Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Hypertrophic cardiomyopathy

Abstract

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy and represents a leading cause of morbidity and mortality. HCM is a sarcomeric disease characterized by genetically determined defects in sarcomere proteins, leading to left ventricular hypertrophy, hypercontractility and diastolic dysfunction. The phenotypic spectrum of the disease is heterogeneous, ranging from mild forms that can remain stable and asymptomatic for many years, through to childhood-onset, severe cases that can result in progressive heart failure and ventricular arrhythmias. Multi-imaging techniques including echocardiography and cardiac magnetic resonance are pivotal for diagnostic and prognostic assessment in HCM. For decades, therapeutic approaches were limited to invasive septal reduction therapies and nonspecific pharmacological treatment for heart failure. In the last 10 years, however, an in-depth understanding of the pathological mechanisms of HCM has led to the development of targeted therapies, such as myosin inhibitors, which have proven to be safe and effective in improving functional capacity and reducing symptoms. Innovative therapeutic approaches, such as gene therapies that aim to target the genetic variants underpinning the condition, are currently under investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Left ventricular outflow tract obstruction.
Fig. 2: Pathophysiology of hypertrophic cardiomyopathy.
Fig. 3: Genes involved in HCM pathophysiology.
Fig. 4: Echocardiographic features of a 32-year-old patient with obstructive hypertrophic cardiomyopathy.
Fig. 5: Contrast-enhanced cardiac MRI in a 26-year-old carrier of a MYBPC3 variant.
Fig. 6: Diagnostic workflow for infant-onset HCM.
Fig. 7: Electrocardiogram and echocardiography of a child with Pompe disease.
Fig. 8: Summary of hypertrophic cardiomyopathy therapeutic options.

Similar content being viewed by others

References

  1. Semsarian, C., Ingles, J., Maron, M. S. & Maron, B. J. New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 65, 1249–1254 (2015).

    Article  PubMed  Google Scholar 

  2. Hespe, S. et al. Genes associated with hypertrophic cardiomyopathy: a reappraisal by the ClinGen Hereditary Cardiovascular Disease Gene Curation Expert Panel. J. Am. Coll. Cardiol. 85, 727–740 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ho, C. Y. et al. Genotype and lifetime burden of disease in hypertrophic cardiomyopathy: insights from the sarcomeric human cardiomyopathy registry (SHaRe). Circulation 138, 1387–1398 (2018). Seminal work from the SHaRe registry in which the clinical characteristics and prognosis of genotype positive and genotype negative patients are described.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arbelo, E. et al. 2023 ESC guidelines for the management of cardiomyopathies. Eur. Heart J. 44, 3503–3626 (2023). The ESC guidelines that include the experts’ recommendation for diagnosis and treatment of hypertrophic cardiomyopathy.

    Article  CAS  PubMed  Google Scholar 

  5. Massera, D., Sherrid, M. V., Maron, M. S., Rowin, E. J. & Maron, B. J. How common is hypertrophic cardiomyopathy… really?: disease prevalence revisited 27 years after CARDIA. Int. J. Cardiol. 382, 64–67 (2023).

    Article  PubMed  Google Scholar 

  6. Massera, D. et al. Prevalence of unexplained left ventricular hypertrophy by cardiac magnetic resonance imaging in MESA. JAHA 8, e012250 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Butzner, M. et al. Clinical diagnosis of hypertrophic cardiomyopathy over time in the United States (a population-based claims analysis). Am. J. Cardiol. 159, 107–112 (2021).

    Article  PubMed  Google Scholar 

  8. De Marvao, A. et al. Phenotypic expression and outcomes in individuals with rare genetic variants of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 78, 1097–1110 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Butters, A., Lakdawala, N. K. & Ingles, J. Sex differences in hypertrophic cardiomyopathy: interaction with genetics and environment. Curr. Heart Fail. Rep. 18, 264–273 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  10. van Driel, B., Nijenkamp, L., Huurman, R., Michels, M. & van der Velden, J. Sex differences in hypertrophic cardiomyopathy: new insights. Curr. Opin. Cardiol. 34, 254–259 (2019).

    Article  PubMed  Google Scholar 

  11. Wells, S., Rowin, E. J., Bhatt, V., Maron, M. S. & Maron, B. J. Association between race and clinical profile of patients referred for hypertrophic cardiomyopathy. Circulation 137, 1973–1975 (2018).

    Article  PubMed  Google Scholar 

  12. Eberly, L. A. et al. Association of race with disease expression and clinical outcomes among patients with hypertrophic cardiomyopathy. JAMA Cardiol. 5, 83–91 (2020).

    Article  PubMed  Google Scholar 

  13. Tjahjadi, C. et al. Differences in characteristics and outcomes between patients with hypertrophic cardiomyopathy from Asian and European centers. JAHA 11, e023313 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arola, A. et al. Epidemiology of idiopathic cardiomyopathies in children and adolescents. A nationwide study in Finland. Am. J. Epidemiol. 146, 385–393 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Nugent, A. W. et al. The epidemiology of childhood cardiomyopathy in Australia. N. Engl. J. Med. 348, 1639–1646 (2003).

    Article  PubMed  Google Scholar 

  16. Lipshultz, S. E. et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N. Engl. J. Med. 348, 1647–1655 (2003).

    Article  PubMed  Google Scholar 

  17. Braunwald, E. Hypertrophic cardiomyopathy: the early years. J. Cardiovasc. Trans. Res. 2, 341–348 (2009).

    Article  Google Scholar 

  18. Braunwald, E. Hypertrophic cardiomyopathy: the first century 1869–1969. Glob. Cardiol. Sci. Pract. 2012, 5 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morita, H. et al. Shared genetic causes of cardiac hypertrophy in children and adults. N. Engl. J. Med. 358, 1899–1908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watkins, H. et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med. 326, 1108–1114 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Lehman, S. J., Crocini, C. & Leinwand, L. A. Targeting the sarcomere in inherited cardiomyopathies. Nat. Rev. Cardiol. 19, 353–363 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kawana, M., Sarkar, S. S., Sutton, S., Ruppel, K. M. & Spudich, J. A. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy. Sci. Adv. 3, e1601959 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Helms, A. S. et al. Effects of MYBPC3 loss-of-function mutations preceding hypertrophic cardiomyopathy. JCI Insight 5, e133782 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Helms, A. S. et al. Spatial and functional distribution of MYBPC3 pathogenic variants and clinical outcomes in patients with hypertrophic cardiomyopathy. Circ: Genom. Precis. Med. 13, 396–405 (2020). Study evaluating the distribution of MYBPC3 variants and clinical outcomes of patients with these variants.

    CAS  PubMed  Google Scholar 

  25. Pettinato, A. M. et al. Development of a cardiac sarcomere functional genomics platform to enable scalable interrogation of human TNNT2 variants. Circulation 142, 2262–2275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Madan, A. et al. TNNT2 mutations in the tropomyosin binding region of TNT1 disrupt its role in contractile inhibition and stimulate cardiac dysfunction. Proc. Natl Acad. Sci. USA 117, 18822–18831 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Teekakirikul, P. et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J. Clin. Invest. 120, 3520–3529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coleman, J. A., Ashkir, Z., Raman, B. & Bueno-Orovio, A. Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy. Int. J. Cardiovasc. Imaging 39, 1979–1996 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aguiar Rosa, S., Rocha Lopes, L., Fiarresga, A., Ferreira, R. C. & Mota Carmo, M. Coronary microvascular dysfunction in hypertrophic cardiomyopathy: pathophysiology, assessment, and clinical impact. Microcirculation 28, e12656 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Ranjbarvaziri, S. et al. Altered cardiac energetics and mitochondrial dysfunction in hypertrophic cardiomyopathy. Circulation 144, 1714–1731 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nollet, E. E. et al. Mitochondrial dysfunction in human hypertrophic cardiomyopathy is linked to cardiomyocyte architecture disruption and corrected by improving NADH-driven mitochondrial respiration. Eur. Heart J. 44, 1170–1185 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Santini, L., Coppini, R. & Cerbai, E. Ion channel impairment and myofilament Ca2+ sensitization: two parallel mechanisms underlying arrhythmogenesis in hypertrophic cardiomyopathy. Cells 10, 2789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coppini, R. et al. Electrophysiological and contractile effects of disopyramide in patients with obstructive hypertrophic cardiomyopathy. JACC Basic. Transl. Sci. 4, 795–813 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ayoub, C. et al. Comparison of valsalva maneuver, amyl nitrite, and exercise echocardiography to demonstrate latent left ventricular outflow obstruction in hypertrophic cardiomyopathy. Am. J. Cardiol. 120, 2265–2271 (2017).

    Article  PubMed  Google Scholar 

  35. Sherrid, M. V., Gunsburg, D. Z., Moldenhauer, S. & Pearle, G. Systolic anterior motion begins at low left ventricular outflow tract velocity in obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 36, 1344–1354 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Ergi, D. G. et al. Changes in left ventricular-aortic angulation are associated with the development of obstruction in hypertrophic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 170, 190–199 (2025).

    Article  PubMed  Google Scholar 

  37. Sawma, T. et al. Outcomes of septal myectomy in patients with obstructive hypertrophic cardiomyopathy and minimal septal hypertrophy. J. Thor. Cardiovasc. Surg. https://doi.org/10.1016/j.jtcvs.2025.02.024 (2025).

  38. on behalf of the ACMG Laboratory Quality Assurance Committee. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the Association for molecular pathology. Genet. Med. 17, 405–423 (2015).

    Article  Google Scholar 

  39. Marian, A. J. & Braunwald, E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ. Res. 121, 749–770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Meisner, J. K. et al. Low penetrance sarcomere variants contribute to additive risk in hypertrophic cardiomyopathy. Circulation https://doi.org/10.1161/CIRCULATIONAHA.124.069398 (2024). A study that explains how low penetrance sarcomere variants influence HCM expression.

  41. Harper, A. R. et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat. Genet. 53, 135–142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Joy, G. et al. Microstructural and microvascular phenotype of sarcomere mutation carriers and overt hypertrophic cardiomyopathy. Circulation 148, 808–818 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hughes, R. K. et al. Myocardial perfusion defects in hypertrophic cardiomyopathy mutation carriers. JAHA 10, e020227 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Captur, G. et al. The embryological basis of subclinical hypertrophic cardiomyopathy. Sci. Rep. 6, 27714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Joy, G., Moon, J. C. & Lopes, L. R. Detection of subclinical hypertrophic cardiomyopathy. Nat. Rev. Cardiol. 20, 369–370 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Joy, G. et al. Electrophysiological characterization of subclinical and overt hypertrophic cardiomyopathy by magnetic resonance imaging-guided electrocardiography. J. Am. Coll. Cardiol. 83, 1042–1055 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fourey, D. et al. Prevalence and clinical implication of double mutations in hypertrophic cardiomyopathy: revisiting the gene-dose effect. Circ. Cardiovasc. Genet. 10, e001685 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Marston, N. A. et al. Clinical characteristics and outcomes in childhood-onset hypertrophic cardiomyopathy. Eur. Heart J. 42, 1988–1996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Olivotto, I., Cecchi, F., Poggesi, C. & Yacoub, M. H. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ: Heart Fail. 5, 535–546 (2012).

    PubMed  Google Scholar 

  50. Topriceanu, C.-C., Pereira, A. C., Moon, J. C., Captur, G. & Ho, C. Y. Meta-analysis of penetrance and systematic review on transition to disease in genetic hypertrophic cardiomyopathy. Circulation https://doi.org/10.1161/CIRCULATIONAHA.123.065987 (2023).

  51. Lorenzini, M. et al. Penetrance of hypertrophic cardiomyopathy in sarcomere protein mutation carriers. J. Am. Coll. Cardiol. 76, 550–559 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pelliccia, F. et al. Long-term outcome of nonobstructive versus obstructive hypertrophic cardiomyopathy: a systematic review and meta-analysis. Int. J. Cardiol. 243, 379–384 (2017).

    Article  PubMed  Google Scholar 

  53. Marstrand, P. et al. Hypertrophic cardiomyopathy with left ventricular systolic dysfunction: insights from the SHaRe registry. Circulation 141, 1371–1383 (2020). Study showing clinical characteristics and outcomes of patients with left ventricular systolic dysfunction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fumagalli, C. et al. Incidence of stroke in patients with hypertrophic cardiomyopathy in stable sinus rhythm during long-term monitoring. Int. J. Cardiol. 381, 70–75 (2023).

    Article  PubMed  Google Scholar 

  55. Coppini, R. et al. Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations. J. Am. Coll. Cardiol. 64, 2589–2600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaski, J. P. et al. Indications and management of implantable cardioverter-defibrillator therapy in childhood hypertrophic cardiomyopathy. Cardiol. Young-. 33, 681–698 (2023).

    Article  PubMed  Google Scholar 

  57. Bos, J. M. et al. Characterization of a phenotype-based genetic test prediction score for unrelated patients with hypertrophic cardiomyopathy. Mayo Clin. Proc. 89, 727–737 (2014).

    Article  PubMed  Google Scholar 

  58. Shiwani, H. et al. Demographic-based personalized left ventricular hypertrophy thresholds for hypertrophic cardiomyopathy diagnosis. J. Am. Coll. Cardiol. 85, 685–695 (2025).

    Article  PubMed  Google Scholar 

  59. Biagini, E. et al. Usefulness of electrocardiographic patterns at presentation to predict long-term risk of cardiac death in patients with hypertrophic cardiomyopathy. Am. J. Cardiol. 118, 432–439 (2016).

    Article  PubMed  Google Scholar 

  60. Hughes, R. K. et al. Apical hypertrophic cardiomyopathy: the variant less known. JAHA 9, e015294 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Delcrè, S. D. L. et al. Relationship of ECG findings to phenotypic expression in patients with hypertrophic cardiomyopathy: a cardiac magnetic resonance study. Int. J. Cardiol. 167, 1038–1045 (2013).

    Article  PubMed  Google Scholar 

  62. Sangha, V. et al. Identification of hypertrophic cardiomyopathy on electrocardiographic images with deep learning. Preprint at medrXiv https://doi.org/10.1101/2023.12.23.23300490 (2023).

  63. Carrick, R. T. et al. Identification of high-risk imaging features in hypertrophic cardiomyopathy using electrocardiography: a deep-learning approach. Heart Rhythm https://doi.org/10.1016/j.hrthm.2024.01.031 (2024).

  64. Rapezzi, C. et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 34, 1448–1458 (2013).

    Article  PubMed  Google Scholar 

  65. Bos, J. M., Towbin, J. A. & Ackerman, M. J. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 54, 201–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. La Canna, G. et al. Phenotyping left ventricular obstruction with postprandial re-test echocardiography in hypertrophic cardiomyopathy. Am. J. Cardiol. 125, 1688–1693 (2020).

    Article  PubMed  Google Scholar 

  67. Maron, B. J. et al. Diagnosis and evaluation of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 79, 372–389 (2022).

    Article  PubMed  Google Scholar 

  68. Pieroni, M. et al. Beyond sarcomeric hypertrophic cardiomyopathy: how to diagnose and manage phenocopies. Curr. Cardiol. Rep. https://doi.org/10.1007/s11886-022-01778-2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wilde, A. A. M. et al. European heart rhythm association (EHRA)/Heart rhythm society (HRS)/Asia pacific heart rhythm society (APHRS)/Latin American heart rhythm society (LAHRS) expert consensus statement on the state of genetic testing for cardiac diseases. J. Arrhythmia 38, 491–553 (2022).

    Article  Google Scholar 

  70. Writing Committee Members. et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation 142, e533–e557 (2020).

    Google Scholar 

  71. Perrone-Filardi, P. et al. Non-invasive cardiovascular imaging for evaluating subclinical target organ damage in hypertensive patients. Eur. Heart J. Cardiovasc. Imaging 18, 945–960 (2017).

    Article  PubMed  Google Scholar 

  72. Cardim, N. et al. Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European association of cardiovascular imaging endorsed by the Saudi heart association. Eur. Heart J. Cardiovasc. Imaging 16, 280–280 (2015).

    Article  PubMed  Google Scholar 

  73. D’Andrea, A. et al. The role of multimodality imaging in athlete’s heart diagnosis: current status and future directions. JCM 10, 5126 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Nitsche, C. et al. Prevalence and outcomes of concomitant aortic stenosis and cardiac amyloidosis. J. Am. Coll. Cardiol. 77, 128–139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Scully, P. R. et al. Prevalence and outcome of dual aortic stenosis and cardiac amyloid pathology in patients referred for transcatheter aortic valve implantation. Eur. Heart J. 41, 2759–2767 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kaski, J. P. et al. Cardiomyopathies in children and adolescents: aetiology, management, and outcomes in the European society of cardiology EURObservational research programme cardiomyopathy and myocarditis registry. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehae109 (2024). A study evaluating clinical charateristics and outcomes of children and adolescents with cardiomyopathies.

  77. Kaski, J. P. et al. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 2, 436–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  78. Norrish, G. et al. Clinical presentation and long-term outcomes of infantile hypertrophic cardiomyopathy: a European multicentre study. Esc. Heart Fail. 8, 5057–5067 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Norrish, G. et al. Yield of clinical screening for hypertrophic cardiomyopathy in child first-degree relatives. Circulation 140, 184–192 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Moak, J. P. & Kaski, J. P. Hypertrophic cardiomyopathy in children. Heart 98, 1044–1054 (2012).

    Article  PubMed  Google Scholar 

  81. Norrish, G. et al. Clinical features and natural history of preadolescent nonsyndromic hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 79, 1986–1997 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. McKenna, W. J. & Deanfield, J. E. Hypertrophic cardiomyopathy: an important cause of sudden death. Arch. Dis. Child. 59, 971–975 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yetman, A. T., Hamilton, R. M., Benson, L. N. & McCrindle, B. W. Long-term outcome and prognostic determinants in children with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 32, 1943–1950 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Norrish, G. et al. Clinical presentation and survival of childhood hypertrophic cardiomyopathy: a retrospective study in United Kingdom. Eur. Heart J. 40, 986–993 (2019).

    Article  PubMed  Google Scholar 

  85. O’Mahony, C. et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM Risk-SCD). Eur. Heart J. 35, 2010–2020 (2014).

    Article  PubMed  Google Scholar 

  86. Lynch, A. et al. Risk of sudden death in patients with RASopathy hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 81, 1035–1045 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Maron, B. J. et al. Management of hypertrophic cardiomyopathy: JACC state-of-the-art review. J. Am. Coll. Cardiol. 79, 390–414 (2022).

    Article  PubMed  Google Scholar 

  88. Maron, B. J. et al. Hypertrophic cardiomyopathy in children, adolescents, and young adults associated with low cardiovascular mortality with contemporary management strategies. Circulation 133, 62–73 (2016).

    Article  PubMed  Google Scholar 

  89. Finocchiaro, G. et al. Sudden cardiac death during exercise in young individuals with hypertrophic cardiomyopathy. JACC Clin. Electrophysiol. 9, 865–867 (2023).

    Article  PubMed  Google Scholar 

  90. Maron, B. J., Doerer, J. J., Haas, T. S., Tierney, D. M. & Mueller, F. O. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation 119, 1085–1092 (2009).

    Article  PubMed  Google Scholar 

  91. Finocchiaro, G. et al. Etiology of sudden death in sports: insights from a United Kingdom regional registry. J. Am. Coll. Cardiol. 67, 2108–2115 (2016).

    Article  PubMed  Google Scholar 

  92. Finocchiaro, G. et al. Sudden cardiac death among adolescents in the United Kingdom. J. Am. Coll. Cardiol. 81, 1007–1017 (2023).

    Article  PubMed  Google Scholar 

  93. Petek, B. J. et al. Sudden cardiac death in National collegiate athletic association athletes: a 20-year study. Circulation 149, 80–90 (2024).

    Article  PubMed  Google Scholar 

  94. Elliott, P. M. Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy. Heart 92, 785–791 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Nauffal, V. et al. Worldwide differences in primary prevention implantable cardioverter defibrillator utilization and outcomes in hypertrophic cardiomyopathy. Eur. Heart J. 42, 3932–3944 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wang, J. et al. Variable and limited predictive value of the European society of cardiology hypertrophic cardiomyopathy sudden-death risk model: a meta-analysis. Can. J. Cardiol. 35, 1791–1799 (2019).

    CAS  PubMed  Google Scholar 

  97. Amano, M. et al. Validation of guideline recommendation on sudden cardiac death prevention in hypertrophic cardiomyopathy. JACC: Heart Fail. 13, 1014–1026 (2025).

    CAS  PubMed  Google Scholar 

  98. Finocchiaro, G. et al. Sudden cardiac death in cardiomyopathies: acting upon ‘acceptable’ risk in the personalized medicine era. Heart Fail. Rev. 27, 1749–1759 (2022).

    Article  PubMed  Google Scholar 

  99. Maron, M. S. et al. Evidence that subcutaneous implantable cardioverter-defibrillators are effective and reliable in hypertrophic cardiomyopathy. JACC Clin. Electrophysiol. 6, 1019–1021 (2020).

    Article  PubMed  Google Scholar 

  100. Norrish, G. et al. Clinical outcomes and programming strategies of implantable cardioverter-defibrillator devices in paediatric hypertrophic cardiomyopathy: a UK national cohort study. EP Europace 23, 400–408 (2021).

    Article  PubMed  Google Scholar 

  101. Norrish, G. et al. A validation study of the European society of cardiology guidelines for risk stratification of sudden cardiac death in childhood hypertrophic cardiomyopathy. EP Europace 21, 1559–1565 (2019).

    Article  PubMed  Google Scholar 

  102. Norrish, G. et al. Development of a novel risk prediction model for sudden cardiac death in childhood hypertrophic cardiomyopathy (HCM Risk-Kids). JAMA Cardiol. 4, 918–927 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Norrish, G. et al. External validation of the HCM Risk-Kids model for predicting sudden cardiac death in childhood hypertrophic cardiomyopathy. Eur. J. Prev. Cardiol. 29, 678–686 (2022).

    Article  PubMed  Google Scholar 

  104. Miron, A. et al. A validated model for sudden cardiac death risk prediction in pediatric hypertrophic cardiomyopathy. Circulation 142, 217–229 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Norrish, G. et al. Performance of the PRIMaCY sudden death risk prediction model for childhood hypertrophic cardiomyopathy: implications for implantable cardioverter-defibrillator decision-making. Europace 25, euad330 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pelliccia, A. et al. Recommendations for participation in competitive sport and leisure-time physical activity in individuals with cardiomyopathies, myocarditis and pericarditis. Eur. J. Cardiovasc. Prev. Rehabil. 13, 876–885 (2006).

    Article  PubMed  Google Scholar 

  107. Maron, B. J. et al. Recommendations for physical activity and recreational sports participation for young patients with genetic cardiovascular diseases. Circulation 109, 2807–2816 (2004).

    Article  PubMed  Google Scholar 

  108. Finocchiaro, G., Papadakis, M., Sharma, S. & Sheppard, M. Sudden cardiac death. Eur. Heart J. 38, 1280–1282 (2017).

    Article  PubMed  Google Scholar 

  109. Corrado, D., Basso, C., Rizzoli, G., Schiavon, M. & Thiene, G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J. Am. Coll. Cardiol. 42, 1959–1963 (2003).

    Article  PubMed  Google Scholar 

  110. Pelliccia, A. et al. Clinical outcomes in adult athletes with hypertrophic cardiomyopathy: a 7-year follow-up study. Br. J. Sports Med. 54, 1008–1012 (2020).

    Article  PubMed  Google Scholar 

  111. Lampert, R. et al. Safety of sports for athletes with implantable cardioverter-defibrillators: results of a prospective, multinational registry. Circulation 127, 2021–2030 (2013).

    Article  PubMed  Google Scholar 

  112. Lampert, R. et al. Vigorous exercise in patients with hypertrophic cardiomyopathy. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2023.1042 (2023). A study showing that vigorous exercise in patients with HCM was not associated with an increased risk of adverse outcomes.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Saberi, S. et al. Effect of moderate-intensity exercise training on peak oxygen consumption in patients with hypertrophic cardiomyopathy: a randomized clinical trial. JAMA 317, 1349–1357 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pelliccia, A. et al. 2020 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 42, 17–96 (2021).

    Article  CAS  PubMed  Google Scholar 

  115. Ommen, S. R. et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR guideline for the management of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol.https://doi.org/10.1016/j.jacc.2024.02.014 (2024). AHA/ACC guidelines for the diagnosis and management of HCM.

  116. Magavern, E. F., Finocchiaro, G., Sharma, S., Papadakis, M. & Borry, P. Time out: ethical reflections on medical disqualification of athletes in the context of mandated pre-participation cardiac screening. Br. J. Sports Med. 52, 1207–1210 (2018).

    Article  PubMed  Google Scholar 

  117. Goland, S. et al. Pregnancy in women with hypertrophic cardiomyopathy: data from the European society of cardiology initiated registry of pregnancy and cardiac disease (ROPAC). Eur. Heart J. 38, 2683–2690 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Fumagalli, C. et al. Impact of pregnancy on the natural history of women with hypertrophic cardiomyopathy. Eur. J. Prev. Cardiol. 31, 3–10 (2024).

    Article  PubMed  Google Scholar 

  119. Moolla, M. et al. Outcomes of pregnancy in women with hypertrophic cardiomyopathy: a systematic review. Int. J. Cardiol. 359, 54–60 (2022).

    Article  PubMed  Google Scholar 

  120. Musumeci, M. B. et al. Clinical course of pregnancy and long-term follow-up after delivery in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 77, 1262–1264 (2021).

    Article  PubMed  Google Scholar 

  121. Regitz-Zagrosek, V. et al. 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Eur. Heart J. 39, 3165–3241 (2018).

    Article  PubMed  Google Scholar 

  122. Ammirati, E. et al. Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives: pharmacological treatment of HCM. Eur. J. Heart Fail. 18, 1106–1118 (2016).

    Article  PubMed  Google Scholar 

  123. Argirò, A. et al. Stage-specific therapy for hypertrophic cardiomyopathy. Eur. Heart J. Suppl. 25, C155–C161 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dybro, A. M. et al. Randomized trial of metoprolol in patients with obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 78, 2505–2517 (2021).

    Article  PubMed  Google Scholar 

  125. Dybro, A. M. et al. Effects of metoprolol on exercise hemodynamics in patients with obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 79, 1565–1575 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Adler, A. et al. Safety of outpatient initiation of disopyramide for obstructive hypertrophic cardiomyopathy patients. JAHA 6, e005152 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bertero, E. et al. Real‐world candidacy to mavacamten in a contemporary hypertrophic obstructive cardiomyopathy population. Eur. J. Heart Fail. 26, 59–64 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Cui, H. et al. Survival following alcohol septal ablation or septal myectomy for patients with obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 79, 1647–1655 (2022).

    Article  PubMed  Google Scholar 

  129. Lu, G. et al. Left ventricle myocardial remodeling following septal myectomy in patients with hypertrophic obstructive cardiomyopathy. J. Cardiovasc. Magn. Reson. 27, 101864 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Maron, M. S. et al. Outcomes over follow-up ≥ 10 years after surgical myectomy for symptomatic obstructive hypertrophic cardiomyopathy. Am. J. Cardiol. 163, 91–97 (2022).

    Article  PubMed  Google Scholar 

  131. Maurizi, N. et al. Long-term outcomes after septal reduction therapies in obstructive hypertrophic cardiomyopathy: insights from the SHARE registry. Circulation https://doi.org/10.1161/CIRCULATIONAHA.124.069378 (2024).

  132. Olivotto, I. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396, 759–769 (2020). Randomized clinical trial that showed that the myosin inhibitor mavacamten was safe and effective in the treatment of obstructive HCM.

    Article  CAS  PubMed  Google Scholar 

  133. Maron, M. S. et al. Aficamten for symptomatic obstructive hypertrophic cardiomyopathy. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2401424 (2024). Randomized clinical trial that showed that the myosin inhibitor aficamten was safe and effective in the treatment of obstructive HCM.

  134. Desai, M. Y. et al. Mavacamten in patients with hypertrophic cardiomyopathy referred for septal reduction: week 56 results from the VALOR-HCM randomized clinical trial. JAMA Cardiol. 8, 968 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Chuang, C. et al. Discovery of aficamten (CK-274), a next-generation cardiac myosin inhibitor for the treatment of hypertrophic cardiomyopathy. J. Med. Chem. 64, 14142–14152 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Desai, M. Y. et al. Real-world experience with mavacamten in obstructive hypertrophic cardiomyopathy: observations from a tertiary care center. Prog. Cardiovasc. Dis. https://doi.org/10.1016/j.pcad.2024.02.001 (2024).

  137. Ho, C. Y. et al. Evaluation of mavacamten in symptomatic patients with nonobstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 75, 2649–2660 (2020).

    Article  CAS  PubMed  Google Scholar 

  138. Masri, A. et al. Efficacy and safety of aficamten in symptomatic non-obstructive hypertrophic cardiomyopathy: results from the REDWOOD-HCM trial, cohort 4. J. Card. Fail. https://doi.org/10.1016/j.cardfail.2024.02.020 (2024).

  139. Maron, M. S. et al. Safety and efficacy of metabolic modulation with ninerafaxstat in patients with nonobstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. https://doi.org/10.1016/j.jacc.2024.03.387 (2024).

  140. McDonagh, T. A. et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 44, 3627–3639 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Lopaschuk, G. D. & Verma, S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic. Transl. Sci. 5, 632–644 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Subramanian, M. et al. Efficacy of SGLT2 inhibitors in patients with diabetes and nonobstructive hypertrophic cardiomyopathy. Am. J. Cardiol. 188, 80–86 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Aglan, A. et al. Impact of sodium-glucose cotransporter 2 inhibitors on mortality in hypertrophic cardiomyopathy. JACC Adv. 3, 100843 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Schoonvelde, S. A. C., Wiethoff, I., Hiligsmann, M., Evers, S. M. A. A. & Michels, M. Quality of life and societal costs in hypertrophic cardiomyopathy: protocol of the AFFECT-HCM study. Neth. Heart J. 31, 238–243 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Nassif, M. et al. Validation of the Kansas city cardiomyopathy questionnaire in symptomatic obstructive hypertrophic cardiomyopathy. JACC Heart Fail. 10, 531–539 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Spertus, J. A. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): health status analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 397, 2467–2475 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Reaney, M. et al. Development of the hypertrophic cardiomyopathy symptom questionnaire (HCMSQ): a new patient-reported outcome (PRO) instrument. PharmacoEconomics Open https://doi.org/10.1007/s41669-022-00335-5 (2022).

  148. Argiro, A. et al. Applications of gene therapy in cardiomyopathies. JACC Heart Fail. https://doi.org/10.1016/j.jchf.2023.09.015 (2023).

  149. Hong, K. N. et al. International consensus on differential diagnosis and management of patients with danon disease. J. Am. Coll. Cardiol. 82, 1628–1647 (2023).

    Article  PubMed  Google Scholar 

  150. Rossano, J. et al. Safety profile of the first pediatric cardiomyopathy gene therapy trial: RP-A501 (AAV9:LAMP2B) for danon disease. J. Card. Fail. 29, 554 (2023).

    Article  Google Scholar 

  151. Rocket pharmaceuticals announces positive updates from phase 1 clinical trial for RP-A501 in danon disease at the Heart Failure Society of America (HFSA) annual scientific meeting 2022.

  152. Greenberg, B. et al. Phase 1 study of AAV9.LAMP2B gene therapy in danon disease. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2412392 (2024).

  153. Greer-Short, A. et al. AAV9-mediated MYBPC3 gene therapy with optimized expression cassette enhances cardiac function and survival in MYBPC3 cardiomyopathy models. Nat. Commun. 16, 2196 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Haroldson, J. et al. MyPeak-1: a phase 1b study to evaluate safety and efficacy of TN-201, an adeno-associated virus serotype 9 (AAV9) investigational gene therapy, in adults with MYBPC3-associated hypertrophic cardiomyopathy (HCM). J. Card. Fail. 30, S5 (2024).

    Article  Google Scholar 

  155. Chai, A. C. et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat. Med. 29, 401–411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Reichart, D. et al. Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice. Nat. Med. 29, 412–421 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Satish, T., Hong, K. N., Kaski, J. P. & Greenberg, B. H. Challenges in cardiomyopathy gene therapy clinical trial design. JACC Heart Fail. https://doi.org/10.1016/j.jchf.2024.08.024 (2024).

  158. Xu, Z. et al. Incremental significance of myocardial oedema for prognosis in hypertrophic cardiomyopathy. Eur. Heart J. Cardiovasc. Imaging 24, 876–884 (2023).

    Article  PubMed  Google Scholar 

  159. Wang, J. et al. Assessment of late gadolinium enhancement in hypertrophic cardiomyopathy improves risk stratification based on current guidelines. Eur. Heart J. 44, 4781–4792 (2023).

    Article  CAS  PubMed  Google Scholar 

  160. Groarke, J. D. et al. Intrinsic mitral valve alterations in hypertrophic cardiomyopathy sarcomere mutation carriers. Eur. Heart J. – Cardiovasc. Imaging 19, 1109–1116 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Nagueh, S. F. et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American society of echocardiography and the European association of cardiovascular imaging. J. Am. Soc. Echocardiogr. 29, 277–314 (2016).

    Article  PubMed  Google Scholar 

  162. Gareri, C. et al. Antisense oligonucleotides and small interfering RNA for the treatment of dyslipidemias. JCM 11, 3884 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Merino, J. L. et al. Practical compendium of antiarrhythmic drugs: a clinical consensus statement of the European heart rhythm association of the ESC. Europace https://doi.org/10.1093/europace/euaf076 (2025).

  164. Ammirati, E. et al. Pharmacological treatment of hypertrophic cardiomyopathy: current practice and novel perspectives. Eur. J. Heart Fail. 18, 1106–1118 (2016).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (I.O. and A.A.); Epidemiology (I.O., A.A. and V.P.); Mechanisms/pathophysiology (I.O., A.A. and V.P.); Diagnosis, screening and prevention (I.O., A.A., R.J., G.F., J.P.K. and E.A); Management (I.O., A.A., G.F., J.P.K. and E.A.); Quality of life (I.O. and A.A.); Outlook (I.O. and A.A.); overview of the Primer (I.O.).

Corresponding author

Correspondence to Iacopo Olivotto.

Ethics declarations

Competing interests

A.A. is a consultant for Lexeo Therapeutics. I.O. is a consultant and/or adviser for Amicus Therapeutics, Inc.; Boston Scientific Corporation; Bristol Myers Squibb; Cytokinetics, Inc.; and Tenaya Therapeutics, Inc., and has received grant and/or research support from Amicus Therapeutics, Inc.; Bayer AG; Boston Scientific Corporation; Bristol Myers Squibb; Genzyme Corporation; The Menarini Group; Sanofi; Shire plc; and Takeda Pharmaceuticals International, Inc. E.A. is the Chief Science Officer for Lexeo Therapeutics, a shareholder with Rocket Pharmaceuticals and is a founder of Papillion Therapeutics and a founder, on the scientific board of and a shareholder of Corstasis Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks Yuichi Shimada, who co-reviewed with Lusha Liang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

HCM Risk-Kids: https://hcmriskkids.org

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argirò, A., Parikh, V., Jurcut, R. et al. Hypertrophic cardiomyopathy. Nat Rev Dis Primers 11, 58 (2025). https://doi.org/10.1038/s41572-025-00643-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41572-025-00643-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing