. J. Thorac. Dis. 10, S253–s261 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hollen, P. J., Gralla, R. J., Liepa, A. M., Symanowski, J. T. & Rusthoven, J. J. Adapting the lung cancer symptom scale (LCSS) to mesothelioma: using the LCSS-Meso conceptual model for validation. Cancer 101, 587–595 (2004).

    Article  PubMed  Google Scholar 

  81. Brims, F. et al. Early specialist palliative care on quality of life for malignant pleural mesothelioma: a randomised controlled trial. Thorax 74, 354–361 (2019).

    Article  PubMed  Google Scholar 

  82. Hoon, S. N. et al. Symptom burden and unmet needs in malignant pleural mesothelioma: exploratory analyses from the RESPECT-meso study. J. Palliat. Care 36, 113–120 (2021).

    Article  PubMed  Google Scholar 

  83. Seker, N. S. et al. Investigation of MTAP and BAP1 staining loss and P16/CDKN2A deletion in pleural cytology specimens and its role in the diagnosis of mesothelioma. Diagn. Cytopathol. 52, 211–216 (2024).

    Article  PubMed  Google Scholar 

  84. Michael, C. W., Bedrossian, C., Sadri, N. & Klebe, S. The cytological features of effusions with mesothelioma in situ: a report of 9 cases. Diagn. Cytopathol. 51, 374–388 (2023).

    Article  PubMed  Google Scholar 

  85. Klebe, S. et al. The concept of mesothelioma in situ, with consideration of its potential impact on cytology diagnosis. Pathology 53, 446–453 (2021).

    Article  PubMed  Google Scholar 

  86. Li, Y. et al. Reliability of assessing morphologic features with prognostic significance in cytology specimens of epithelioid diffuse pleural mesothelioma and implications for cytopathology reporting. Cancer Cytopathol. 131, 495–506 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kindler, H. L. et al. Treatment of malignant pleural mesothelioma: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 36, 1343–1373 (2018).

    Article  PubMed  Google Scholar 

  88. Pezzuto, F. et al. Evaluation of prognostic histological parameters proposed for pleural mesothelioma in diffuse malignant peritoneal mesothelioma. A short report. Diagn. Pathol. 16, 64 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Husain, A. N. et al. Guidelines for pathologic diagnosis of malignant mesothelioma 2017 update of the consensus statement from the International Mesothelioma Interest Group. Arch. Pathol. Lab. Med. 142, 89–108 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Marchevsky, A. M. Application of immunohistochemistry to the diagnosis of malignant mesothelioma. Arch. Pathol. Lab. Med. 132, 397–401 (2008).

    Article  PubMed  Google Scholar 

  91. Churg, A. Mesothelioma: morphologic and immunohistochemical findings. Pathologie 45, 309–315 (2024).

    Article  PubMed  Google Scholar 

  92. Churg, A. New developments in mesothelial pathology. Histopathology 84, 136–152 (2024).

    Article  PubMed  Google Scholar 

  93. Rosen, L. E. et al. Nuclear grade and necrosis predict prognosis in malignant epithelioid pleural mesothelioma: a multi-institutional study. Mod. Pathol. 31, 598–606 (2018).

    Article  PubMed  Google Scholar 

  94. Nicholson, A. G. et al. EURACAN/IASLC proposals for updating the histologic classification of pleural mesothelioma: towards a more multidisciplinary approach. J. Thorac. Oncol. 15, 29–49 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Schulte, J. J. & Husain, A. N. Updates on grading mesothelioma. Histopathology 84, 153–162 (2024).

    Article  PubMed  Google Scholar 

  96. WHO Classification of Tumours Editorial Board (eds) WHO Classification of Tumours: Thoracic Tumours Vol. 5 (WHO, 2021).

  97. Schulte, J. J. et al. Comparison of nuclear grade, necrosis, and histologic subtype between biopsy and resection in pleural malignant mesothelioma: an international multi-institutional analysis. Am. J. Clin. Pathol. 156, 989–999 (2021).

    Article  PubMed  Google Scholar 

  98. Verma, V. et al. Survival by histologic subtype of malignant pleural mesothelioma and the impact of surgical resection on overall survival. Clin. Lung Cancer 19, e901–e912 (2018).

    Article  PubMed  Google Scholar 

  99. Danuzzo, F. et al. Pleural mesothelioma in situ: a comprehensive review. Eur. J. Cancer Prev. 33, 545–551 (2024).

    Article  PubMed  Google Scholar 

  100. Churg, A. & Naso, J. R. The separation of benign and malignant mesothelial proliferations: new markers and how to use them. Am. J. Surg. Pathol. 44, e100–e112 (2020).

    Article  PubMed  Google Scholar 

  101. Hung, Y. P. & Chirieac, L. R. Molecular and immunohistochemical testing in mesothelioma and other mesothelial lesions. Arch. Pathol. Lab. Med. 148, e77–e89 (2024).

    Article  CAS  PubMed  Google Scholar 

  102. Opitz, I. et al. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur. J. Cardiothorac. Surg. 58, 1–24 (2020).

    Article  PubMed  Google Scholar 

  103. Zahid, I., Sharif, S., Routledge, T. & Scarci, M. What is the best way to diagnose and stage malignant pleural mesothelioma? Interact. Cardiovasc. Thorac. Surg. 12, 254–259 (2011).

    Article  PubMed  Google Scholar 

  104. Erasmus, J. J. et al. Integrated computed tomography-positron emission tomography in patients with potentially resectable malignant pleural mesothelioma: staging implications. J. Thorac. Cardiovasc. Surg. 129, 1364–1370 (2005).

    Article  PubMed  Google Scholar 

  105. Berzenji, L., Van Schil, P. E. & Carp, L. The eighth TNM classification for malignant pleural mesothelioma. Transl. Lung Cancer Res. 7, 543–549 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wolf, A. S. et al. The International Association for the Study of Lung Cancer pleural mesothelioma staging project: expanded database to inform revisions in the ninth edition of the TNM classification of pleural mesothelioma. J. Thorac. Oncol. 19, 1242–1252 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Gill, R. R. et al. The International Association for the Study of Lung Cancer mesothelioma staging project: proposals for revisions of the ‘T’ descriptors in the forthcoming 9(th) edition of the TNM classification for pleural mesothelioma. J. Thorac. Oncol. 19, 1310–1325 (2024).

    Article  PubMed  Google Scholar 

  108. Nowak, A. K. et al. The International Association for the Study of Lung Cancer pleural mesothelioma staging project: proposal for revision of the TNM stage groupings in the forthcoming (ninth) edition of the TNM classification for pleural mesothelioma. J. Thorac. Oncol. 19, 1339–1351 (2024).

    Article  PubMed  Google Scholar 

  109. Bille, A. et al. The International Sssociation for the Study of Lung Cancer mesothelioma staging project: proposals for the “N” descriptors in the forthcoming ninth edition of the TNM classification for pleural mesothelioma. J. Thorac. Oncol. 19, 1326–1338 (2024).

    Article  CAS  PubMed  Google Scholar 

  110. Testa, J. R. et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat. Genet. 43, 1022–1025 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Baumann, F. et al. Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis 36, 76–81 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Hathaway, F. et al. Family matters: germline testing in thoracic cancers. Am. Soc. Clin. Oncol. Educ. Book 43, e389956 (2023).

    Article  PubMed  Google Scholar 

  113. Pastorino, S. et al. A subset of mesotheliomas with improved survival occurring in carriers of BAP1 and other germline mutations. J. Clin. Oncol. 36, 3485–3494 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  114. Hassan, R. et al. Inherited predisposition to malignant mesothelioma and overall survival following platinum chemotherapy. Proc. Natl Acad. Sci. USA 116, 9008–9013 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zauderer, M. G. et al. Prevalence and preliminary validation of screening criteria to identify carriers of germline BAP1 mutations. J. Thorac. Oncol. 14, 1989–1994 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pass, H. I. et al. Asbestos exposure, pleural mesothelioma, and serum osteopontin levels. N. Engl. J. Med. 353, 1564–1573 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Hollevoet, K. et al. Serum mesothelin for diagnosing malignant pleural mesothelioma: an individual patient data meta-analysis. J. Clin. Oncol. 30, 1541–1549 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Pass, H. I. et al. Fibulin-3 as a blood and effusion biomarker for pleural mesothelioma. N. Engl. J. Med. 367, 1417–1427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Roberts, H. C. et al. Screening for malignant pleural mesothelioma and lung cancer in individuals with a history of asbestos exposure. J. Thorac. Oncol. 4, 620–628 (2009).

    Article  PubMed  Google Scholar 

  120. Woolhouse, I. et al. British thoracic society guideline for the investigation and management of malignant pleural mesothelioma. Thorax 73, i1–i30 (2018).

    Article  PubMed  Google Scholar 

  121. Vogelzang, N. J. et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J. Clin. Oncol. 21, 2636–2644 (2003). This pivotal study establishes a new global standard of care in the first-line treatment setting for patients with malignant pleural mesothelioma.

    Article  CAS  PubMed  Google Scholar 

  122. van Meerbeeck, J. P. et al. Randomized phase III study of cisplatin with or without raltitrexed in patients with malignant pleural mesothelioma: an intergroup study of the European Organisation for Research and Treatment of Cancer Lung Cancer Group and the National Cancer Institute of Canada. J. Clin. Oncol. 23, 6881–6889 (2005).

    Article  PubMed  Google Scholar 

  123. Dudek, A. Z. et al. Randomized study of maintenance pemetrexed versus observation for treatment of malignant pleural mesothelioma: CALGB 30901. Clin. Lung Cancer 21, 553–561 e551 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. de Gooijer, C. J. et al. Switch-maintenance gemcitabine after first-line chemotherapy in patients with malignant mesothelioma (NVALT19): an investigator-initiated, randomised, open-label, phase 2 trial. Lancet Respir. Med. 9, 585–592 (2021).

    Article  PubMed  Google Scholar 

  125. Karam, A. S., Abdelwahab, S., Ezz El Din, M. M. A. & Alorabi, M. O. A randomized comparative study on maintenance gemcitabine versus supportive care in pleural mesothelioma. Future Oncol. 21, 2203–2213 (2025).

    Article  CAS  PubMed  Google Scholar 

  126. Zalcman, G. et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet 387, 1405–1414 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Szlosarek, P. W. et al. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin. Cancer Res. 12, 7126–7131 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Szlosarek, P. W. et al. Arginine deprivation with pegylated arginine deiminase in patients with argininosuccinate synthetase 1-deficient malignant pleural mesothelioma: a randomized clinical trial. JAMA Oncol. 3, 58–66 (2017).

    Article  PubMed  Google Scholar 

  129. Szlosarek, P. W. et al. Pegargiminase plus first-line chemotherapy in patients with nonepithelioid pleural mesothelioma: the ATOMIC-Meso randomized clinical trial. JAMA Oncol. 10, 475–483 (2024). A positive phase III clinical trial that uses a prospective, rational patient stratification based on susceptibility to arginine deprivation (in non-epithelioid mesotheliomas).

    Article  PubMed  Google Scholar 

  130. Ceresoli, G. L. et al. Tumour treating fields in combination with pemetrexed and cisplatin or carboplatin as first-line treatment for unresectable malignant pleural mesothelioma (STELLAR): a multicentre, single-arm phase 2 trial. Lancet Oncol. 20, 1702–1709 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Baas, P. et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet 397, 375–386 (2021). This pivotal trial led to approval of immunotherapy as a standard of care for the treatment of malignant pleural mesothelioma.

    Article  CAS  PubMed  Google Scholar 

  132. Bylicki, O. et al. Real-world efficacy and safety of combination nivolumab plus ipilimumab for untreated, unresectable, pleural mesothelioma: the meso-immune (GFPC 04-2021) trial. Lung Cancer 194, 107866 (2024).

    Article  CAS  PubMed  Google Scholar 

  133. Dumoulin, D. W. et al. Nivolumab and ipilimumab in the real-world setting in patients with mesothelioma. Lung Cancer 187, 107440 (2024).

    Article  CAS  PubMed  Google Scholar 

  134. Enrico, D. et al. Efficacy of first-line nivolumab plus ipilimumab in unresectable pleural mesothelioma: a multicenter real-world study (ImmunoMeso LATAM). Clin. Lung Cancer 25, 723–731 e722 (2024).

    Article  CAS  PubMed  Google Scholar 

  135. Schmid, S. et al. Real-world outcomes of patients with malignant pleural mesothelioma receiving a combination of ipilimumab and nivolumab as first- or later-line treatment. JTO Clin. Res. Rep. 5, 100735 (2024).

    PubMed  PubMed Central  Google Scholar 

  136. McNamee, N. et al. Brief report: real-world toxicity and survival of combination immunotherapy in pleural mesothelioma-RIOMeso. J. Thorac. Oncol. 19, 636–642 (2024).

    Article  CAS  PubMed  Google Scholar 

  137. Santoro, A. et al. Pemetrexed plus cisplatin or pemetrexed plus carboplatin for chemonaive patients with malignant pleural mesothelioma: results of the international expanded access program. J. Thorac. Oncol. 3, 756–763 (2008).

    Article  PubMed  Google Scholar 

  138. Yap, T. A. et al. Development of immunotherapy combination strategies in cancer. Cancer Discov. 11, 1368–1397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Horn, L. et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N. Engl. J. Med. 379, 2220–2229 (2018).

    Article  CAS  PubMed  Google Scholar 

  140. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Chu, Q. et al. Pembrolizumab plus chemotherapy versus chemotherapy in untreated advanced pleural mesothelioma in Canada, Italy, and France: a phase 3, open-label, randomised controlled trial. Lancet 402, 2295–2306 (2023). This trial reports demonstrated superiority of chemoimmnunotherapy versus chemotherapy alone for malignant pleural mesothelioma.

    Article  CAS  PubMed  Google Scholar 

  142. Popat, S. et al. BEAT-meso: a randomized phase III study of bevacizumab (B) and standard chemotherapy (C) with or without atezolizumab (A), as first-line treatment (TX) for advanced pleural mesothelioma (PM)—results from the ETOP 13-18 trial. J. Clin. Oncol. 42, LBA8002 (2024).

    Article  Google Scholar 

  143. Aerts, J. G. et al. Dendritic cells loaded with allogeneic tumour cell lysate plus best supportive care versus best supportive care alone in patients with pleural mesothelioma as maintenance therapy after chemotherapy (DENIM): a multicentre, open-label, randomised, phase 2/3 study. Lancet Oncol. 25, 865–878 (2024).

    Article  CAS  PubMed  Google Scholar 

  144. Fennell, D. A. et al. Active symptom control with or without oral vinorelbine in patients with relapsed malignant pleural mesothelioma (VIM): a randomised, phase 2 trial. eClinicalMedicine 48, 101432 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Fennell, D. A. et al. Nivolumab versus placebo in patients with relapsed malignant mesothelioma (CONFIRM): a multicentre, double-blind, randomised, phase 3 trial. Lancet Oncol. 22, 1530–1540 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Maio, M. et al. Tremelimumab as second-line or third-line treatment in relapsed malignant mesothelioma (DETERMINE): a multicentre, international, randomised, double-blind, placebo-controlled phase 2b trial. Lancet Oncol. 18, 1261–1273 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Popat, S. et al. A multicentre randomised phase III trial comparing pembrolizumab versus single-agent chemotherapy for advanced pre-treated malignant pleural mesothelioma: the European Thoracic Oncology Platform (ETOP 9-15) PROMISE-meso trial. Ann. Oncol. 31, 1734–1745 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Scherpereel, A. et al. Nivolumab or nivolumab plus ipilimumab in patients with relapsed malignant pleural mesothelioma (IFCT-1501 MAPS2): a multicentre, open-label, randomised, non-comparative, phase 2 trial. Lancet Oncol. 20, 239–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Disselhorst, M. J. et al. Ipilimumab and nivolumab in the treatment of recurrent malignant pleural mesothelioma (INITIATE): results of a prospective, single-arm, phase 2 trial. Lancet Respir. Med. 7, 260–270 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Alley, E. W. et al. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 18, 623–630 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Douma, L. H. et al. Pembrolizumab plus lenvatinib in second-line and third-line patients with pleural mesothelioma (PEMMELA): a single-arm phase 2 study. Lancet Oncol. 24, 1219–1228 (2023).

    Article  CAS  PubMed  Google Scholar 

  152. Homicsko, K. et al. PD-1-expressing macrophages and CD8 T cells are independent predictors of clinical benefit from PD-1 inhibition in advanced mesothelioma. J. Immunother. Cancer 11, e007585 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Khanna, S. et al. Tumor-derived GM-CSF promotes granulocyte immunosuppression in mesothelioma patients. Clin. Cancer Res. 24, 2859–2872 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rikimaru, T. et al. Production of granulocyte colony-stimulating factor by malignant mesothelioma. Eur. Respir. J. 8, 183–184 (1995).

    Article  CAS  PubMed  Google Scholar 

  155. Hegmans, J. P. et al. Mesothelioma environment comprises cytokines and T-regulatory cells that suppress immune responses. Eur. Respir. J. 27, 1086–1095 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Fujiwara, A. et al. Granulocyte-colony stimulating factor (G-CSF) producing malignant pleural mesothelioma: report of a case. Thorac. Cancer 6, 105–109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chee, S. J. et al. Evaluating the effect of immune cells on the outcome of patients with mesothelioma. Br. J. Cancer 117, 1341–1348 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Pasello, G. et al. Malignant pleural mesothelioma immune microenvironment and checkpoint expression: correlation with clinical-pathological features and intratumor heterogeneity over time. Ann. Oncol. 29, 1258–1265 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Mannarino, L. et al. Epithelioid pleural mesothelioma is characterized by tertiary lymphoid structures in long survivors: results from the MATCH study. Int. J. Mol. Sci. 23, 5786 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Fennell, D. A. et al. Constitutive inflammation and epithelial mesenchymal transition dictate responsiveness to nivolumab: CONFIRM a randomised phase III trial. Nat. Commun. https://doi.org/10.1038/s41467-025-61691-4 (2025).

  161. Homicsko, K. et al. Association of tertiary lymphoid structures with outcomes from PD-1 inhibition in advanced malignant pleural mesothelioma. J. Clin. Oncol. 41, e20545 (2023).

    Article  Google Scholar 

  162. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Fridman, W. H. et al. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat. Rev. Clin. Oncol. 19, 441–457 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, M. et al. A gut microbiota rheostat forecasts responsiveness to PD-L1 and VEGF blockade in mesothelioma. Nat. Commun. 15, 7187 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).

    Article  CAS  PubMed  Google Scholar 

  168. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Spencer, C. N. et al. Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science 374, 1632–1640 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zauderer, M. G. et al. EZH2 inhibitor tazemetostat in patients with relapsed or refractory, BAP1-inactivated malignant pleural mesothelioma: a multicentre, open-label, phase 2 study. Lancet Oncol. 23, 758–767 (2022).

    Article  CAS  PubMed  Google Scholar 

  171. Fennell, D. A. et al. Rucaparib in patients with BAP1-deficient or BRCA1-deficient mesothelioma (MiST1): an open-label, single-arm, phase 2a clinical trial. Lancet Respir. Med. 9, 593–600 (2021).

    Article  CAS  PubMed  Google Scholar 

  172. Fennell, D. et al. Evaluating niraparib versus active symptom control in patients with previously treated mesothelioma (NERO): a study protocol for a multicentre, randomised, two-arm, open-label phase II trial in UK secondary care centres. BMJ Open 13, e073120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Fennell, D. A. et al. Abemaciclib in patients with p16ink4A-deficient mesothelioma (MiST2): a single-arm, open-label, phase 2 trial. Lancet Oncol. 23, 374–381 (2022).

    Article  CAS  PubMed  Google Scholar 

  174. Fennell, D. A. et al. Maintenance defactinib versus placebo after first-line chemotherapy in patients with merlin-stratified pleural mesothelioma: COMMAND-a double-blind, randomized, phase II study. J. Clin. Oncol. 37, 790–798 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Yap, T. A. et al. Abstract CT006: first-in-class, first-in-human phase 1 trial of VT3989, an inhibitor of yes-associated protein (YAP)/transcriptional enhancer activator domain (TEAD), in patients (pts) with advanced solid tumors enriched for malignant mesothelioma and other tumors with neurofibromatosis 2 (NF2) mutations. Cancer Res. 83, CT006–CT006 (2023).

    Article  Google Scholar 

  176. Bayman, N. et al. Prophylactic irradiation of tracts in patients with malignant pleural mesothelioma: an open-label, multicenter, phase III randomized trial. J. Clin. Oncol. 37, 1200–1208 (2019).

    Article  CAS  PubMed  Google Scholar 

  177. Clive, A. O. et al. Prophylactic radiotherapy for the prevention of procedure-tract metastases after surgical and large-bore pleural procedures in malignant pleural mesothelioma (SMART): a multicentre, open-label, phase 3, randomised controlled trial. Lancet Oncol. 17, 1094–1104 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Gomez, D. R. et al. The use of radiation therapy for the treatment of malignant pleural mesothelioma: expert opinion from the national cancer institute thoracic malignancy steering committee, international association for the study of lung cancer, and mesothelioma applied research foundation. J. Thorac. Oncol. 14, 1172–1183 (2019).

    Article  PubMed  Google Scholar 

  179. Tsao, A. S. et al. Current and future management of malignant mesothelioma: a consensus report from the national cancer institute thoracic malignancy steering committee, international association for the study of lung cancer, and mesothelioma applied research foundation. J. Thorac. Oncol. 13, 1655–1667 (2018).

    Article  PubMed  Google Scholar 

  180. MacRae, R. M. et al. The role of radiation treatment in pleural mesothelioma: highlights of the 14th international conference of the international mesothelioma interest group. Lung Cancer 132, 24–27 (2019).

    Article  PubMed  Google Scholar 

  181. Krug, L. M. et al. Multicenter phase II trial of neoadjuvant pemetrexed plus cisplatin followed by extrapleural pneumonectomy and radiation for malignant pleural mesothelioma. J. Clin. Oncol. 27, 3007–3013 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Cho, B. C. J. et al. Surgery for malignant pleural mesothelioma after radiotherapy (SMART): final results from a single-centre, phase 2 trial. Lancet Oncol. 22, 190–197 (2021).

    Article  PubMed  Google Scholar 

  183. de Perrot, M. et al. Accelerated hemithoracic radiation followed by extrapleural pneumonectomy for malignant pleural mesothelioma. J. Thorac. Cardiovasc. Surg. 151, 468–473 (2016).

    Article  PubMed  Google Scholar 

  184. Shaaban, S. G. et al. Utilization of intensity-modulated radiation therapy for malignant pleural mesothelioma in the United States. Clin. Lung Cancer 19, e685–e692 (2018).

    Article  PubMed  Google Scholar 

  185. Patel, R. et al. Disease-related outcomes and toxicities of intensity modulated radiation therapy after lung-sparing pleurectomy for malignant pleural mesothelioma: a systematic review. Pract. Radiat. Oncol. 10, 423–433 (2020).

    Article  PubMed  Google Scholar 

  186. Lazarev, S. et al. Where are we with proton beam therapy for thoracic malignancies? Current status and future perspectives. Lung Cancer 152, 157–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  187. Zeng, J. et al. Consensus statement on proton therapy in mesothelioma. Pract. Radiat. Oncol. 11, 119–133 (2021).

    Article  PubMed  Google Scholar 

  188. Badiyan, S. N. et al. Proton beam therapy for malignant pleural mesothelioma. Transl. Lung Cancer Res. 7, 189–198 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Rice, S. R. et al. A novel prospective study assessing the combination of photodynamic therapy and proton radiation therapy: safety and outcomes when treating malignant pleural mesothelioma. Photochem. Photobiol. 95, 411–418 (2019).

    Article  CAS  PubMed  Google Scholar 

  190. Simone, C. B. 2nd et al. Stereotactic body radiation therapy for lung cancer. Chest 143, 1784–1790 (2013).

    Article  CAS  PubMed  Google Scholar 

  191. Shin, J. Y. et al. Clinical outcomes of stereotactic body radiation therapy for malignant pleural mesothelioma. Radiother. Oncol. 191, 110057 (2024).

    Article  CAS  PubMed  Google Scholar 

  192. Ghirardelli, P. et al. Salvage radiotherapy for oligo-progressive malignant pleural mesothelioma. Lung Cancer 152, 1–6 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Videtic, G. M. M. et al. Stereotactic body radiation therapy for early-stage non-small cell lung cancer: executive summary of an ASTRO evidence-based guideline. Pract. Radiat. Oncol. 7, 295–301 (2017).

    Article  PubMed  Google Scholar 

  194. Alley, E. W., Katz, S. I., Cengel, K. A. & Simone, C. B. 2nd Immunotherapy and radiation therapy for malignant pleural mesothelioma. Transl. Lung Cancer Res. 6, 212–219 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Barsky, A. R., Cengel, K. A., Katz, S. I., Sterman, D. H. & Simone, C. B. 2nd First-ever abscopal effect after palliative radiotherapy and immuno-gene therapy for malignant pleural mesothelioma. Cureus 11, e4102 (2019).

    PubMed  PubMed Central  Google Scholar 

  196. Rimner, A. et al. A phase 1 safety study of avelumab plus stereotactic body radiation therapy in malignant pleural mesothelioma. JTO Clin. Res. Rep. 4, 100440 (2023).

    PubMed  Google Scholar 

  197. Rimner, A. et al. Randomized phase 2 placebo-controlled trial of nintedanib for the treatment of radiation pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 116, 1091–1099 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Simone, C. B. 2nd et al. Multicenter phase 1b/2a clinical trial of radioprotectant BIO 300 oral suspension for patients with non-small cell lung cancer receiving concurrent chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 118, 404–414 (2024).

    Article  PubMed  Google Scholar 

  199. Treasure, T. et al. Extra-pleural pneumonectomy versus no extra-pleural pneumonectomy for patients with malignant pleural mesothelioma: clinical outcomes of the mesothelioma and radical surgery (MARS) randomised feasibility study. Lancet Oncol. 12, 763–772 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Lim, E. et al. Extended pleurectomy decortication and chemotherapy versus chemotherapy alone for pleural mesothelioma (MARS 2): a phase 3 randomised controlled trial. Lancet Respir. Med. 12, 457–466 (2024). The findings of this randomized phase III clinical trial challenge the routine use of surgery in resectable mesothelioma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lim, E. et al. Further insights into MARS 2 – authors’ reply. Lancet Respir. Med. 12, e55 (2024).

    Article  PubMed  Google Scholar 

  202. Waller, D. et al. Why the MARS2 trial does not mean the end of all mesothelioma surgery. Cancers 17, 724 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kindler, H. L. et al. Treatment of pleural mesothelioma: ASCO guideline update. J. Clin. Oncol. 43, 1006–1038 (2025).

    Article  CAS  PubMed  Google Scholar 

  204. Trovo, M. et al. Radical hemithoracic radiotherapy versus palliative radiotherapy in non-metastatic malignant pleural mesothelioma: results from a phase 3 randomized clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 109, 1368–1376 (2021).

    Article  PubMed  Google Scholar 

  205. Stahel, R. A. et al. Neoadjuvant chemotherapy and extrapleural pneumonectomy of malignant pleural mesothelioma with or without hemithoracic radiotherapy (SAKK 17/04): a randomised, international, multicentre phase 2 trial. Lancet Oncol. 16, 1651–1658 (2015).

    Article  PubMed  Google Scholar 

  206. Riesterer, O. et al. Pattern of failure after adjuvant radiotherapy following extrapleural pneumonectomy of pleural mesothelioma in the SAKK 17/04 trial. Radiother. Oncol. 138, 121–125 (2019).

    Article  PubMed  Google Scholar 

  207. Gibson, A. E. J. et al. Development of patient and caregiver conceptual models investigating the health-related quality of life impacts of malignant pleural mesothelioma. Patient 17, 551–563 (2024).

    Article  PubMed  Google Scholar 

  208. Arber, A. & Spencer, L. ‘It’s all bad news’: the first 3 months following a diagnosis of malignant pleural mesothelioma. Psychooncology 22, 1528–1533 (2013).

    Article  PubMed  Google Scholar 

  209. Hoon, S. N. et al. Randomised placebo-controlled cross-over study examining the role of anamorelin in mesothelioma (the ANTHEM study): rationale and protocol. BMJ Open Respir. Res. 7, e000551 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Moore, A., Bennett, B., Taylor-Stokes, G. & Daumont, M. J. Caregivers of patients with malignant pleural mesothelioma: who provides care, what care do they provide and what burden do they experience? Qual. Life Res. 32, 2587–2599 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Bates, G. E. et al. Approach to offering remote support to mesothelioma patients: the mesothelioma survivor project. Transl. Lung Cancer Res. 5, 216–218 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Buresti, G. et al. Economic impact of malignant mesothelioma in Italy: an estimate of the public and social costs. Med. Lav. 108, 358–366 (2017).

    PubMed  Google Scholar 

  213. Borrelli, E., Babcock, Z. & Kogut, S. Costs of medical care for mesothelioma. Rare Tumors 11, 2036361319863498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Tompa, E. et al. The economic burden of lung cancer and mesothelioma due to occupational and para-occupational asbestos exposure. Occup. Environ. Med. 74, 816–822 (2017).

    Article  PubMed  Google Scholar 

  215. Maguire, R. et al. Advanced symptom management system for patients with malignant pleural mesothelioma (ASyMSmeso): mixed methods study. J. Med. Internet Res. 22, e19180 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Jeffery, E. et al. Body composition and nutritional status in malignant pleural mesothelioma: implications for activity levels and quality of life. Eur. J. Clin. Nutr. https://doi.org/10.1038/s41430-019-0418-9 (2019).

    Article  PubMed  Google Scholar 

  217. Bibby, A. C., Morley, A. J., Keenan, E., Maskell, N. A. & Gooberman-Hill, R. The priorities of people with mesothelioma and their carers: a qualitative interview study of trial participation and treatment decisions. Eur. J. Oncol. Nurs. 57, 102111 (2022).

    Article  PubMed  Google Scholar 

  218. Breen, L. J., Huseini, T., Same, A., Peddle-McIntyre, C. J. & Lee, Y. C. G. Living with mesothelioma: a systematic review of patient and caregiver psychosocial support needs. Patient Educ. Couns. 105, 1904–1916 (2022).

    Article  PubMed  Google Scholar 

  219. Nagamatsu, Y. et al. Physician requests by patients with malignant pleural mesothelioma in Japan. BMC Cancer 19, 383 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Sherborne, V., Seymour, J., Taylor, B. & Tod, A. What are the psychological effects of mesothelioma on patients and their carers? A scoping review. Psychooncology 29, 1464–1473 (2020).

    Article  PubMed  Google Scholar 

  221. Senek, M., Robertson, S., Darlison, L., Creech, L. & Tod, A. Malignant pleural mesothelioma patients’ experience by gender: findings from a cross-sectional UK-national questionnaire. BMJ Open Respir. Res. 9, e001050 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Brusselmans, L. et al. Breath analysis as a diagnostic and screening tool for malignant pleural mesothelioma: a systematic review. Transl. Lung Cancer Res. 7, 520–536 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Hirohashi, T., Igarashi, K., Abe, M., Maeda, M. & Hino, O. Retrospective analysis of large-scale research screening of construction workers for the early diagnosis of mesothelioma. Mol. Clin. Oncol. 2, 26–30 (2014).

    Article  PubMed  Google Scholar 

  224. Napolitano, A. et al. HMGB1 and its hyperacetylated isoform are sensitive and specific serum biomarkers to detect asbestos exposure and to identify mesothelioma patients. Clin. Cancer Res. 22, 3087–3096 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Adusumilli, P. S. et al. A phase I trial of regional mesothelin-targeted CAR T-cell therapy in patients with malignant pleural disease, in combination with the anti-PD-1 agent pembrolizumab. Cancer Discov. 11, 2748–2763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Blyth, K. G. et al. Leveraging the pleural space for anticancer therapies in pleural mesothelioma. Lancet Respir. Med. 12, 476–483 (2024).

    Article  CAS  PubMed  Google Scholar 

  227. Sterman, D. H. et al. A trial of intrapleural adenoviral-mediated Interferon-α2b gene transfer for malignant pleural mesothelioma. Am. J. Respir. Crit. Care Med. 184, 1395–1399 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Fennell, D. A. et al. First-in-human phase I clinical trial of RSO-021, a first-in class covalent inhibitor of mitochondrial peroxiredoxin 3 (PRX3), in patients with malignant pleural effusion due to mesothelioma and other advanced solid tumors (MITOPE). J. Clin. Oncol. 42, 3019–3019 (2024).

    Article  Google Scholar 

  229. Sahtoe, D. D., van Dijk, W. J., Ekkebus, R., Ovaa, H. & Sixma, T. K. BAP1/ASXL1 recruitment and activation for H2A deubiquitination. Nat. Commun. 7, 10292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Yuan, J., Chen, K., Zhang, W. & Chen, Z. Structure of human chromatin-remodelling PBAF complex bound to a nucleosome. Nature 605, 166–171 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.A.F.); Epidemiology (M.C.W.); Mechanisms/pathophysiology (Y.S. and A.C.-F.); Diagnosis, screening and prevention (A.N.H. and I.O.); Management (D.A.F., P.B., C.B.S., E.L. and I.O.); Quality of life (F.B.); Outlook (D.A.F.); overview of the Primer (D.A.F.).

Corresponding authors

Correspondence to Dean A. Fennell or Martin Chi-sang Wong.

Ethics declarations

Competing interests

D.A.F.: grants from Aldeyra, Astex Therapeutics, Bayer, BMS, Boehringer Ingelheim, Owkin; non-financial support from BerGenBio, Clovis, Eli Lilly, MSD, Roche and Tesaro GSK; personal fees from Aldeyra, Cambridge Clinical Laboratories, Ikena, Opna Bio, Owkin, RS Oncology, Roche, MSD, during the conduct of the study; I.O.: Roche (institutional grant), AstraZeneca (advisory board), MSD (advisory board), BMS (advisory board), Medtronic (institutional grant and advisory board), Intuitive (proctorship and speaker’s fee), Sanofi (speaker’s fee), Regeneron (advisory board), XVIVO (institutional grant), Siemens (speaker’s fee), Astellas (speaker’s fee). I.O. is the International Director for AATS, a member of the Thoracic Clinical Practice Standards Committee and the Thoracic Education Committee of AATS, an ESTS board member, an iMig board member and The Journal of Thoracic and Cardiovascular Surgery Associate Editor. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks G. Ceresoli; S.-C. Chu; J. Van Meerbeeck, who co-reviewed with J. Raskin; L. Mutti; and A. Scherpereel for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fennell, D.A., Sekido, Y., Baas, P. et al. Pleural mesothelioma. Nat Rev Dis Primers 11, 56 (2025). https://doi.org/10.1038/s41572-025-00640-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-025-00640-3

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer