Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Lung metastases

Subjects

Abstract

Up to 50% of patients with metastatic cancer develop lung metastases during their disease course. Lung metastases are linked to poor prognosis across various cancer types and might impair the quality of life of patients, causing dyspnoea, cough, haemoptysis and pain, potentially diminishing physical, functional and emotional well-being. Lung metastases arise from a complex interplay of tumour-secreted factors such as VEGF, TGFβ and CCL2, which drive vascular remodelling, immune cell recruitment and extracellular matrix reprogramming. Additionally, tumour-derived exosomes and microparticles contribute to organotropism and immunosuppression by altering the lung microenvironment. The ensemble of these modifications creates a pre-metastatic niche conducive to tumour cell colonization and outgrowth. Lung metastases are primarily diagnosed through imaging; histological confirmation is sometimes required to distinguish them from primary lung cancer. The size and number of lung metastases, timing of primary cancer treatment, histology, and the patient’s clinical condition are all considered to determine the most appropriate treatment. When a locoregional approach is not possible, histology-based, molecular-driven systemic therapy is the choice. No systemic treatment is currently available specifically for lung metastases. Advances in understanding the distinct stages of pre-metastatic niche formation and lung metastasis outgrowth might lead to the development of prevention strategies and tailored treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common primary tumours that metastasize to the lung.
Fig. 2: Establishment of the pulmonary pre-metastatic niche.
Fig. 3: Tumour–microenvironment interplay in establishment and maintenance of the pre-metastatic niche.
Fig. 4: Radiological appearance of lung metastases and primary lung tumour.
Fig. 5: Histology of lung metastasis of different primary tumours.

Similar content being viewed by others

References

  1. Chen, H. et al. The epidemiology of lung metastases. Front. Med. 8, 723396 (2021).

    Article  Google Scholar 

  2. Ng, W. H., Varghese, B. & Ren, X. in Engineering Translational Models of Lung Homeostasis and Disease (ed. Magin, C. M.) 247–264 (Springer International, 2023).

  3. Wu, C., Ren, X. & Zhang, Q. Incidence, risk factors, and prognosis in patients with primary hepatocellular carcinoma and lung metastasis: a population-based study. Cancer Manag. Res. 11, 2759–2768 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gerratana, L. et al. Pattern of metastasis and outcome in patients with breast cancer. Clin. Exp. Metastasis 32, 125–133 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Detterbeck, F. C. et al. The IASLC Lung Cancer Staging Project: methodology and validation used in the development of proposals for revision of the stage classification of NSCLC in the forthcoming (Eighth) edition of the TNM Classification of Lung Cancer. J. Thorac. Oncol. 11, 1433–1446 (2016).

    Article  PubMed  Google Scholar 

  6. Billingsley, K. G. et al. Pulmonary metastases from soft tissue sarcoma: analysis of patterns of diseases and postmetastasis survival. Ann. Surg. 229, 602–610 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gadd, M. A., Casper, E. S., Woodruff, J. M., McCormack, P. M. & Brennan, M. F. Development and treatment of pulmonary metastases in adult patients with extremity soft tissue sarcoma. Ann. Surg. 218, 705–712 (1993).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Feng, J., He, Y., Wan, J. & Chen, Z. Pulmonary metastases in newly diagnosed hepatocellular carcinoma: a population-based retrospective study. HPB 22, 1295–1304 (2020).

    Article  PubMed  Google Scholar 

  9. Neal, R. D. Lung cancer. BMJ 365, l1725 (2019).

    Article  PubMed  Google Scholar 

  10. Bray, F. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 74, 229–263 (2024).

    PubMed  Google Scholar 

  11. Mangiameli, G., Cioffi, U., Alloisio, M. & Testori, A. in Metastasis (ed. Sergi, C. M.) Ch. 3 (Exon Publications, 2022).

  12. Travis, W. D., Brambilla, E., Müller-Hermelink, H. K. & Harris, C. C. (eds) Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart (IARC, 2004).

  13. Shaha, A. R., Hoover, E. L., Mitrani, M., Marti, J. R. & Krespi, Y. P. Synchronicity, multicentricity, and metachronicity of head and neck cancer. Head Neck Surg. 10, 225–228 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. Hendriks, L. E. L. et al. Non-small-cell lung cancer. Nat. Rev. Dis. Primers 10, 71 (2024).

    Article  PubMed  Google Scholar 

  15. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Higgins, S. T. et al. A literature review on prevalence of gender differences and intersections with other vulnerabilities to tobacco use in the United States, 2004–2014. Prev. Med. 80, 89–100 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Siegel, R. L., Kratzer, T. B., Giaquinto, A. N., Sung, H. & Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 75, 10–45 (2025).

    PubMed  PubMed Central  Google Scholar 

  18. Irish, W. D., Burch, A. E., Landry, A., Honaker, M. D. & Wong, J. Development and validation of a county deprivation index for assessing socio-economic disparities in the United States: implications for public health outcomes and mitigation strategies. Public Health 240, 56–62 (2025).

    Article  PubMed  CAS  Google Scholar 

  19. Nascimento de Carvalho, F. et al. Disparities in stage at diagnosis of head and neck tumours in Brazil: a comprehensive analysis of hospital-based cancer registries. Lancet Reg. Health Am. 42, 100986 (2025).

    PubMed  PubMed Central  Google Scholar 

  20. Crow, J., Slavin, G. & Kreel, L. Pulmonary metastasis: a pathologic and radiologic study. Cancer 47, 2595–2602 (1981).

    Article  PubMed  CAS  Google Scholar 

  21. van Meerbeeck, J. P., Gosselin, R. & Duyck, P. in Lung Metastases and Isolated Lung Perfusion (ed. van Schil, P. E.) 3–25 (Nova Science, 2007).

  22. Mayinger, M. et al. Stereotactic body radiotherapy for lung oligo-metastases: systematic review and International Stereotactic Radiosurgery Society practice guidelines. Lung Cancer 182, 107284 (2023).

    Article  PubMed  CAS  Google Scholar 

  23. Christ, S. M. et al. Clinical management of oligometastatic cancer: applying multidisciplinary tumor board recommendations in practice. Clin. Transl. Radiat. Oncol. 48, 100838 (2024).

    PubMed  PubMed Central  Google Scholar 

  24. Xie, T. et al. Distant metastasis patterns among lung cancer subtypes and impact of primary tumor resection on survival in metastatic lung cancer using SEER database. Sci. Rep. 14, 22445 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Riihimäki, M. et al. Metastatic sites and survival in lung cancer. Lung Cancer 86, 78–84 (2014).

    Article  PubMed  Google Scholar 

  26. Stenbygaard, L. E., Sorensen, J. B. & Olsen, J. E. Metastatic pattern at autopsy in non-resectable adenocarcinoma of the lung — a study from a cohort of 259 consecutive patients treated with chemotherapy. Acta Oncol. 36, 301–306 (1997).

    Article  PubMed  CAS  Google Scholar 

  27. Fong, K. M. et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the M descriptors in the forthcoming 9th edition of the TNM Classification of Lung Cancer. J. Thorac. Oncol. 19, 786–802 (2024).

    Article  PubMed  Google Scholar 

  28. Rami-Porta, R. et al. The International Association for the Study of Lung Cancer Lung Cancer Staging Project: proposals for revision of the TNM stage groups in the forthcoming (Ninth) edition of the TNM classification for lung cancer. J. Thorac. Oncol. 19, 1007–1027 (2024).

    Article  PubMed  Google Scholar 

  29. Riquet, M. et al. Multiple lung cancers prognosis: what about histology? Ann. Thorac. Surg. 86, 921–926 (2008).

    Article  PubMed  Google Scholar 

  30. Foulkes, W. D., Smith, I. E. & Reis-Filho, J. S. Triple-negative breast cancer. N. Engl. J. Med. 363, 1938–1948 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. Kennecke, H. et al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 28, 3271–3277 (2010).

    Article  PubMed  Google Scholar 

  32. Smid, M. et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res. 68, 3108–3114 (2008).

    Article  PubMed  CAS  Google Scholar 

  33. Yhim, H.-Y. et al. Prognostic factors for recurrent breast cancer patients with an isolated, limited number of lung metastases and implications for pulmonary metastasectomy. Cancer 116, 2890–2901 (2010).

    Article  PubMed  Google Scholar 

  34. Edwards, B. K. et al. Annual report to the nation on the status of cancer, 1975-2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer 116, 544–573 (2010).

    Article  PubMed  Google Scholar 

  35. Wang, J. et al. Metastatic patterns and survival outcomes in patients with stage IV colon cancer: a population-based analysis. Cancer Med. 9, 361–373 (2020).

    Article  PubMed  Google Scholar 

  36. Jordens, M. S. et al. Prevalence of lung metastases among 19,321 metastatic colorectal cancer patients in eight countries of Europe and Asia. Curr. Oncol. 28, 5035–5040 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mitry, E. et al. Epidemiology, management and prognosis of colorectal cancer with lung metastases: a 30-year population-based study. Gut 59, 1383–1388 (2010).

    Article  PubMed  Google Scholar 

  38. Shou, J., Zhang, Q., Wang, S. & Zhang, D. The prognosis of different distant metastases pattern in prostate cancer: a population based retrospective study. Prostate 78, 491–497 (2018).

    Article  PubMed  CAS  Google Scholar 

  39. Fabozzi, S. J., Schellhammer, P. F. & el-Mahdi, A. M. Pulmonary metastases from prostate cancer. Cancer 75, 2706–2709 (1995).

    Article  PubMed  CAS  Google Scholar 

  40. Bubendorf, L. et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum. Pathol. 31, 578–583 (2000).

    Article  PubMed  CAS  Google Scholar 

  41. Bianchi, M. et al. Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Ann. Oncol. 23, 973–980 (2012).

    Article  PubMed  CAS  Google Scholar 

  42. Chandrasekar, T. et al. Metastatic renal cell carcinoma: patterns and predictors of metastases — a contemporary population-based series. Urol. Oncol. 35, 661.e7–661.e14 (2017).

    Article  PubMed  Google Scholar 

  43. Weiss, L. et al. Metastatic patterns of renal carcinoma: an analysis of 687 necropsies. J. Cancer Res. Clin. Oncol. 114, 605–612 (1988).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhang, Z., Liang, C., Hou, B. & Zhou, L. Population-based evaluation of the risk factors and prognosis among renal cell carcinoma patients with initially diagnosed lung metastases. Actas Urol. Esp. 45, 498–506 (2021).

    Article  PubMed  CAS  Google Scholar 

  45. Abdel-Rahman, O. Clinical correlates and prognostic value of different metastatic sites in metastatic renal cell carcinoma. Future Oncol. 13, 1967–1980 (2017).

    Article  PubMed  Google Scholar 

  46. Vezeridis, M. P., Moore, R. & Karakousis, C. P. Metastatic patterns in soft-tissue sarcomas. Arch. Surg. 118, 915–918 (1983).

    Article  PubMed  CAS  Google Scholar 

  47. Zhang, C. et al. Lung metastases at the initial diagnosis of high-grade osteosarcoma: prevalence, risk factors and prognostic factors. A large population-based cohort study. Sao Paulo Med. J. 137, 423–429 (2019).

    Article  PubMed  Google Scholar 

  48. Fan, Z. et al. Score for the risk and overall survival of lung metastasis in patients first diagnosed with soft tissue sarcoma: a novel nomogram-based risk assessment system. Technol. Cancer Res. Treat. 21, https://doi.org/10.1177/15330338211066240 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xie, L., Huang, W., Wang, H., Zheng, C. & Jiang, J. Risk factors for lung metastasis at presentation with malignant primary osseous neoplasms: a population-based study. J. Orthop. Surg. Res. 15, 32 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Liu, H. et al. Pan-soft tissue sarcoma analysis of the incidence, survival, and metastasis: a population-based study focusing on distant metastasis and lymph node metastasis. Front. Oncol. 12, 890040 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lindsey, B. A., Markel, J. E. & Kleinerman, E. S. Osteosarcoma overview. Rheumatol. Ther. 4, 25–43 (2017).

    Article  PubMed  Google Scholar 

  52. Vaarwerk, B. et al. Fluorine-18-fluorodeoxyglucose (FDG) positron emission tomography (PET) computed tomography (CT) for the detection of bone, lung, and lymph node metastases in rhabdomyosarcoma. Cochrane Database Syst. Rev. 11, CD012325 (2021).

    PubMed  Google Scholar 

  53. Uka, K. et al. Clinical features and prognosis of patients with extrahepatic metastases from hepatocellular carcinoma. World J. Gastroenterol. 13, 414–420 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shao, G., Zhi, Y., Fan, Z., Qiu, W. & Lv, G. Development and validation of a diagnostic and prognostic model for lung metastasis of hepatocellular carcinoma: a study based on the SEER database. Front. Med. 10, 1171023 (2023).

    Article  Google Scholar 

  55. Li, M. et al. Hepatoid adenocarcinoma-clinicopathological features and molecular characteristics. Cancer Lett. 559, 216104 (2023).

    Article  PubMed  CAS  Google Scholar 

  56. Moorman, A. et al. Progressive plasticity during colorectal cancer metastasis. Nature 637, 947–954 (2025).

    Article  PubMed  CAS  Google Scholar 

  57. Cañellas-Socias, A. et al. Metastatic recurrence in colorectal cancer arises from residual EMP1+ cells. Nature 611, 603–613 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Martínez-Ruiz, C. et al. Genomic-transcriptomic evolution in lung cancer and metastasis. Nature 616, 543–552 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  PubMed  CAS  Google Scholar 

  61. Gerull, W. D., Puri, V. & Kozower, B. D. The epidemiology and biology of pulmonary metastases. J. Thorac. Dis. 13, 2585–2589 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kurma, K. & Alix-Panabières, C. Mechanobiology and survival strategies of circulating tumor cells: a process towards the invasive and metastatic phenotype. Front. Cell Dev. Biol. 11, 1188499 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Au, S. H. et al. Clusters of circulating tumor cells traverse capillary-sized vessels. Proc. Natl Acad. Sci. USA 113, 4947–4952 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Giancotti, F. G. Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750–764 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    Article  PubMed  CAS  Google Scholar 

  66. Kaplan, R. N. et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438, 820–827 (2005). This study highlights the organotropism underlying lung metastases: the metastatic process necessitates VEGFR1+VLA4+ bone marrow-derived progenitors and their interaction with fibronectin expressed by resident fibroblasts.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Ghouse, S. M. et al. Therapeutic targeting of vasculature in the premetastatic and metastatic niches reduces lung metastasis. J. Immunol. 204, 990–1000 (2020).

    Article  PubMed  CAS  Google Scholar 

  68. Qian, B.-Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Nam, J.-S. et al. Chemokine (C-C Motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res. 66, 7176–7184 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Mestdagt, M. et al. Transactivation of MCP-1/CCL2 by β-catenin/TCF-4 in human breast cancer cells. Int. J. Cancer 118, 35–42 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Roblek, M. et al. CCL2 is a vascular permeability factor inducing CCR2-dependent endothelial retraction during lung metastasis. Mol. Cancer Res. 17, 783–793 (2019). This study highlights the critical role of endothelial CCR2 in orchestrating tumour cell extravasation and promoting lung metastasis.

    Article  PubMed  CAS  Google Scholar 

  72. Lu, X. & Kang, Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J. Biol. Chem. 284, 29087–29096 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhang, H. et al. Circulating tumor microparticles promote lung metastasis by reprogramming inflammatory and mechanical niches via a macrophage-dependent pathway. Cancer Immunol. Res. 6, 1046–1056 (2018).

    Article  PubMed  CAS  Google Scholar 

  74. Sceneay, J. et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 72, 3906–3911 (2012).

    Article  PubMed  CAS  Google Scholar 

  75. Hiratsuka, S., Watanabe, A., Aburatani, H. & Maru, Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat. Cell Biol. 8, 1369–1375 (2006).

    Article  PubMed  CAS  Google Scholar 

  76. Hiratsuka, S. et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol. 10, 1349–1355 (2008). This study demonstrates that SAA3–TLR4 signalling within the pre-metastatic niche triggers an inflammatory-like state that acts as a positive feedback loop, enhancing tumour cell recruitment to the lung.

    Article  PubMed  CAS  Google Scholar 

  77. Liu, Y. et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell 30, 243–256 (2016).

    Article  PubMed  Google Scholar 

  78. Simons, M. & Raposo, G. Exosomes–vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581 (2009).

    Article  PubMed  CAS  Google Scholar 

  79. Liu, Y., Gu, Y. & Cao, X. The exosomes in tumor immunity. Oncoimmunology 4, e1027472 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ma, R. et al. Tumor cell-derived microparticles polarize M2 tumor-associated macrophages for tumor progression. OncoImmunology 5, e1118599 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Gong, Z. et al. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment. Immunity 55, 1483–1500.e9 (2022). This study highlights that, while primary tumours certainly coordinate the invasion of the secondary metastatic site, the lung (specifically its resident fibroblast) facilitates the establishment of a pre-metastatic niche.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Yofe, I. et al. Spatial and temporal mapping of breast cancer lung metastases identify TREM2 macrophages as regulators of the metastatic boundary. Cancer Discov. 13, 2610–2631 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Zahr, A. et al. Endomucin prevents leukocyte–endothelial cell adhesion and has a critical role under resting and inflammatory conditions. Nat. Commun. 7, 10363 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Armulik, A., Genové, G. & Betsholtz, C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 21, 193–215 (2011).

    Article  PubMed  CAS  Google Scholar 

  86. Murgai, M. et al. KLF4-dependent perivascular cell plasticity mediates pre-metastatic niche formation and metastasis. Nat. Med. 23, 1176–1190 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zhang, G. et al. Loss of endothelial EMCN drives tumor lung metastasis through the premetastatic niche. J. Transl. Med. 20, 446 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. McDonald, D. M. & Baluk, P. Significance of blood vessel leakiness in cancer. Cancer Res. 62, 5381–5385 (2002).

    PubMed  CAS  Google Scholar 

  90. Li, H., Han, Y., Guo, Q., Zhang, M. & Cao, X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-β11. J. Immunol. 182, 240–249 (2009).

    Article  PubMed  CAS  Google Scholar 

  91. Olkhanud, P. B. et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res. 69, 5996–6004 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Gong, Z. et al. Immunosuppressive reprogramming of neutrophils by lung mesenchymal cells promotes breast cancer metastasis. Sci. Immunol. 8, eadd5204 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015). This research letter describes the role of neutrophils, and their secreted leukotrienes, in enhancing the expansion of the subset of tumour cells with the highest metastatic potential.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Qian, B.-Z. & Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39–51 (2010). This study underscores the pivotal role of the CCL2–CCR2 axis in promoting the recruitment of inflammatory monocytes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Sangaletti, S. et al. Macrophage-derived SPARC bridges tumor cell-extracellular matrix interactions toward metastasis. Cancer Res. 68, 9050–9059 (2008).

    Article  PubMed  CAS  Google Scholar 

  96. Egeblad, M. & Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161–174 (2002).

    Article  PubMed  CAS  Google Scholar 

  97. Hiratsuka, S. et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2, 289–300 (2002).

    Article  PubMed  CAS  Google Scholar 

  98. Schild, T., Low, V., Blenis, J. & Gomes, A. P. Unique metabolic adaptations dictate distal organ-specific metastatic colonization. Cancer Cell 33, 347–354 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. LeBleu, V. S. et al. PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat. Cell Biol. 16, 992–1003 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Andrzejewski, S. et al. PGC-1α promotes breast cancer metastasis and confers bioenergetic flexibility against metabolic drugs. Cell Metab. 26, 778–787.e5 (2017).

    Article  PubMed  CAS  Google Scholar 

  101. St-Pierre, J. et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127, 397–408 (2006).

    Article  PubMed  CAS  Google Scholar 

  102. Christen, S. et al. Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis. Cell Rep. 17, 837–848 (2016).

    Article  PubMed  CAS  Google Scholar 

  103. Sellers, K. et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687–698 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jin, L. et al. Breast cancer lung metastasis: molecular biology and therapeutic implications. Cancer Biol. Ther. 19, 858–868 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Colon cancer (version 2.2024). National Comprehensive Cancer Network https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf (2024).

  106. Gennari, A. et al. ESMO Guidelines Committee. ESMO clinical practice guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2, 1475–1495 (2021).

    Article  Google Scholar 

  107. Escudier, B. et al. ESMO Guidelines Committee. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 30, 706–720 (2019).

    Article  PubMed  CAS  Google Scholar 

  108. Cervantes, A. et al. ESMO Guidelines Committee. Metastatic colorectal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 10–32 (2023).

    Article  PubMed  CAS  Google Scholar 

  109. Deniffel, D. et al. Differentiating intrapulmonary metastases from different primary tumors via quantitative dual-energy CT based iodine concentration and conventional CT attenuation. Eur. J. Radiol. 111, 6–13 (2019).

    Article  PubMed  Google Scholar 

  110. Juan, J. et al. Computer-assisted diagnosis for an early identification of lung cancer in chest X rays. Sci. Rep. 13, 7720 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Veltri, A. et al. CIRSE guidelines on percutaneous needle biopsy (PNB). Cardiovasc. Interv. Radiol. 40, 1501–1513 (2017).

    Article  Google Scholar 

  112. Venturini, M. et al. CIRSE standards of practice on thermal ablation of primary and secondary lung tumours. Cardiovasc. Interv. Radiol. 43, 667–683 (2020).

    Article  Google Scholar 

  113. Genshaft, S. J. et al. Society of Interventional Radiology multidisciplinary position statement on percutaneous ablation of non-small cell lung cancer and metastatic disease to the lungs: endorsed by the Canadian Association for Interventional Radiology, the Cardiovascular and Interventional Radiological Society of Europe, and the Society of Interventional Oncology. J. Vasc. Interv. Radiol. 32, 1241.e1–1241.e12 (2021).

    Article  PubMed  Google Scholar 

  114. Bartlett, E. C. et al. Defining growth in small pulmonary nodules using volumetry: results from a ‘coffee-break’ CT study and implications for current nodule management guidelines. Eur. Radiol. 32, 1912–1920 (2022).

    Article  PubMed  Google Scholar 

  115. Hofman, M. S. et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395, 1208–1216 (2020).

    Article  PubMed  CAS  Google Scholar 

  116. Damjanovic, J. et al. 68 Ga-PSMA-PET/CT for the evaluation of pulmonary metastases and opacities in patients with prostate cancer. Cancer Imaging 18, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Albanus, D. R. et al. Clinical value of 68Ga-DOTATATE-PET/CT compared to stand-alone contrast enhanced CT for the detection of extra-hepatic metastases in patients with neuroendocrine tumours (NET). Eur. J. Radiol. 84, 1866–1872 (2015).

    Article  PubMed  CAS  Google Scholar 

  118. Mori, Y. et al. FAPI PET: fibroblast activation protein inhibitor use in oncologic and nononcologic disease. Radiology 306, e220749 (2023).

    Article  PubMed  Google Scholar 

  119. Seo, J. B. et al. Atypical pulmonary metastases: spectrum of radiologic findings. Radiographics 21, 403–417 (2001).

    Article  PubMed  CAS  Google Scholar 

  120. Saifuddin, A., Baig, M. S., Dalal, P. & Strauss, S. J. The diagnosis of pulmonary metastases on chest computed tomography in primary bone sarcoma and musculoskeletal soft tissue sarcoma. Br. J. Radiol. 94, 20210088 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Tateishi, U. et al. Metastatic angiosarcoma of the lung: spectrum of CT findings. Am. J. Roentgenol. 180, 1671–1674 (2003).

    Article  Google Scholar 

  122. Stella, G. M., Kolling, S., Benvenuti, S. & Bortolotto, C. Lung-seeking metastases. Cancers 11, 1010 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Deng, C. J. et al. Clinical updates of approaches for biopsy of pulmonary lesions based on systematic review. BMC Pulm. Med. 18, 146 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kim, S. H. et al. Clinical outcomes of transbronchial cryobiopsy using a 1.1-mm diameter cryoprobe for peripheral lung lesions — a prospective pilot study. Respir. Med. 217, 107338 (2023).

    Article  PubMed  Google Scholar 

  125. Giri, M. et al. Efficacy and safety of cryobiopsy vs. forceps biopsy for interstitial lung diseases, lung tumors, and peripheral pulmonary lesions: an updated systematic review and meta-analysis. Front. Med. 9, 840702 (2022).

    Article  Google Scholar 

  126. Genova, C. et al. Potential application of cryobiopsy for histo-molecular characterization of mediastinal lymph nodes in patients with thoracic malignancies: a case presentation series and implications for future developments. BMC Pulm. Med. 22, 5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang, J. et al. Transbronchial mediastinal cryobiopsy in the diagnosis of mediastinal lesions: a randomised trial. Eur. Respir. J. 58, 2100055 (2021).

    Article  PubMed  Google Scholar 

  128. Scholten, E. T. & Kreel, L. Distribution of lung metastases in the axial plane. A combined radiological-pathological study. Radiol. Clin. 46, 248–265 (1977).

    CAS  Google Scholar 

  129. Coppage, L., Shaw, C. & Curtis, A. M. Metastatic disease to the chest in patients with extrathoracic malignancy. J. Thorac. Imaging 2, 24–37 (1987).

    Article  PubMed  CAS  Google Scholar 

  130. Libshitz, H. I. & North, L. B. Pulmonary metastases. Radiol. Clin. North Am. 20, 437–451 (1982).

    PubMed  CAS  Google Scholar 

  131. Marchevsky, A. M., Gupta, R. & Balzer, B. Diagnosis of metastatic neoplasms: a clinicopathologic and morphologic approach. Arch. Pathol. Lab. Med. 134, 194–206 (2010).

    Article  PubMed  Google Scholar 

  132. Jagirdar, J. Application of immunohistochemistry to the diagnosis of primary and metastatic carcinoma to the lung. Arch. Pathol. Lab. Med. 132, 384–396 (2008).

    Article  PubMed  Google Scholar 

  133. Girard, N. et al. Comprehensive histologic assessment helps to differentiate multiple lung primary nonsmall cell carcinomas from metastases. Am. J. Surg. Pathol. 33, 1752–1764 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Murphy, S. J. et al. Identification of independent primary tumors and intrapulmonary metastases using DNA rearrangements in non-small-cell lung cancer. J. Clin. Oncol. 32, 4050–4058 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Murphy, S. J. et al. Using genomics to differentiate multiple primaries from metastatic lung cancer. J. Thorac. Oncol. 14, 1567–1582 (2019).

    Article  PubMed  CAS  Google Scholar 

  136. Chou, T.-Y. et al. Differentiating separate primary lung adenocarcinomas from intrapulmonary metastases with emphasis on pathological and molecular considerations: recommendations from the International Association for the Study of Lung Cancer Pathology Committee. J. Thorac. Oncol. 20, 311–330 (2025). This study provides a practical guide orienting differential diagnosis of a second primary tumour (lung adenocarcinoma) and intrapulmonary metastasis, delving into pathological features, clonal relatedness and molecular analyses.

    Article  PubMed  Google Scholar 

  137. Bayle, A. et al. ESMO study on the availability and accessibility of biomolecular technologies in oncology in Europe. Ann. Oncol. 34, 934–945 (2023).

    Article  PubMed  CAS  Google Scholar 

  138. Detterbeck, F. C. et al. The IASLC lung cancer staging project: background data and proposed criteria to distinguish separate primary lung cancers from metastatic foci in patients with two lung tumors in the forthcoming eighth edition of the TNM classification for lung cancer. J. Thorac. Oncol. 11, 651–665 (2016).

    Article  PubMed  Google Scholar 

  139. Chang, J. C. et al. Comprehensive next-generation sequencing unambiguously distinguishes separate primary lung carcinomas from intrapulmonary metastases: comparison with standard histopathologic approach. Clin. Cancer Res. 25, 7113–7125 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Midha, A., Dearden, S. & McCormack, R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am. J. Cancer Res. 5, 2892–2911 (2015).

    PubMed  PubMed Central  Google Scholar 

  141. Dacic, S. et al. Genomic staging of multifocal lung squamous cell carcinomas is independent of the comprehensive morphologic assessment. J. Thorac. Oncol. 19, 273–284 (2024).

    Article  PubMed  CAS  Google Scholar 

  142. Chu, P. G., Chung, L., Weiss, L. M. & Lau, S. K. Determining the site of origin of mucinous adenocarcinoma: an immunohistochemical study of 175 cases. Am. J. Surg. Pathol. 35, 1830–1836 (2011).

    Article  PubMed  Google Scholar 

  143. Chang, J. C. et al. Comprehensive molecular and clinicopathologic analysis of 200 pulmonary invasive mucinous adenocarcinomas identifies distinct characteristics of molecular subtypes. Clin. Cancer Res. 27, 4066–4076 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Hwang, D. H. et al. KRAS and NKX2-1 mutations in invasive mucinous adenocarcinoma of the lung. J. Thorac. Oncol. 11, 496–503 (2016).

    Article  PubMed  Google Scholar 

  145. Hugen, N. et al. The molecular background of mucinous carcinoma beyond MUC2. J. Pathol. Clin. Res. 1, 3–17 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Fernandez-Cuesta, L. et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 4, 415–422 (2014).

    Article  PubMed  CAS  Google Scholar 

  147. Liu, S. V. et al. Real-world outcomes associated with afatinib use in patients with solid tumors harboring NRG1 gene fusions. Lung Cancer 188, 107469 (2024).

    Article  PubMed  CAS  Google Scholar 

  148. Schweizer, M. T. et al. Clinical determinants for successful circulating tumor DNA analysis in prostate cancer. Prostate 79, 701–708 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Fiala, C. & Diamandis, E. P. Utility of circulating tumor DNA in cancer diagnostics with emphasis on early detection. BMC Med. 16, 166 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Umemoto, K. et al. Clinical significance of circulating-tumour DNA analysis by metastatic sites in pancreatic cancer. Br. J. Cancer 128, 1603–1608 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. NNCN guidelines: treatment by cancer type. National Comprehensive Cancer Network https://www.nccn.org/guidelines/category_1 (2025).

  152. Warwick, R. & Page, R. Resection of pulmonary metastases from colorectal carcinoma. Eur. J. Surgical Oncol. 33, S59–S63 (2007).

    Article  Google Scholar 

  153. Pastorino, U. et al. Long-term results of lung metastasectomy: prognostic analyses based on 5206 cases. J. Thorac. Cardiovasc. Surg. 113, 37–49 (1997).

    Article  PubMed  CAS  Google Scholar 

  154. Antonoff, M. B., Sofocleous, C. T., Callstrom, M. R. & Nguyen, Q.-N. The roles of surgery, stereotactic radiation, and ablation for treatment of pulmonary metastases. J. Thorac. Cardiovasc. Surg. 163, 495–502 (2022).

    Article  PubMed  Google Scholar 

  155. Rhun, E. L. et al. EANO–ESMO clinical practice guidelines for diagnosis, treatment and follow-up of patients with brain metastasis from solid tumours. Ann. Oncol. 32, 1332–1347 (2021).

    Article  PubMed  Google Scholar 

  156. Lindqvist, J., Jekunen, A., Sihvo, E., Johansson, M. & Andersén, H. Effect of adherence to treatment guidelines on overall survival in elderly non-small-cell lung cancer patients. Lung Cancer 171, 9–17 (2022).

    Article  PubMed  Google Scholar 

  157. Jumeau, R., Vilotte, F., Durham, A.-D. & Ozsahin, E.-M. Current landscape of palliative radiotherapy for non-small-cell lung cancer. Transl. Lung Cancer Res. 8, S192–S201 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Fairchild, A. et al. Palliative thoracic radiotherapy for lung cancer: a systematic review. J. Clin. Oncol. 26, 4001–4011 (2008).

    Article  PubMed  Google Scholar 

  159. Støchkel Frank, M., Schou Nørøxe, D., Nygård, L. & Fredberg Persson, G. Fractionated palliative thoracic radiotherapy in non-small cell lung cancer — futile or worth-while? BMC Palliat. Care 17, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Rodrigues, G. et al. Palliative thoracic radiotherapy in lung cancer: an American Society for Radiation Oncology evidence-based clinical practice guideline. Pract. Radiat. Oncol. 1, 60–71 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Moeller, B. et al. Palliative thoracic radiation therapy for non-small cell lung cancer: 2018 update of an American Society for Radiation Oncology (ASTRO) evidence-based guideline. Pract. Radiat. Oncol. 8, 245–250 (2018).

    Article  PubMed  Google Scholar 

  162. Singh, M. N. in Fundamentals in Gynaecologic Malignancy (eds Kataki, A. C. & Barmon, D.) 99–117 (Springer, 2022).

  163. Azizi, A. H. et al. Superior vena cava syndrome. JACC Cardiovasc. Interv. 13, 2896–2910 (2020).

    Article  PubMed  Google Scholar 

  164. Guckenberger, M. et al. Characterisation and classification of oligometastatic disease: a European Society for Radiotherapy and Oncology and European Organisation for Research and Treatment of Cancer consensus recommendation. Lancet Oncol. 21, e18–e28 (2020).

    Article  PubMed  Google Scholar 

  165. Gomez, D. R. et al. Local consolidative therapy vs. maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer: long-term results of a multi-institutional, phase II, randomized study. J. Clin. Oncol. 37, 1558–1565 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Palma, D. A. et al. Stereotactic ablative radiotherapy for the comprehensive treatment of oligometastatic cancers: long-term results of the SABR-COMET phase II randomized trial. J. Clin. Oncol. 38, 2830–2838 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Iyengar, P. et al. Consolidative radiotherapy for limited metastatic non-small-cell lung cancer: a phase 2 randomized clinical trial. JAMA Oncol. 4, e173501 (2018).

    Article  PubMed  Google Scholar 

  168. Wang, X.-S. et al. Randomized trial of first-line tyrosine kinase inhibitor with or without radiotherapy for synchronous oligometastatic EGFR-mutated non-small cell lung cancer. J. Natl Cancer Inst. 115, 742–748 (2023).

    Article  PubMed  CAS  Google Scholar 

  169. Christ, S. M. et al. Cancer-specific dose and fractionation schedules in stereotactic body radiotherapy for oligometastatic disease: an interim analysis of the EORTC-ESTRO E2-RADIatE OligoCare study. Radiother. Oncol. 195, 110235 (2024).

    Article  PubMed  Google Scholar 

  170. Lievens, Y. et al. Coverage with evidence development program on stereotactic body radiotherapy in Belgium (2013-2019): a nationwide registry-based prospective study. Lancet Reg. Health Eur. 44, 100992 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Vaz, S. C. et al. Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. Eur. J. Nucl. Med. Mol. Imaging 49, 1386–1406 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Siva, S. et al. Single-fraction vs multifraction stereotactic ablative body radiotherapy for pulmonary oligometastases (SAFRON II): the Trans Tasman Radiation Oncology Group 13.01 phase 2 randomized clinical trial. JAMA Oncol. 7, 1476–1485 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Tekatli, H. et al. Local control and toxicity after magnetic resonance imaging (MR)-guided single fraction lung stereotactic ablative radiotherapy. Radiother. Oncol. 187, 109823 (2023).

    Article  PubMed  Google Scholar 

  174. Iyengar, P. et al. Treatment of oligometastatic non-small cell lung cancer: an ASTRO/ESTRO clinical practice guideline. Pract. Radiat. Oncol. 13, 393–412 (2023).

    Article  PubMed  Google Scholar 

  175. Cao, C. et al. A systematic review and meta-analysis of stereotactic body radiation therapy for colorectal pulmonary metastases. J. Thorac. Dis. 11, 5187–5198 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Aznar, M. C. et al. ESTRO-ACROP guideline: recommendations on implementation of breath-hold techniques in radiotherapy. Radiother. Oncol. 185, 109734 (2023).

    Article  PubMed  CAS  Google Scholar 

  177. Klein, T. J. et al. CyberKnife Xsight versus fiducial-based target-tracking: a novel 3D dosimetric comparison in a dynamic phantom. Radiat. Oncol. 17, 154 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Chang, J. H., Poon, I., Erler, D., Zhang, L. & Cheung, P. The safety and effectiveness of stereotactic body radiotherapy for central versus ultracentral lung tumors. Radiother. Oncol. 129, 277–283 (2018).

    Article  PubMed  Google Scholar 

  179. Finazzi, T. et al. Clinical outcomes of stereotactic MR-guided adaptive radiation therapy for high-risk lung tumors. Int. J. Radiat. Oncol. Biol. Phys. 107, 270–278 (2020).

    Article  PubMed  Google Scholar 

  180. Loi, M. et al. Stereotactic radiotherapy for ultra-central lung oligometastases in non-small-cell lung cancer. Cancers 12, 885 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Andruska, N. et al. Stereotactic radiation for lung cancer: a practical approach to challenging scenarios. J. Thorac. Oncol. 16, 1075–1085 (2021).

    Article  PubMed  Google Scholar 

  182. Kroeze, S. G. C. et al. Metastases-directed stereotactic body radiotherapy in combination with targeted therapy or immunotherapy: systematic review and consensus recommendations by the EORTC-ESTRO OligoCare consortium. Lancet Oncol. 24, e121–e132 (2023).

    Article  PubMed  CAS  Google Scholar 

  183. Prud’homme, C. et al. Image-guided lung metastasis ablation: a literature review. Int. J. Hyperth. 36, 37–45 (2019).

    Article  Google Scholar 

  184. de Baere, T. et al. Radiofrequency ablation is a valid treatment option for lung metastases: experience in 566 patients with 1037 metastases. Ann. Oncol. 26, 987–991 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Callstrom, M. R. et al. Multicenter study of metastatic lung tumors targeted by interventional cryoablation evaluation (SOLSTICE). J. Thorac. Oncol. 15, 1200–1209 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Kurilova, I. et al. Microwave ablation in the management of colorectal cancer pulmonary metastases. Cardiovasc. Interv. Radiol. 41, 1530–1544 (2018).

    Article  CAS  Google Scholar 

  187. Fonck, M. et al. Pulmonary thermal ablation enables long chemotherapy-free survival in metastatic colorectal cancer patients. Cardiovasc. Interv. Radiol. 41, 1727–1734 (2018).

    Article  Google Scholar 

  188. Simon, C. J. et al. Pulmonary radiofrequency ablation: long-term safety and efficacy in 153 patients. Radiology 243, 268–275 (2007).

    Article  PubMed  Google Scholar 

  189. de Baere, T. et al. The ECLIPSE study: efficacy of cryoablation on metastatic lung tumors with a 5-year follow-up. J. Thorac. Oncol. 16, 1840–1849 (2021).

    Article  PubMed  Google Scholar 

  190. Moding, E. J. et al. Predictors of respiratory decline following stereotactic ablative radiotherapy to multiple lung tumors. Clin. Lung Cancer 20, 461–468.e2 (2019).

    Article  PubMed  Google Scholar 

  191. Horner-Rieber, J. et al. Parenchymal and functional lung changes after stereotactic body radiotherapy for early-stage non-small cell lung cancer-experiences from a single institution. Front. Oncol. 7, 215 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Handy, J. R. et al. Expert consensus document on pulmonary metastasectomy. Ann. Thorac. Surg. 107, 631–649 (2019).

    Article  PubMed  Google Scholar 

  193. Treasure, T. et al. Pulmonary metastasectomy versus continued active monitoring in colorectal cancer (PulMiCC): a multicentre randomised clinical trial. Trials 20, 718 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Stamenovic, D., Hohenberger, P. & Roessner, E. Pulmonary metastasectomy in soft tissue sarcomas: a systematic review. J. Thorac. Dis. 13, 2649–2660 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Isbell, J. M., Li, B. T. & Gomez, D. R. The emerging role of local therapy in oligometastatic non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 163, 819–825 (2022).

    Article  PubMed  Google Scholar 

  196. Sun, H. et al. Thoracic radiotherapy improves the survival in patients with EGFR-mutated oligo-organ metastatic non-small cell lung cancer treated with epidermal growth factor receptor-tyrosine kinase inhibitors: a multicenter, randomized, controlled, phase III trial. J. Clin. Oncol. https://doi.org/10.1200/JCO.23.02075 (2024).

    Article  PubMed  Google Scholar 

  197. Treasure, T., Macbeth, F., Farewell, V., Williams, N. R. & Fallowfield, L. The fallacy of large survival gains from lung metastasectomy in colorectal cancer. Lancet 397, 97–98 (2021).

    Article  PubMed  Google Scholar 

  198. Datta, J. et al. Coaltered Ras/B-raf and TP53 is associated with extremes of survivorship and distinct patterns of metastasis in patients with metastatic colorectal cancer. Clin. Cancer Res. 26, 1077–1085 (2020).

    Article  PubMed  CAS  Google Scholar 

  199. Deboever, N. et al. Lung surveillance following colorectal cancer pulmonary metastasectomy: utilization of clinicopathologic risk factors to guide strategy. J. Thorac. Cardiovasc. Surg. 167, 814–819.e2 (2024).

    Article  PubMed  Google Scholar 

  200. Corsini, E. M. et al. Colorectal cancer mutations are associated with survival and recurrence after pulmonary metastasectomy. J. Surg. Oncol. 120, 729–735 (2019).

    Article  PubMed  CAS  Google Scholar 

  201. Taieb, J. et al. Deficient mismatch repair/microsatellite unstable colorectal cancer: diagnosis, prognosis and treatment. Eur. J. Cancer 175, 136–157 (2022).

    Article  PubMed  CAS  Google Scholar 

  202. Renaud, S. et al. Anatomical resections improve survival following lung metastasectomy of colorectal cancer harboring KRAS mutations. Ann. Surg. 270, 1170–1177 (2019).

    Article  PubMed  Google Scholar 

  203. Nelson, D. B. et al. Local failure after stereotactic body radiation therapy or wedge resection for colorectal pulmonary metastases. J. Thorac. Cardiovasc. Surg. 158, 1234–1241.e16 (2019).

    Article  PubMed  Google Scholar 

  204. Schmid, S. et al. Study protocol for a randomised controlled trial on pulmonary metastasectomy vs. standard of care in colorectal cancer patients with ≥ 3 lung metastases (PUCC-trial). Front. Oncol. 12, 913896 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Moonsamy, P., Hompe, E. & Boland, G. M. Pulmonary metastasectomy for melanoma. Thorac. Surg. Clin. 35, 223–231 (2025).

    Article  PubMed  Google Scholar 

  206. Matsuda, N. et al. Prognostic impact of tumor-infiltrating lymphocytes, tertiary lymphoid structures, and neutrophil-to-lymphocyte ratio in pulmonary metastases from uterine leiomyosarcoma. Ann. Surg. Oncol. 30, 8727–8734 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Deboever, N. et al. The role of surgery in the treatment of melanoma pulmonary metastases in the modern era. J. Surg. Res. 277, 125–130 (2022).

    Article  PubMed  Google Scholar 

  208. Caso, R. et al. Thoracic metastasectomy in germ cell tumor patients treated with first-line versus salvage therapy. Ann. Thorac. Surg. 111, 1141–1149 (2021).

    Article  PubMed  Google Scholar 

  209. Eckardt, J. & Licht, P. B. Thoracoscopic versus open pulmonary metastasectomy: a prospective, sequentially controlled study. Chest 142, 1598–1602 (2012).

    Article  PubMed  Google Scholar 

  210. Downey, R. J. & Bains, M. S. Open surgical approaches for pulmonary metastasectomy. Thorac. Surg. Clin. 26, 13–18 (2016).

    Article  PubMed  Google Scholar 

  211. Porter, J. et al. Initiation of chemotherapy in cancer patients with poor performance status: a population-based analysis. J. Palliat. Care 30, 166–172 (2014).

    Article  PubMed  Google Scholar 

  212. Facchinetti, F. et al. First-line pembrolizumab in advanced non-small cell lung cancer patients with poor performance status. Eur. J. Cancer 130, 155–167 (2020).

    Article  PubMed  CAS  Google Scholar 

  213. Kumar, D. et al. Revisiting the association of ECOG performance status with clinical outcomes in diverse patients with cancer. J. Natl Compr. Cancer Netw. 22, e237111 (2024).

    Google Scholar 

  214. Hendriks, L. E. et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 339–357 (2023).

    Article  PubMed  CAS  Google Scholar 

  215. Hendriks, L. E. et al. Non-oncogene-addicted metastatic non-small-cell lung cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 358–376 (2023).

    Article  PubMed  CAS  Google Scholar 

  216. Machiels, J.-P. et al. Squamous cell carcinoma of the oral cavity, larynx, oropharynx and hypopharynx: EHNS–ESMO–ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 31, 1462–1475 (2020).

    Article  PubMed  Google Scholar 

  217. Gennari, A. et al. ESMO clinical practice guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 32, 1475–1495 (2021).

    Article  PubMed  CAS  Google Scholar 

  218. Tarantino, P. et al. ESMO expert consensus statements (ECS) on the definition, diagnosis, and management of HER2-low breast cancer. Ann. Oncol. 34, 645–659 (2023).

    Article  PubMed  CAS  Google Scholar 

  219. Cervantes, A. et al. Metastatic colorectal cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 10–32 (2023).

    Article  PubMed  CAS  Google Scholar 

  220. Tabernero, J. et al. Encorafenib plus cetuximab as a new standard of care for previously treated BRAF V600E-mutant metastatic colorectal cancer: updated survival results and subgroup analyses from the BEACON study. J. Clin. Oncol. 39, 273–284 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05518526 (2022).

  222. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06265350 (2024).

  223. Huland, E., Heinzer, H. & Huland, H. Inhaled interleukin-2 in combination with low-dose systemic interleukin-2 and interferon alpha in patients with pulmonary metastatic renal-cell carcinoma: effectiveness and toxicity of mainly local treatment. J. Cancer Res. Clin. Oncol. 120, 221–228 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Skubitz, K. M. & Anderson, P. M. Inhalational interleukin-2 liposomes for pulmonary metastases: a phase I clinical trial. Anticancer Drugs 11, 555–563 (2000).

    Article  PubMed  CAS  Google Scholar 

  225. Otterson, G. A. et al. Phase I study of inhaled doxorubicin for patients with metastatic tumors to the lungs. Clin. Cancer Res. 13, 1246–1252 (2007).

    Article  PubMed  CAS  Google Scholar 

  226. Hellman, S. et al. Oligometastases. J. Clin. Oncol. 13, 8–10 (1995).

    Article  PubMed  CAS  Google Scholar 

  227. de Baere, T., Bonnet, B., Tselikas, L. & Deschamps, F. The percutaneous management of pulmonary metastases. J. Med. Imaging Radiat. Oncol. 67, 870–875 (2023).

    Article  PubMed  Google Scholar 

  228. Shishido, Y. et al. Survival outcomes of lung metastases from colorectal cancer treated with pulmonary metastasectomy or modern systemic chemotherapy: a single institution experience. J. Cardiothorac. Surg. 18, 327 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Brand, N. R., Qu, L. G., Chao, A. & Ilbawi, A. M. Delays and barriers to cancer care in low‐ and middle‐income countries: a systematic review. Oncologist 24, e1371–e1380 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Gallach, M. et al. Addressing global inequities in positron emission tomography-computed tomography (PET-CT) for cancer management: a statistical model to guide strategic planning. Med. Sci. Monit. 26, e926544 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Pramesh, C. S. et al. Delivery of affordable and equitable cancer care in India. Lancet Oncol. 15, e223–e233 (2014).

    Article  PubMed  CAS  Google Scholar 

  232. Clark, M. M. et al. Randomized controlled trial of maintaining quality of life during radiotherapy for advanced cancer. Cancer 119, 880–887 (2013).

    Article  PubMed  Google Scholar 

  233. Schnipper, L. E. et al. Updating the American Society of Clinical Oncology value framework: revisions and reflections in response to comments received. J. Clin. Oncol. 34, 2925–2934 (2016).

    Article  PubMed  Google Scholar 

  234. Nestle, U. et al. Quality of life after pulmonary stereotactic fractionated radiotherapy (SBRT): results of the phase II STRIPE trial. Radiother. Oncol. 148, 82–88 (2020).

    Article  PubMed  Google Scholar 

  235. Montazeri, A., Gillis, C. R. & McEwen, J. Quality of life in patients with lung cancer: a review of literature from 1970 to 1995. Chest 113, 467–481 (1998).

    Article  PubMed  CAS  Google Scholar 

  236. Questionnaires. EORTC https://qol.eortc.org/questionnaires/ (2017).

  237. Kaasa, S. et al. The EORTC core quality of life questionnaire (QLQ-C30): validity and reliability when analysed with patients treated with palliative radiotherapy. Eur. J. Cancer 31, 2260–2263 (1995).

    Article  Google Scholar 

  238. Koller, M. et al. An international study to revise the EORTC questionnaire for assessing quality of life in lung cancer patients. Ann. Oncol. 28, 2874–2881 (2017).

    Article  PubMed  CAS  Google Scholar 

  239. Lou, V. W. Q. et al. Respiratory symptoms, sleep, and quality of life in patients with advanced lung cancer. J. Pain Symptom Manag. 53, 250–256.e1 (2017).

    Article  Google Scholar 

  240. Win, T. et al. Effect of lung cancer surgery on quality of life. Thorax 60, 234–238 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Petrella, F. et al. Which factors affect pulmonary function after lung metastasectomy? Eur. J. Cardiothorac. Surg. 35, 792–796 (2009).

    Article  PubMed  Google Scholar 

  242. Salama, J. K. et al. Stereotactic body radiotherapy for multisite extracranial oligometastases. Cancer 118, 2962–2970 (2012).

    Article  PubMed  Google Scholar 

  243. Kessel, K. A. et al. Stereotactic body radiotherapy (SBRT) in patients with lung metastases — prognostic factors and long-term survival using patient self-reported outcome (PRO). BMC Cancer 20, 442 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Dammak, S. et al. Distinguishing recurrence from radiation-induced lung injury at the time of RECIST progressive disease on post-SABR CT scans using radiomics. Sci. Rep. 14, 3758 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. De Bruycker, A. et al. Evaluation of chest CT-scans following lung stereotactic ablative radiotherapy: challenges and new insights. Lung Cancer 193, 107848 (2024).

    Article  PubMed  Google Scholar 

  246. Tsilimigras, D. I. et al. Liver metastases. Nat. Rev. Dis. Primers 7, 27 (2021).

    Article  PubMed  Google Scholar 

  247. Gofrit, O. N. et al. The varied clonal trajectory of liver and lung metastases of colorectal cancer. Adv. Cancer Biol. Metastasis 11, 100122 (2024).

    Article  CAS  Google Scholar 

  248. Erhunmwunsee, L. & Tong, B. C. Preoperative evaluation and indications for pulmonary metastasectomy. Thorac. Surg. Clin. 26, 7–12 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Rossi, G. et al. Radiomic detection of EGFR mutations in NSCLC. Cancer Res. 81, 724–731 (2021).

    Article  PubMed  CAS  Google Scholar 

  250. Coudray, N. et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat. Med. 24, 1559–1567 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Wu, K.-C. et al. Early prediction of radiotherapy outcomes in pharyngeal cancer using deep learning on baseline [18F]Fluorodeoxyglucose positron emission tomography/computed tomography. Eur. J. Radiol. 181, 111811 (2024).

    Article  PubMed  Google Scholar 

  252. Sadeghi, A. H. et al. Artificial intelligence-assisted augmented reality robotic lung surgery: navigating the future of thoracic surgery. JTCVS Tech. 26, 121–125 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Peek, J. J. et al. A novel 3D image registration technique for augmented reality vision in minimally invasive thoracoscopic pulmonary segmentectomy. Int. J. Comput. Assist. Radiol. Surg. 20, 787–795 (2025).

    Article  PubMed  CAS  Google Scholar 

  254. Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl. Med. 8, 346ra92 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Tie, J. et al. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer. JAMA Oncol. 5, 1710–1717 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Aldea, M. et al. Detection of additional occult malignancy through profiling of ctDNA in late-stage cancer patients. Ann. Oncol. 32, 1642–1645 (2021).

    Article  PubMed  CAS  Google Scholar 

  257. Dawson, M. R., Duda, D. G., Fukumura, D. & Jain, R. K. VEGFR1-activity-independent metastasis formation. Nature 461, E4–E5 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Pienta, K. J. et al. Phase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancer. Invest. New Drugs 31, 760–768 (2013).

    Article  PubMed  CAS  Google Scholar 

  259. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Anderson, N. R., Minutolo, N. G., Gill, S. & Klichinsky, M. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 81, 1201–1208 (2021).

    Article  PubMed  CAS  Google Scholar 

  261. Duan, Z. & Luo, Y. Targeting macrophages in cancer immunotherapy. Sig. Transduct. Target. Ther. 6, 127 (2021).

    Article  CAS  Google Scholar 

  262. Reiss, K. A. et al. CAR-macrophage therapy for HER2-overexpressing advanced solid tumors: a phase 1 trial. Nat. Med. 31, 1171–1182 (2025).

    Article  PubMed  CAS  Google Scholar 

  263. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  PubMed  CAS  Google Scholar 

  264. Patel, U., Susman, D. & Allan, A. L. Influence of extracellular vesicles on lung stromal cells during breast cancer metastasis. Int. J. Mol. Sci. 24, 11801 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Gaikwad, A. et al. Primary adenocarcinoma of lung: a pictorial review of recent updates. Eur. J. Radiol. 81, 4146–4155 (2012).

    Article  PubMed  Google Scholar 

  266. Wang, Z. et al. Clinical and radiological characteristics of central pulmonary adenocarcinoma: a comparison with central squamous cell carcinoma and small cell lung cancer and the impact on treatment response. OncoTargets Ther. 11, 2509 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (L.Z.); Epidemiology (L.E.L.H.); Mechanisms/pathophysiology (L.Z.); Diagnosis, screening and prevention (L.Z., D.F. and I.I.W.); Management (D.F., D.P., J.D.S. and L.Z.); Quality of life (L.Z.); Outlook (L.Z. and L.E.L.H.); overview of the Primer (L.Z. and B.B.).

Corresponding author

Correspondence to Benjamin Besse.

Ethics declarations

Competing interests

B.B. declares advisory board participation (paid to institution): Abbvie, Biontech SE, BristolMyerSquibb, Chugai Pharmaceutical, CureVac AG, Daiichi Sankyo, F. Hoffmann-La Roche Ltd., Pharmamar, Regeneron, Sanofi Aventis, Turning Point Therapeutics; conseil (paid to institution): Abbvie, Eli Lilly, Ellipses pharma Ltd, F. Hoffmann-La Roche Ltd., Genmab, Immunocore, Janssen, MSD, Ose Immunotherapeutics, Owkin, Taiho Oncology; Steering Committee (paid to institution): AstraZeneca, Beigene, GENMAB A/S, GlaxoSmithKline, Janssen, MSD, Ose Immunotherapeutics, Pharmamar, Roche-Genentech, Sanofi, Takeda; speaker (paid to institution): Abbvie, AstraZeneca, Chugai Pharmaceutical, Daichii Sankyo, Hedera Dx, Janssen, MSD, Roche, Sanofi Aventis and Springer Healthcare Ltd., none related to this work. L.E.L.H. declares grants and/or research support (all paid to institution) from Roche, Boehringer Ingelheim, AstraZeneca, Takeda, Merck, Pfizer, Novartis and Gilead; is on the advisory boards (all to institution) of Amgen, Boehringer Ingelheim, Lilly, Novartis, Pfizer, Takeda, Merck, Janssen, Merck Sharp & Dohme (MSD), AnHeart Therapeutics, Bayer, Daiichi, Pierre Fabre, BMS, AbbVie, AstraZeneca and Summit Therapeutics; was a speaker on educational seminars or webinars for AstraZeneca, Bayer, Lilly, MSD, high5oncology, Takeda, Janssen, GlaxoSmithKline (GSK), Sanofi and Pfizer (all paid to the institution), and Medtalks, Benecke, VJOncology and Medimix (personal payment); performed local principal investigator pharma studies (all paid to institution) with AstraZeneca, GSK, Novartis, Merck, Roche, Takeda, Blueprint, Mirati, AbbVie, Gilead, MSD, Pfizer, Amgen and Boehringer Ingelheim; and was on member guideline committees in a personal capacity for Dutch guidelines on non-small cell lung cancer, brain metastases and leptomeningeal metastases (personal payment), and ESMO guidelines on non-small cell lung cancer and small cell lung cancer (unpaid). J.D.S. declares grants to the institution from AstraZeneca, MSD, Roche, BMS, CLS Therapeutics, Protalix Biotherapeutics, Pfizer and Regeneron; consulting fees from AstraZeneca, Merck, Roche, BMS, Novartis, Chemocentryx, Amgen, Protalix Biotherapeutics, Xenetic Biosciences, Regeneron, Eisai and Pfizer; payment for a speaking role from Peerview, OncLive and Medscape; support for attending meetings or travel from AstraZeneca, Merck and BMS; participating on a clinical trial safety monitoring board for AstraZeneca; and receiving equipment, materials, drugs, gifts or other services via grants to the institution from Roche, MSD, BMS and AstraZeneca. I.I.W. declares consulting or advisory roles for AstraZeneca/MedImmune, Bayer, Bristol Myers Squibb, Genentech/Roche, GlaxoSmithKline, Guardant Health, HTG Molecular Diagnostics, Merck, MSD Oncology, OncoCyte, Jansen, Novartis, Flame Inc., Regeneron and Pfizer; grants and personal fees from Genentech/Roche, Bristol Myers Squibb, AstraZeneca/MedImmune, HTG Molecular, Merck and Guardant Health; personal fees from GlaxoSmithKline and Oncocyte, Daiichi Sankyo, Roche, AstraZeneca, Regeneron, Sanofi, Pfizer and Bayer; research funding (paid to the institution) from 4D Molecular Therapeutics, Adaptimmune, Adaptive Biotechnologies, Akoya Biosciences, Amgen, Bayer, EMD Serono, Genentech, Guardant Health, HTG Molecular Diagnostics, Iovance Biotherapeutics, Johnson & Johnson, Karus Therapeutics, MedImmune, Merck, Novartis, OncoPlex Diagnostics, Pfizer, Takeda and Novartis. D.P. declares a consulting role for MVision AI. L.Z. and D.F. declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks M. Reck; J. Minna; L. Sholl, who co-reviewed with I. Odintsov; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zullo, L., Filippiadis, D., Hendriks, L.E.L. et al. Lung metastases. Nat Rev Dis Primers 11, 60 (2025). https://doi.org/10.1038/s41572-025-00642-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-025-00642-1

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer